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Abstract

We give a 5-approximation algorithm to the rooted Subtree-Prune-and-Regraft

(rSPR) distance between two phylogenies, which was recently shown to be NP-complete

by Bordewich and Semple [Bordewich and Semple, 2005]. This paper presents the first

approximation result for this important tree distance. The algorithm follows a standard

format for tree distances such as Rodrigues et al. [Rodrigues et al., 2001] and Hein et

al. [Hein et al., 1996]. The novel ideas are in the analysis. In the analysis, the cost of

the algorithm uses a “cascading” scheme that accounts for possible wrong moves. This

accounting is missing from previous analysis of tree distance approximation algorithms.
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Further, we show how all algorithms of this type can be implemented in linear time

and give experimental results.

1 Introduction

Phylogenies, or evolutionary histories, are an important tool in almost all branches of bi-

ology. They give a framework for analyzing the interrelationships between species and are

indispensable in studying evolution [Hillis et al., 1996]. In addition to the direct applica-

tions, techniques for building and comparing phylogenies have been used for designing vac-

cines [Bush et al., 1999, Hillis, 1999, Novitsky et al., 2002], haplotyping [Ding et al., 2005,

Gusfield, 2004], and determining the evolution of human language [Gray and Atkinson, 2003,

Warnow et al., 1996]. Most optimization criteria for creating phylogenies are NP-hard (e.g.

[Roch, 2006, Addario-Berry et al., 2003, Foulds and Graham, 1982]). To evaluate the cor-

rectness of proposed phylogenies (given by heuristics and approximation algorithms), the dis-

tance between the two trees is needed. Efficiency is key since algorithms that approximate the

correct phylogeny often produce thousands of candidate trees (e.g. [Huelsenbeck and Ronquist, 2001,

Swofford, 2002]) and analyzing and visualizing these requires distances to be computed

quickly [Amenta and Klingner, 2002, Hillis et al., 2005]. While the Robinson-Foulds dis-

tance [Robinson and Foulds, 1981] (basically the sum of the false positives and false neg-

atives) is often used since it can be calculated in linear time [Day, 1985], it lacks bio-

logical motivation. The TBR and rooted SPR metrics have better biological intuition

[Hillis et al., 1996]. Unfortunately, both are NP-hard to compute [Allen and Steel, 2001,
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Bordewich and Semple, 2005].

In addition to its value in phylogenetic reconstruction searches, rooted SPR distance is

also valuable for more complex evolutionary events. Maddison [Maddison, 1997] showed that

the number of reticulation events between two gene trees and rSPR of those two trees are

closely related. Baroni et al. [Baroni et al., 2005] refine this, giving elegant results about

the rSPR distance and the number of complex evolutionary events. Building on this equiv-

alence has led to advances in network models of evolution [Bordewich and Semple, 2006,

Nakhleh et al., 2005, Page and Charleston, 1998].

Our contributions are a 5-approximation for the SPR distance between rooted trees,

counterexamples that point out subtle flaws of past approximation algorithms for TBR, and

linear time versions of all these algorithms. With a small modification to the algorithms of

[Hein et al., 1996, Rodrigues et al., 2001], we can get a 5-approximation algorithm for the

related distance metric, rooted SPR. The proof of the approximation bounds uses a “cascad-

ing” accounting scheme to capture the complexity and illustrates the difficult situations to

approximate. On the application side, we can improve the running time of these algorithms

to linear time in the number of nodes. We end the paper by giving initial experimental

results on the effectiveness of these algorithms on both biological and random datasets.

The problem of calculating TBR and SPR distances between trees has generated much

interest and past work. Hein et al. [Hein et al., 1996] had many good intuitions and defined

the maximum agreement forest (MAF), which is the key to the NP-completeness proofs for

both TBR and rooted SPR. Unfortunately, subtle details were missed in the proofs. Allen and
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Steel [Allen and Steel, 2001] gave a counterexample to the argument in [Hein et al., 1996]

and a correct proof for the NP-completeness of TBR distance. [Rodrigues et al., 2001] gave

a counterexample to the approximation algorithm for TBR distance in [Hein et al., 1996]

and provide a new approximation algorithm. Unfortunately, the approximation bounds of

[Rodrigues et al., 2001] are not correct– we give a counterexample in Section 5 showing that

the algorithm gives at best a four-approximation for TBR. Recently, Bordewich and Semple

[Bordewich and Semple, 2005] have shown that the calculation of SPR distance on rooted

trees is NP-hard. Their development of a Maximum Agreement Forest for rooted SPR gives

a natural way to prove bounds for approximation algorithms for this important distance

metric. We use their new work to give the first approximation algorithm with provable

bounds for rooted SPR distance.

2 Background

This section contains the basic definitions needed for the paper, which the expert may wish to

skip. We follow the standard definitions from [Allen and Steel, 2001, Bordewich and Semple, 2005,

Rodrigues et al., 2001].

Definition 1 [Bordewich and Semple, 2005]: A rooted binary phylogenetic X-tree (or

more briefly a tree) is a rooted tree where the root has degree two, all other interior nodes

have degree 3 and the leaves are labeled by elements of the set X. X is called the label set

of the tree.
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EA B C D F G GA B C D E F GA B C D E F C GDBAFE

start → → 1 TBR
tree move

EA B C D F G DA B E F GC E A B C D F G

→ 1 rSPR
move

Figure 1: Beginning with the start tree, we show an example of a TBR move at the top
and an example of a rSPR move at the bottom. Note that the rSPR move prunes a rooted
subtree and must regraft it by the same cut edge. For TBR, an edge is removed entirely and
a new edge (the blue dotted edge in the figure) is chosen. Since TBR allows more freedom in
reconnecting, there are pairs of trees which take strictly less TBR moves than rSPR moves
(e.g. the TBR tree and the start tree).

Definition 2 [Allen and Steel, 2001]: A subtree prune and regraft (SPR) operation on

a binary tree T is defined as cutting any edge and thereby pruning a subtree t, then regrafting

the subtree by the same cut edge to a new vertex obtained by subdividing a pre-existing edge

in T − t. We apply a forced contraction to maintain the binary property of the resulting

tree. The SPR distance between two trees T1 and T2 is the minimal number of SPR moves

needed to transform T1 into T2. When working with rooted trees, we refer to this distance as

rooted SPR or rSPR. See Figure 1.

Definition 3 [Allen and Steel, 2001]: A tree bisection and reconnection (TBR) oper-

ation on a binary tree T is defined as removing any edge, giving two new subtrees t1 and t2,

which are then reconnected by creating a new edge between the midpoints of any edge in t1

and any edge in t2. We apply a forced contraction to maintain the binary property of the
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resulting tree. The TBR distance between two trees T1 and T2 is the minimal number of

TBR moves needed to transform T1 into T2. See Figure 1.

Allen and Steel [Allen and Steel, 2001] showed that the TBR distance between two trees

is one less than the size of the TBR maximum agreement forest, MAFTBR of the two trees.

Definition 4 [Allen and Steel, 2001]: Suppose we have two binary trees T1 and T2 on the

same leaf set, L. Then

• An agreement forest (AF) for T1 and T2 is a collection F = {t1, . . . , tk} of binary

trees such that, if we let Lj be the leaf set of tj for j ∈ {1, ..., k}, then the following are

satisfied:

1. L1, . . . ,Lk partitions L.

2. tj = T1|Lj
= T2|Lj

for all j ∈ {1, . . . , k}; and

3. for both i = 1 and i = 2 the trees {Ti(Lj) : j = 1, . . . , k} are vertex-disjoint

subtrees of Ti .

• A maximum agreement forest (MAFTBR) for T1 and T2 is an agreement forest F

for T1 and T2 for which |F| is minimal. Let

m(T1, T2) := min{|F| − 1 : F is an AF for T1 and T2}.

Bordewich and Semple [Bordewich and Semple, 2005] showed that the rSPR distance of

two trees is the same as the size of the maximum agreement forest for rooted trees of the two
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trees. Below we give the definition of maximum agreement forest for SPR on rooted trees,

and since we focus only on rooted trees, we will call it simply maximum agreement forest

for SPR or MAFSPR.

Definition 5 [Bordewich and Semple, 2005]: Let T be a rooted binary phylogenetic X-tree

(or more briefly a tree) and V a subset of the vertex set of T . T(V) is the minimal rooted

subtree of T that connects the elements of V . T | V is obtained from T (V ) by splicing out

all non-root vertices of degree two (that is, replacing the vertex and its two adjacent edges

with a single edge).

Definition 6 [Bordewich and Semple, 2005]: Let T1 and T2 be two rooted binary phyloge-

netic X-trees. For the purposes of definition, we regard the root of both T1 and T2 as a

vertex ρ at the end of an edge adjoined to the original root. Furthermore, we regard ρ as part

of the label set of T1 and T2. An (rSPR) agreement forest for T1 and T2 is a collection

{Tρ, T1, T2, . . . , Tk} where Tρ is a rooted tree and T1, T2, . . . , Tk are rooted binary phylogenetic

trees with label sets {Lρ,L1,L2, . . . ,Lk} such that the following properties are satisfied:

1. The label sets partition X ∪ ρ and, in particular, ρ ∈ Lρ.

2. For all i ∈ {ρ, 1, 2, . . . , k},

Ti ' T1 | Li ' T2 | Li.

3. The trees in {T1(Li) | i ∈ {ρ, 1, 2, . . . , k}}, and the trees in {T2(Li) | i ∈ {ρ, 1, 2, . . . , k}}

are vertex disjoint rooted subtrees of T1 and T2, respectively.
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Definition 7 A (rSPR) maximum agreement forest (MAFSPR) for T1 and T2 is the

agreement forest for T1 and T2 with the minimal number of components.

The MAFSPR need not be unique, so in the subsequent proof, we will select an arbitrary

MAFSPR F and use it consistently.

Definition 8 Let F be an agreement forest for T1 and T2. We say that a set E of edges

in T1 (T2, respectively) are links with respect to F if removing E and then splicing out all

vertices of degree two yields the agreement forest F .

Two algorithms [Hein et al., 1996, Rodrigues et al., 2001] have been proposed to approx-

imate MAFTBR size (for the TBR distance) and therefore the TBR distance. In this paper, we

adapt these two algorithms to get an algorithm for the rooted version of maximum agreement

forest for SPR, and analyze its performance.

3 The General Algorithm

The general algorithm proceeds by examining the sibling pairs in the first tree, T1 and finding

the corresponding leaves in the second tree, T2. At each step, the algorithm eliminates an

edge or contracts identical sibling pairs, creating, in the end, an agreement forest for T1 and

T2. To distinguish between the original trees and the forests that are created after each step

of the algorithms, we add a superscript with the step number. T 0
1 and T 0

2 are the initial trees

given to the algorithm, and T i
1 and T i

2 are the forests that result after the ith step of the

algorithm. We let N be the count of the number of components in the agreement forest that
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are created from T2 by the algorithm. N provides an upper bound on the distance between

the trees. At the start N = 1. At each step i, for each sibling pair a, b in T i
1, we look at a

and b in T i
2 and follow the cases in Figure 2. We repeat, until all components are of size 1

and then output the number of cuts, N , and the resulting agreement forest.

Figure 2 gives the Hein et al. variant of the algorithm. The Rodrigues et al. variant

differs only by a small change in Cases 1 and 2. Namely, Case 1 occurs when there is either

one or two subtrees between a and b in T i
2, and we cut them. Case 2 occurs when there are

three or more subtrees between a and b, and we cut a and b. Due to Case 5, which contracts

identical sibling pairs, the leaves of the forests, T i
1 and T i

2, can differ from one step of the

algorithm to another.

A slight modification is needed for the rSPR distance. Since you could have the compo-

nent that contains the root in the forest for one tree that does not occur in the forest for the

other tree, as in [Bordewich and Semple, 2005], we view the root as a node ρ hanging off the

pendant edge where the root is located in the tree. We then apply the algorithm above to

trees on the extended leaf set of X ∪ ρ.

Definition 9 Consider a Case 5 step in which nodes a and b are contracted into a new node

(a, b). We call (a, b) a contraction and we say a and b are contracted into (a, b). If a is

contracted into b and b is contracted into c, we also say a is contracted into c. We also say

that a is (trivially) contracted into itself.

Because of contractions, the leaves of the input trees T1 and T2 are generally different from

the leaves of the intermediate trees T j
i , i ∈ {1, 2}. None the less, we can identify any node a
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Case 1: There’s 1 subtree between a & b
in T i

2: Cut the subtree l in T i
2.

N := N + 1
e

ba
A1

1

Case 2: There are ≥ 2 subtrees between a & b
in T i

2: Cut a & b in T i
1 & T i

2.
N := N + 2.

A
a b

Ak

1e e k

1

Case 3: a & b are in separate components of
T i

2: Cut a & b in T i
1 & T i

2.
N := N + 2.

a b

Case 4: b is a singleton in T i
2: Cut

b in T i
1.

N does not change.
a b

Case 5: The sibling pair occurs in both: Replace
it by “(a, b),” in T i

1 & T i
2.

N does not change.
a b

Figure 2: The cases of Hein et al. variant of the algorithm at step i.

of T j
i , with a node a′ of Ti as follows. Consider the subtree A of T j

i rooted at a. We identify

a with the least common ancestor a′ of all of the leaves of Ti which are contracted into the

leaves of A. Using this identification, we can identify an edge cut in T j
i at step j with a

particular edge of Ti. We call this a cut edge in Ti.

Recall that the links are defined in terms of the initial trees, T1 and T2 and the MAFSPR

F . Next we will define a related concept, that of virtual link, which is defined with respect

to an intermediate tree T j
i .
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Definition 10 Let e be and edge in in T j
i , let a be the node adjacent to e nearer the root,

and let a′ be the node identified with a in Ti. Let L be the set of leaves in Ti which have been

contracted into leaves of the subtree rooted at a in T j
i . Edge e is a virtual link in T j

i if, for

every leaf l ∈ L, the path between a′ and l contains a link.

This definition implies that if e is a link, it is also a virtual link. Notice that since virtual

links are defined in terms of the forests T j
i for some step j, an edge may not be a virtual

link at step j but could become one at some later step j + s. But once an edge becomes a

virtual link, it remains a virtual link.

4 5-Approximation for rSPR

The basic idea of our proof that the algorithm gives a 5-approximation for rSPR is to look

at an arbitrarily chosen MAFSPR F for trees T1 and T2. For each link of T2 with respect

to F , we will “charge” a cost for the edges the algorithm cuts. The overall charges on the

links will equal the number of cuts made by the algorithm, and we show that the charges

do not exceed 5 for any link of T2. Thus, the algorithm produces a result that is at most a

multiplicative factor of 5 of the true distance.

Definition 11 Let F be an MAFSPR for T1 and T2, and a and b be two nodes of T i
1 and T i

2.

i) We say that a participates in component t of F if either a is a leaf of t, or a is a

contraction containing a leaf a′ of t.

ii) We say that a and b share a component t of F if both a and b participate in t.
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Notice that a contraction a may participate in multiple components of F .

We split the analysis of the cases of the algorithm into two sub-cases: those in which the

nodes a and b of the sibling pair we are processing share a component of the MAFSPR (the

“A” cases), and those where a and b do not share any component of the MAFSPR (the “B”

cases). Thus we consider Case 1A, Case 1B, etc.

4.1 Agreement Forest Lemmas

For the cost analysis of the algorithm, we prove several lemmas about the trees with respect

to the underlying maximum agreement forest. Lemma 12 shows that in Cases 1A and 2A, the

edges ei might not be links, but virtual links. That is, it is possible after repeated applications

of Case 2 to have links “buried” in the subtrees Ai, with ei not being a link. In both Hein

el al. and Rodrigues et al., this subtlety was missed (Theorem 9 of [Hein et al., 1996] and

Lemma 4 of [Rodrigues et al., 2001]) and is the main reason their approximation bounds are

incorrect. This is illustrated in the example in Section 5.

Lemma 12 Let T1 and T2 be rooted phylogenetic trees on the same leaf set. Let F be a

MAFSPR for T1 and T2, and T i
1 and T i

2 be the result after the ith step of the algorithm.

Assume that a and b are a sibling pair in T i
1, and a and b are in the same component of T i

2,

but are not siblings, so that between a and b, there are subtrees A1, A2, . . . , Ak, k ≥ 1. Call

the edges above the subtrees e1, e2, . . . , ek (see Figure 2). If a and b share a component t of

F (see Definition 11), then

i) For all j, none of the leaves of Aj participate in the MAFSPR component t.
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ii) e1, e2, . . . , ek are all virtual links at stage i of the algorithm.

Proof of Lemma 12:

Proof of i: Towards a contradiction, assume that there exists j, such that some leaf l in

Aj participates in t. Since a, b and l all share the MAFSPR component t, there are nodes a′,

b′ and l′ of the original trees such that a′, b′ and l′ are in t, and a′ is contracted into a, b′

into b and l′ into l. By the definition of MAFSPR, t is an induced rooted subtree of T1 and of

T2, and therefore l′ should appear in T1 between a′ and b′. Since a and b are a sibling pair

in T i
1, l′ (or a node into which l′ has been contracted) has been detached from T1 at some

step of the algorithm prior to step i. Only Cases 2, 3 or 4 cut edges in T1. Case 2 and 3 cut

the same nodes in both trees. Case 4 only cuts off a node b if b is a singleton already in T2.

Therefore if l′ (or a node into which l′ is contracted) was detached at some earlier step in

the forest for T1, it must also have been detached in the forest for T2 as well. But this is not

the case, and we get a contradiction. Thus Aj does not participate in t.

Proof of ii: Recall that a and b share a rooted component t of the MAFSPR F . Then

there are leaves a′ and b′ in T2, contracted into a and b of T i
2 respectively, such that a′ and

b′ belong to component t. Therefore we know that there are no links nor virtual links in the

path from a to b in T i
2. Now, if say ei is not a virtual link, then there must be a leaf l′ of T2

contracted into a leaf l in subtree Ai of T i
2, such that there a link-free path from both a′ and

b′ to l′. So l would participate in t, which contradicts part i) of this lemma. �

The following lemma will help us analyze Case 3A.

Lemma 13 Let a and b be a sibling pair in T i
1 but contained in different components of T i

2,
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and assume a and b share a component t of F . Then the step j at which a and b were first

separated into two components was a Case 1B.

Proof of Lemma 13: Let (a′, b′) be the sibling pair in T j
1 handled in step j. Step j has

to be a Case 1, since neither a nor b is a singleton and Case 1 is the only one in which

two non-singleton components are created. Then in T j
2 , the subtree induced by the four

nodes a, b, a′, b′ has sibling pairs either (a′, a) and (b, b′), or (a, b′) and (b, a′), while in T j
1 ,

the induced subtree has to have sibling pairs (a′, b′) and (a, b). Thus the four nodes cannot

all share a component of F . Similarly, a and b cannot share one component t1 of F while a′

and b′ share another component t2, since these two components would have to intersect in

T2. Since we assume a and b share a component of F , a′ and b′ cannot share a component

of F , and step j is a Case 1B. �

The following definition and lemmas will help us deal with the analysis of the first three

cases when the sibling pair does not share a component, i.e., Cases 1B, 2B and 3B. We show

here that there is a link for every “B” case. We use the links in tree T1 since that makes the

argument simpler.

Definition 14 Let a be a node of T i
1 or T i

2, and then let ea be the edge connecting a with its

parent.

Lemma 15 Suppose a and b are a sibling pair in T i
1, but not in T i

2, and that a and b do not

share a component of F . Then at least one of ea or eb is a virtual link in T i
1.

Proof of Lemma 15:
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Since a and b do not share any component of F , then for all a′ contracted into a and all

b′ contracted into b, there is a link in the path between a′ and b′. This implies that at least

one of ea or eb is a virtual link in T i
1. �

Let (a, b) be a sibling pair in T i
1. We define the least common ancestor of (a, b) in T1,

lca(a, b), to be the least common ancestor of any leaf contracted into a and any leaf contracted

into b, or, equivalently, the node in T1 identified with the parent of a and b in T i
1.

Lemma 16 Let (a1, b1) . . . (ak, bk) be the sibling pairs in T i1
1 . . . T ik

1 (respectively) correspond-

ing to the Cases 1B, 2B, and 3B of the algorithm. We can assign a link ui in T1 to each

sibling pair (ai, bi), such that

1. link ui belongs to the subtree rooted at lca((ai, bi), and

2. each link in T1 is assigned at to most one sibling pair.

Proof of Lemma 16: We consider the situation when processing a Case 1B, 2B, or 3B sibling

pair (a, b) in T i
1, and we assume inductively that at all prior steps j < i, the lemma holds.

Lemma 15 established that either ea or eb is a virtual link; assume without loss of gen-

erality that ea is a virtual link, and let a′ be the node identified with a in T1. If ea is also

a link, we assign it to (a, b). By our inductive assumption, it cannot have been assigned to

any sibling pair (c, d) in any prior step since it lies in the subtree rooted at lca(a, b) but not

in the subtree rooted at any prior lca(c, d).

If ea is a virtual link but not a link, we will assign (a, b) to a link in the subtree of T1

rooted at a′, which again belongs to the subtree rooted at lca(a, b). Any path in T1 from a′
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a'

21

3

4

5 6

7 8

Figure 3: Figure for Proof of Theorem 16. Heavy edges are links, and dashed edges are cut
edges with respect to T i

1. The subtree A of T1 rooted at node a′ is circled. Leaves 1, 2, 4, 5
and 6 are contracted into leaves of the subtree rooted at a in T i

1.

to one of the leaves contracted into a must contain at least one link. Let u be the link in

the path nearest to a′, that is, there is no other link in the path between u and a′. Consider

the sub-path connecting a′ and u. We form a subtree A of T1 by taking the union of all of

these initial sub-paths, for every leaf contracted into a. The edge adjacent to every leaf of

A (which might not be a leaf of T1) is a link, so that the number of links in A is a equal to

the number of leaves in A. See Figure 3.

We will show that one of these links was not assigned to a sibling pair by a prior Case

1B, 2B, or 3B step of the algorithm and can therefore be assigned to (a, b). First we show

that none of the links assigned to a 2B or 3B step can belong to A. Assume step j < i of the

algorithm was a Case 2B or 3B step on a sibling pair (c, d), so that (c, d) was assigned to a
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link in the subtree rooted at lca(c, d). But both c, d were cut at step j, so that no leaf of T1

contracted into c or d is contracted into a. Hence no edge of the subtree rooted at lca(c, d)

(including the relevant link) can belong to A.

Therefore if step j < i assigns a a link u in A to a sibling pair (c, d), it must be a Case

1B step. Since u belongs to A, lca(c, d) and at least one child of lca(c, d) belong to A, and

there is no link between lca(c, d) and the root a′ of A.

A Case 1B step on (c, d) is always followed immediately by a Case 5B step on (c, d),

which creates a new node f in T j+1
1 , identified with lca(c, d) in T1. Every leaf contracted

into c or d is contracted into f , and, since u belongs to A, it must be the case that f is

contracted into a. Since there is at least one leaf of T1 contracted into each of c, d, and there

is no link between lca(c, d) and a′, lca(c, d) must have degree two in A.

Thus, every step 1B which associates a link u with a sibling pair (c, d) can also be

associated with the degree-two node lca(c, d) in A. Since all the leaves contracted into c, d

are contracted into f at step j, no later step 1B can be associated with lca(c, d). So the

number of sibling pairs to which a link u has already been assigned at step i is at most the

number of degree-two nodes in A.

Since A is a binary tree, the number of leaves in A is one greater than the number of

degree two nodes in A, and therefore at least one link remains to be assigned to (a, b). �
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4.2 Assigning Charges & Analysis

To be able to analyze the algorithm, we will describe how to charge a cost to the links for

each edge that the algorithm cuts. The overall charges on the links equals the number of

cuts, and we will prove that on each link the charge will be at most 5. To simplify the

accounting, we will keep track of the links in the original tree T2.

We now describe how to assign the charges for the different cases. Suppose, without loss

of generality, that we are at stage i of the algorithm, and that we are processing the sibling

pair (a, b) of T i
1.

Cases 1A and 2A: a and b are in the same MAFSPR corresponding to a and b, and

there is a path from a to b. Say A1, . . . , Ak are the trees that hang directly from this path,

and let e1, . . . , ek be the edges connecting the trees to the path. If we are in Case 1A, at

stage i only nodes from one of these trees appears in T i
2. Without loss of generality, say the

tree is A1. Then we put a charge of 1 on e1. If we are in Case 2A, then at least two of these

trees keeps some nodes at stage i. Without loss of generality, say they are A1, . . . , As, where

2 ≤ s ≤ k. Then we charge 2/s to each of the s edges e1, . . . , es. Recall that in this case

we detach two nodes, so the cost is 2, and we are distributing it through s edges. Now, we

assigned charges to edges that might not be links. Now, for each e which is not a link, we

pass the charge down to the links below in the following way: Say e has two child edges, e1,

e2 in T2. If both are links, or have links below, then we charge each one with half the cost.

If only one is a link or has links below, then we charge it the full cost. Note that at least one

must be a link or have a link below to have a virtual link at stage i (by Lemma 12). Since
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our trees are finite in size, this recursive charging scheme is well-defined.

Cases 1B, 2B and 3B: The cost of a Case 1B operation is 1. The cost of a Case 2B or

Case 3B operation is 2. We charge the cost to the link assigned to the “B” case.

Case 3A: The cost of this operation is 2. The step in which a and b were separated into

different components was a Case 1B step (Lemma 13). We charge the cost of the Case 3A

operation to the link assigned to the Case 1B step.

Cases 4 and 5: The cost of these operations is zero, since in Case 4 we cut an edge in

T i
1 rather that in T i

2, and in Case 5 we just make contractions.

The following lemma gives extra information on how the charges are assigned to links.

Lemma 17 i) We can only charge a link once for Cases 1B+2B+3B.

ii) Similarly, we can only charge a link once for Case 3A.

iii) We can only charge 2 on a link for Cases 1A and 2A.

Proof of Lemma 17:

In the following proofs we use the labels on trees and edges for the different cases of the

algorithm in Figure 2.

Part i): By Lemma 16, we have at least one link for each application of a “B” case of the

algorithm.

Part ii): By Lemma 13, any Case 3A is created by a Case 1B. If we charge the same

link twice from a Case 3A it must be because both 3A cases have been created by the same

Case 1B step. Suppose the first Case 3A happens at step i, and the second at step j. Then,

at step i, T i
1 contains a sibling pair (a, b) with a and b in different T i

2- components, and at
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step j, T j
1 has a sibling pair (c, d) with c and d in different T j

2 -components. Without loss

of generality, say a and c are in the subtree cut off by the Case 1B step. Note that a, b, c, d

must all share a component of the MAFSPR F ; the edge cut by the Case 1B step has to be

contained in any component of F shared by a and b and also in any component of F shared

by c and d. Thus, in tree T1, the lca(a, b) does not have c as a descendant, while in T2 it

does. But this cannot happen by the definition of MAFSPR, giving a contradiction.

Part iii): Say we charge twice a link for two applications of Cases 1A and 2A. Say the

first time is at step i, and the second at step j. Let (a, b) be the sibling pair considered at

step i, and (c, d) be the pair considered at step j. Since we’re considering Cases 1A and 2A,

a and b must share a component of the MAFSPR, and c and d also must share a component

of the MAFSPR. Let e′ be the link that is charged twice. Since e′ is below lca(a, b) and below

lca(c, d), there are three possibilities for the relative positions of a, b, c, d in T2: c and d are

below the lca(a, b), one of c and d is below and the other is above, and finally, c and d are

above lca(a, b).

If c and d are below the lca(a, b), then the least common ancestor of c and d is in one of

the intermediate subtrees Ai (or if it is the same as lca(a, b) the proof is the same as in the

second case). ei is a virtual link, so there is a link between c and ei, and also between d and

ei. But since c and d are in the same MAFSPR component, the link must be above lca(c, d).

Therefore, the charge of ei as a virtual link will not reach e′. So this case will not happen.

In the second case, a, b, c, d must all share a MAFSPR component. This gives a contra-

diction with the definition of MAFSPR, since in T1, a and b are more closely related than c
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and d, but in T2, a and c are more closely related than b and d. So this second case cannot

happen either.

We have to conclude that c and d must be above lca(a, b). This means that when we

charge a link repeatedly for Cases 1A or 2A, the process occurs bottom up towards the root

of T2. We will discuss now the first two charges on e′ from the bottom up. We distinguish

two cases:

Case I: The lower case is a Case 2A. At step i, we process the pair (a, b), and a and b

disappear. To assign a charge of 2 in T2, we first identify in T2 the nodes corresponding to

a and b. Let A1 . . . Ak be the trees that hang from the path from a to b in T2, and e1 . . . ek

the connecting edges. Some s ≥ 2 of these trees haven’t completely disappeared by step

i. Without loss of generality, say the one containing e′ is A1. Since there are at least two

subtrees, e′ gets a charge ≤ 1 from this step. When we process the pair (c, d), a charge ≤ 1

will be passed to lca(e1 . . . es). Since s ≥ 2, the charge passed down to each one of the ei’s

will be divided by two. So at most a 1/2 charge will be passed to e′.

Case II: The lower case is a Case 1A. So, in T i
2, the intermediate subtree gets dettached,

and immediately afterwards a and b get contracted. Looking at T2, we assign to e′ a charge

of one at this step. Later, in step j, we process the sibling pair (c, d). In T2, we identify the

nodes corresponding to c and d as explained before. From the path between c and d, hang

trees A1, . . . Ak, with connecting edges e1, . . . ek. Without loss of generality, e′ is in A1. Now,

if at step j, the whole of A1 has disappeared, then we do not charge e1 and as a consequence

we do not charge e′. So we must conclude that some part of A1 stays in T j
2 . The connecting
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edge in T i
2 is a virtual link, and e′ at step j has disappeared. So there must be another link

in A1. So, in the case the charge gets split among e′ and the other link (or other links), and

the charge on e′ is ≤ 1/2.

If we consider charges on e′ further up on the tree, it is clear that the charges get halved at

each iteration. So, the largest possible charge for the 1A and 2A steps is 1+1/2+1/4+· · · < 2.

�

The following theorem sums up the final accounting for the analysis:

Theorem 18 The Hein et al. variant of the algorithm is a 5-approximation for rSPR.

Proof: We will show that each link can only be given a total charge of at most 5. Let l

be a link. By Lemma 17 part i), l can only be charged once for any of the B cases.

Suppose l is charged by Case 1B. The cost is 1, with a possible additional cost of 2 by at

most one Case 3A (see Lemma 17ii). Also, the sum of charges on an edge by Cases 1A+2A

is at most 2 by Lemma 17iii. The total is ≤ 5.

Suppose l is charged by Case 2B. This charge is 2. By Lemma 17i, l cannot be charged

by other 1B, 2B or 3B cases. Also it cannot be charged by a Case 3A, since then the link

would also have a charge for a Case 1B. Also the sum of charges of Cases 1A and 2A is at

most 2. So the total is at most 4.

The equivalent argument holds if l is charged by a Case 3B.

Finally if l does not have any B charges, then the total charge can only be given by 1A

and 2A cases, and the total is at most 2. �

A similar analysis can be applied to achieve a 5-approximation of rSPR for the Rodrigues
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et al. variant of the algorithm.

Theorem 19 The Rodrigues et al. variant of the algorithm is a 5-approximation for rSPR.

Proof of Theorem 19: Lemmas 12, 13, and 16 all hold for this version of the algorithm.

There are differences in the way we assign the charges only in Cases 1 and 2. Suppose,

without loss of generality, that we are at stage i of the algorithm, and that we are processing

the sibling pair (a, b) of T i
1.

Cases 1A and 2A: a and b are in the same MAFSPR component. We identify the nodes

of T2 corresponding to a and b, and a path from a to b. Say A1, . . . , Ak are the trees that

hang directly from this path, and let e1, . . . , ek be the edges connecting the trees to the path.

If we are in Case 1A, in tree T i
2 at most two of these trees will keep any nodes. Then we put

a charge of 1 on the corresponding ei edges. Also we have to mark the edges ei so that we

do not pass down charges through them in the future. If we are in Case 2A, then at least

three of these trees keeps some nodes at stage i. Without loss of generality, say they are

A1, . . . , As, where 3 ≤ s ≤ k. Then we charge 2/s to each of the s edges e1, . . . , es. Recall

that in this case we detach two nodes, so the cost is 2, and we are distributing it through

s edges. Since 3 ≤ s, 2/s ≤ 2/3. Now, we assigned charges to edges that might not be

links. Now, for each e which is not a link, we pass the charge down as we did for the Hein

et al. algorithm to the links below except the ones that have been marked.

Cases 1B and 2B: The cost of a Case 1B operation is now 1 or 2. The cost of a Case

2B operation is 2. We charge the cost to the link assigned to the “B” case.
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Parts i and ii of Lemma 17 are the same. Part iii now says that the maximum charge on

a link for Cases 1A+2A is 1. This is because charges on links for Cases 1A are now final due

to the marking of edges that we just described. On the other hand cascading down charges

for Cases 2A are at most 2/3 + 2/9 + 2/27 . . ..

As for the previous algorithm, the worst situation for charging a link is when it gets

assigned a Case 1B. Now this can be a charge of 2. In this case, it can also get a charge of 2

by a Case 3A. Finally by Cases 1A+2A, it can get a charge of 1. This could be a total of 5.

If the link gets assigned a Case 2B or 3B, then the maximum charge on that link will be

3. �

5 Counterexample for TBR

[Hein et al., 1996] claim a 3-approximation to TBR. [Rodrigues et al., 2001] give a coun-

terexample to that by providing a pair of trees for which the algorithm gives nearly a 4-

approximation. Their counterexample consists of moves that do not take advantage of the

full power of TBR. Instead, every move is in the proper subset of SPR moves. So, the coun-

terexample also shows that Hein’s algorithm is at best a 4-approximation for rSPR. A related

counterexample mentioned in [Rodrigues et al., 2001] shows that the Rodrigues et al. variant

is at best a 3-approximation for rSPR. Using TBR moves that are not SPR moves (i.e. take

at least 2 SPR moves to emulate), we show that the algorithm of [Rodrigues et al., 2001] is

at best a 4-approximation. The example in Figure 5 is constructed to take full advantage of

TBR (and thus does not work for SPR). In TBR, each cut edge yields an unrooted tree in the
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Figure 4: The pair of trees give a counterexample to Lemma 10 of Hein et al.. Any MAFTBR

for the pair of trees has {2, 3, 5, 6} as a component, but when the algorithm is run, the leaf
5 will be cut by a Case 1.

agreement forest (unlike the rooted trees in the SPR agreement forest). The tree in Figure 5

has subtrees (with bold edges) that are identical after the removal of an edge under TBR,

but for which the algorithm (and rSPR) makes 3 cuts. A similar example shows that the

algorithm of Hein et al. is not a 4-approximation, as claimed, but at best a 5-approximation.

We have also isolated where the proofs break down in [Hein et al., 1996, Rodrigues et al., 2001].

For Hein et al., they claim that

Let T1 and T2 be rooted phylogenetic trees on the same leaf set. Then there is F

a MAFSPR for T1 and T2 such that the edges cut by the algorithm in Case 1 are

links. (Lemma 10 of [Hein et al., 1996]).

However, there are pairs of trees for which no choice of the MAFTBR will give that the edges

cut in Case 1 are links. For example, see Figure 4.

The analysis of [Rodrigues et al., 2001] also fails in a subtle way. In Lemma 4, it is

claimed, without proof, that if in Case 2 of the algorithm incorrect cuts are made, that

there is always a link connecting the remaining subtrees that can be charged the cost of

the incorrect move. However, if you have repeated applications of Case 2, you can have
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Figure 5: A counterexample to the approximation to TBR claims of [Rodrigues et al., 2001].
Note that the trees are constructed so that the removal of the bold subtrees yields a maximum
agreement forest. Recall that for TBR, the resulting MAFTBR consists of unrooted trees. The
algorithm starts by choosing a sibling pair in T1, say (9, 10). By Case 2, 9 and 10 are cut in both
trees, leaving behind the bold subtrees in T1, listed at the bottom of the figure. This is repeated for
(11, 12), (13, 14), . . . , (25, 26). Note that all of these are bad cuts. The same process is repeated for
(3, 4), (5, 6), (7, 8) as well as (1, 2), leaving only the bold subtrees. The bold subtrees are then cut
apart starting at their sibling pair, using 3 cuts, when a single cut at the root of the bold subtrees
would suffice. This example takes 3×27+26

27 = 3 + 26
27 times the optimal.
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remaining subtrees whose connecting edges are not links, and you will charge an edge that

is not a link. Since only links can be charged, this subtle oversight undercounts the charges

and makes their analysis not hold.

For example, let us run the algorithm on the trees in Figure 5. Assume you start with

the sibling pair (9, 10) in the first tree. In the second tree, T2, 9 and 10 have 3 subtrees (call

them S1, S2, and S3) in between. The algorithm applies Case 2 which says to cut off the

sibling pair nodes in both trees. The resulting trees after this first set of moves are missing

the leaves 9 and 10. Above each of the subtrees, S1, S2, and S3 is a link in the MAFTBR. So,

the edges directly above the subtrees S1, S2, and S3, are now virtual links. Note that none

of these were virtual links when we started, since 9 and 10 do not have links directly above

them. But after 9 and 10 are deleted, they become a virtual link.

Continuing the analysis of the algorithm on the trees in Figure 5, the algorithm examines

the sibling pairs: (9, 10), . . . , (25, 26). For each, Case 2 is applied (where you delete the pair

in both trees). This gets repeated up one level with (3, 4), (5, 6), and (7, 8), and again with

(1, 2). In the analysis in [Rodrigues et al., 2001], it is assumed that there is a link above the

remaining subtrees between 1 and 2 which we charge for removing 1 and 2. However, due

to the “cascading” of the Case 2 applications, none of these remaining edges is a link, so, a

non-link is incorrectly charged.

The optimal edges to cut would have been the ones above all the bold subtrees. But

instead, the algorithm cuts off 1, 2, . . . , 26, plus three edges for each of the bold subtrees (the

three edges are needed due to the way the bold subtrees are arranged in T1 and T2), using
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26 + 3 ∗ 27 when 27 edges would be enough.

6 Linear Running Time

We can show that all variants of the algorithm can be implemented in linear time. This is

a significant improvement over the polynomial time implementation stated (but not shown)

in [Rodrigues et al., 2001]. Our data structure for a tree contains links from the parent to

its two children and a link from the child to the parent. The queue of sibling pairs to be

processed is stored a linked list.

All of the algorithms look at sibling pairs in T1 and find the corresponding leaves in T2.

There are a linear number of sibling pairs examined by the algorithm (this is bounded above

by the number of internal nodes of T1, which is linear in the number of leaves). We can find

the initial sibling pairs by scanning the tree T1 and placing the sibling pairs in a queue. We

process each sibling pair in the queue according to the case of the algorithm that applies.

The trees are preprocessed in linear time to construct a lookup table of leaf nodes. This

allows leaves to be located in each tree in constant time.

We need to show that each of the linear number of sibling pairs can be processed in

constant time. Each case is a local operation on the trees that can be done in constant

time, so, we need only show that determining the case to be applied can also be done in

constant time. The number of subtrees between those leaves in T2 determines which step

of the algorithm is applied. Note that Cases 2 and 3 of all the variants of the algorithm

perform the same action, so, we do not need to distinguish between them in our checks. To
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decide which case to apply, we perform several simple (and local!) operations. Each check

takes constant time:

• if parent(a) does not exist or parent(b) does not exist, then either a or b is a singleton

in T i
2 and we must be in Case 4.

• else if parent(a) = parent(b), then a and b are a sibling pair in T i
2 and we must be in

Case 5.

• else if parent(a) = grandparent(b) or grandparent(a) = parent(b), then there’s a single

subtree between a and b and we must be in Case 1.

• otherwise, the distance between a and b in T i
2 is larger than 2. This could occur because

there’s many subtrees on the path between a and b (Case 2) or because a and b are in

different components (Case 3).

7 Experimental Results

Our initial experiments compare the two variants of the algorithm, [Rodrigues et al., 2001]

and [Hein et al., 1996], applied to rSPR distances on sets of real data and also on randomly

generated trees. The biology trees were generated by heuristic searches on DNA and RNA

sequence data and tend to be very similar in topology. The random trees were generated for

varying number of taxa under a uniform and Yule-Harding distribution.

We implemented the algorithms in Java, using the code base of TreeJuxtaposer software

package [Munzner et al., 2003] (freely available at //olduvai.sourceforge.net). We chose
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both Java and the code base to make inclusion into tree visualization programs such as Tree-

Juxtaposer and TreeSet Visualization [Munzner et al., 2003, Amenta and Klingner, 2002]

easier in the future.

Each dataset consists of 100 trees. We did a pairwise comparison of all distinct trees in

the dataset and report the average distance and standard deviation for each dataset under

the two variants of the algorithms . We looked at two sets of biological trees: first, trees

generated by parsimony search on animal RNA data (provided by the Hillis laboratory at UT

Austin). Each tree has 128 leaves. For the Hein et al. variant, the average distance between

trees was 14.8 versus 16.1 for the Rodrigues et al. variant. The second set of trees was also

generated by parsimony search on chloroplast DNA (provided by the Jansen laboratory at

UT Austin). each tree has 28 leaves. We did a pairwise comparison of all distinct trees in

the dataset. For the Hein et al. variant, the average distance between trees was 7.6 versus

8.1 for the Rodrigues et al. variant.

On the biological datasets, the Hein et al. variant algorithm performs better experi-

mentally. This is somewhat surprising due to the the stronger counterexample for Hein et

al. versus Rodrigues et al.: we have a counterexample for Hein et al. that take almost 4

times the optimal answer for rSPR versus the best known counterexample for Rodrigues et

al. that takes only 3 times. Our analysis of the algorithms in Section 4 suggests another

possibility. The worst situation for the Hein et al. variant is many cascading 2A charges.

The Rodrigues et al. variant of the algorithm is designed to minimize the problems with the

cascading 2A charges, and instead performs worst when there are 1B and 3A charges (see
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Lemma 17 and its corresponding version in Theorem 19). This suggests that biological trees

(that we analyzed) have less nesting of sibling pairs inside one another (the cascading 2A

cases) and more occurrences of sibling pairs occurring in different components of the MAFSPR

(the 1B and 3A cases). For trees with a different bias, we could expect to see the Rodrigues

et al. variant doing well.

We then applied both variants of the algorithm to randomly generated trees under both

the uniform and Yule-Hardy distributions. We created datasets of 100 trees with taxa of 10,

50, 100, and 500. We then ran both variants of the algorithm on the pairwise comparison of

the trees and compared the average distance. In contrast to the biological data sets, we saw

no statistically significant difference between the two variants of the algorithm, except at 10

taxa for the uniform model. For the other 7 datasets of random trees, the average distances

reported were within the standard deviations. Interestingly, the average distance for random

trees scales linearly with the number of taxa under both distributions of random trees.

8 Conclusion & Future Work

We have given the first approximation algorithm for the important rSPR tree distance met-

ric. We hope to improve the algorithm and give a tighter analysis of the running time,

since we currently have a 5-approximation but have a counterexample that only requires

a 4-approximation. We further plan a larger experimental study focusing on the effects of

heuristics on the bounds achieved.
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Uniform Yule-Harding
number of taxa: 10 50 100 500 10 50 100 500
Hein ave 6.28 43.30 90.70 476.80 6.27 44.77 93.73 489.16

std 0.15 2.74 7.42 92.04 0.15 2.45 7.55 88.67
Rodrigues ave 6.83 43.82 91.40 478.53 6.44 45.19 94.31 490.19

std 0.17 2.88 9.37 101.70 0.19 2.52 7.61 89.21

Animal Chloroplast
RNA DNA

number of taxa: 128 28
Hein ave 14.8 7.6

std 1.17 0.53
Rodrigues ave 16.1 8.1

std 1.05 0.49

Figure 6: The experimental results of the Hein et al. and Rodrigues et al. variants of the
algorithm run on datasets of 100 trees. The table reports the average distance and standard
deviation between distinct trees in the dataset.
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