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Background
Let Σ be a closed, smooth surface in R

3. For any two sets X,Y ⊂ R
3, let d(X,Y )

denote the Euclidean distance between X and Y . The local feature size f(x) at a
point x ∈ Σ is defined to be the distance d(x,M) where M is the medial axis of
Σ. Let np denote the unit normal (inward) to Σ at point p. Amenta and Bern in
their paper [1] claimed the following:

Claim 1 Let q and q′ be any two points in Σ so that d(q, q′) ≤ εmin{f(q), f(q′)}
for ε ≤ 1

3 . Then, ∠nq, nq′ ≤
ε

1−3ε
.

Unfortunately, the proof of this claim as given in Amenta and Bern [1] is
wrong; it also appears in the book by Dey [2]. In this short note, we provide a
correct proof with an improved bound of ε

1−ε
.

Theorem 2 Let q and q′ be two points in Σ with d(q, q′) ≤ εf(q) where ε ≤ 1
3 .

Then, ∠nq, nq′ ≤
ε

1−ε
.

Definitions and Preliminaries
For any point p ∈ R

3, let p̃ denote the closest point of p in Σ. When p is a point
in Σ, the normal to Σ at p is well defined. We extend this definition to any point
p ∈ R

3. Define the normal np at p ∈ R
3 \M as the normal to Σ at p̃. Similarly, we

extend the definition of local feature size f to R
3. For any point p ∈ R

3, let f(p)
be the distance of p to the medial axis of Σ. Notice that f is 1-Lipschitz. If two
points x and y lie on a surface F ⊂ R

3, let dF (x, y) denote the geodesic distance
between x and y. The following facts are well known in differential geometry.
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Proposition 3 Let F be a smooth surface in R
3. Let q and q′ be two points in F .

Then,
lim
d→0

dF (q, q′)

d(q, q′)
= 1.

Proposition 4 Consider the geodesic path between q, q ′ on a smooth surface F in
R

3. Let κm be the maximum curvature on this geodesic path. Then ∠nq, nq′ ≤
κmdF (q, q′).

The Proof
We are to measure ∠nq, nq′ for two points q and q′ in Σ. One approach would be to
use the propositions above to bound the length of a path from p to q on Σ and then
use that length to bound the change in normal direction, but we can get a better
bound by considering the direct path from p to q.

Let Σω denote an offset of Σ, that is, each point in Σω has distance ω from Σ.
Formally, consider the distance function

h : R
3 → R, h(x) 7→ d(x,Σ).

Then, Σω = h−1(ω).

Claim 5 For ω ≥ 0 let p be a point in Σω where ω < f(p̃). There is an open set
U ⊂ R

3 so that σp = Σω ∩ U is a smooth 2-manifold which can be oriented so
that nx is the normal to σp at any x ∈ σp.

PROOF. Since ω < f(p̃), p is not a point on the medial axis. Therefore, the
distance function h is smooth at p. One can apply the implicit function theorem to
claim that there exists an open set U ⊂ R

3 where

σp = h−1(ω) ∩ U

is a smooth 2-manifold. The unit gradient ( ∇h
‖∇h‖ )x = x−x̃

‖x−x̃‖ which is precisely nx

up to orientation is normal to σp at x ∈ σp.

PROOF. [Proof of Theorem 2] Consider parameterizing the segment qq ′ by the
length of qq′. Take two arbitrarily close points p = p(t) and p′ = p(t + ∆t) in qq′

for arbitrarily small ∆t > 0. Let θ(t) = ∠nq, np(t) and ∆α = ∠np, np′ . Then,
|θ(t + ∆t) − θ(t)| ≤ ∆α giving

|θ′(t)| ≤ lim
∆t→0

∆α

∆t
.
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If we show that lim∆t→0
∆α
∆t

is no more than 1
(1−ε)f(q) we are done since then

∠nq, nq′ ≤

∫
qq′

|θ′(t)|dt

≤

∫
qq′

1

(1 − ε)f(q)
dt

=
d(q, q′)

(1 − ε)f(q)

≤
ε

(1 − ε)
.

We have d(q, p̃) ≤ d(q, p) + d(p, p̃) and d(q, p) ≤ εf(q). Since also ω =
d(p, p̃) ≤ d(p, q) ≤ εf(q), we have ω ≤ 2ε

1−2ε
f(p̃) (by a standard argument using

the fact that the function f is 1-Lipshitz). Therefore, ω < f(p̃) for ε < 1/3, and
there is a smooth neighborhood σp ⊂ Σω of p satisfying Claim 5.

Let r be the closest point to p′ in Σω, and let ∆t be small enough so that
r and the geodesic between p and r in σp lies in σp. Notice that , by Claim 5,
∆α = ∠np, np′ = ∠np, nr.

Claim 6 lim∆t→0
d(p,r)

∆t
≤ 1.

PROOF. Consider the triangle prp′. If the tangent plane to σp at r separates p and
p′, the angle ∠prp′ is obtuse. It follows that d(p, r) ≤ d(p, p′) = ∆t. In the other
case when the tangent plane to σp at r does not separate p and p′, the angle ∠prp′

is non-obtuse. Let x be the foot of the perpendicular dropped from p on the line of
p′r. We have d(p, r) cos α ≤ d(p, p′) where α is the acute angle ∠rpx. Combining
the two cases we have d(p, r)/∆t ≤ 1

cos α
. Since α goes to 0 as ∆t goes to 0, we

have lim∆t→0
d(p,r)

∆t
≤ 1.

Now consider the geodesic between p and r in σp, and let m be the point on
the geodesic at which the maximum curvature κm is realized. Recall that dσp

(p, r)
denotes the geodesic distance between p and r on σp. Let rm be the radius of
curvature corresponding to κm, i.e., κm = 1/rm. Clearly, f(m) ≤ rm. So,
Proposition 4 tells us that

∆α ≤
dσp

(p, r)

f(m)
.

Therefore,

lim
∆t→0

∆α

∆t
≤ lim

∆t→0

dσp
(p, r)

∆t f(m)
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In the limit when ∆t goes to zero, dσp
(p, r) approaches d(p, r) which in turn

approaches ∆t (Proposition 3 and Claim 6). Meanwhile, d(q,m) ≤ d(q, p) +
d(p, r) approaches d(q, p) ≤ εf(q) as ∆t goes to zero (again by Claim 6). So, in
the limit, f(m) > (1−ε)f(q) (again using the fact that f is 1-Lipshitz). Therefore,

lim
∆t→0

∆α

∆t
≤

1

(1 − ε)f(q)

which is what we need to prove.

Remark: The bound on normal variation can be slightly improved to − ln(1 − ε)
by observing the following. We used that d(q, p) ≤ εf(q) to arrive at the bound
f(m) > (1−ε)f(q). In fact, one can observe that d(q, p) ≤ εtf(q) giving f(m) >
(1 − εt)f(q). This gives |θ′(t)| ≤ 1

(1−εt)f(q) . We have

∠nq, nq′ ≤

∫
qq′

1

(1 − εt)f(q)
dt = −

d(q, q′) ln(1 − ε)

εf(q)
= − ln(1 − ε).
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