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Optimal Point Placement for Mesh Smoothing
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We study the problem of moving a vertex in an unstructured mesh of triangular,
quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements.
We show that many such problems can be solved in linear time using generalized
linear programming. We also give efficient algorithms for some mesh smooth-
ing problems that do not fit into the generalized linear programming paradigm.
Q 1999 Academic Press

1. INTRODUCTION

Unstructured mesh generation, a key step in the finite element method,
can be divided into two stages. In point placement, the input domain is

Žaugmented by Steiner points vertices other than those of the original
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.domain and a preliminary mesh is formed, typically by Delaunay triangu-
lation. In mesh impro¨ement, local optimizations are performed, involving
the movement of Steiner points and rearrangement of the mesh topology.

Computational geometry has made some inroads into point placement,
and methods including Delaunay refinement, quadtrees, and circle packing
are now known to generate meshes with guaranteed quality; for surveys of

w xthese results, see 8, 9 . There has been less theoretical progress, how-
ever, in mesh improvement, which has remained largely the domain of
practitioners.

Mesh improvement typically combines several kinds of local optimiza-
tion:

v Refinement and derefinement split and merge triangles, changing the
number of Steiner points.

v Topological changes such as flipping replace sets of elements by
other such sets, while preserving the positions of the Steiner points.

v Mesh smoothing moves the Steiner points of the mesh while pre-
serving its overall topology.

In this paper we study mesh smoothing algorithms. Our focus is not to
determine the best smoothing method, which is more properly a subject
for experiment or numerical analysis; rather we show that a wide variety of
methods can be performed efficiently.

A commonly used technique, Laplacian smoothing, sweeps over the
mesh, successively moving each point to the centroid of its neighbors. This
technique lacks motivation because it is not directly connected to any
specific mesh quality criterion; moreover, the result may not even remain a
valid triangulation. But in practice Laplacian smoothing spaces points
evenly and gives two-dimensional meshes of reasonable quality. In three
dimensions, however, even spacing does not guarantee good element
quality. A slï er tetrahedron is one that has evenly spaced vertices, but
very sharp angles; for instance a sliver can be formed by slightly perturbing

Ž w xthe vertices of a square. See 7 for a more detailed classification of
.tetrahedra in terms of solid and dihedral angles. Laplacian smoothing

sometimes removes slivers, but in large meshes it often leaves clusters of
w xslivers 21 .

w xFreitag, Jones, and Plassmann 19, 20 proposed an alternative to Lapla-
cian smoothing. Rather than using the centroid, their optimization-based
method computes for each Steiner point a new placement that maximizes
the minimum angle in adjacent triangles. Freitag, Jones, and Plassmann
use an iterative steepest descent algorithm to solve this optimal placement
problem. Empirically this algorithm finds the optimum location in an
average of 2.5 steps, but Freitag, Jones, and Plassmann do not prove their
algorithm correct.
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The same optimal placement problem was independently considered by
w xMatousek, Sharir, and Welzl 29 as an instance of the paradigm calledˇ

generalized linear programming. Matousek, Sharir, and Welzl show how toˇ
solve this problem using an algorithm related to the dual simplex method.
ŽIn retrospect, the steepest descent algorithm of Freitag, Jones, and
Plassmann can be seen as a primal simplex method, but its correctness is
not directly justified by the work of Matousek, Sharir, and Welzl; correct-ˇ

.ness follows from our analysis in the following text.
Minimum angle, however, is not the only measure of mesh quality.

Various papers have provided theoretical justification for other measures
w x w xincluding maximum angle 4 , maximum edge length 34 , minimum height

w x w x24 , minimum containing circle 12 , and the ratio of area to sum of
w x w xsquared edge lengths 6 . Data-dependent criteria 6, 16, 32, 33 may be

used in adaptive meshing, which uses the finite element method’s output
to improve the mesh for another run.

In this paper, we study optimization-based smoothing using quality
criteria such as those mentioned previously. We show that, as in the case
of minimum angle, many of these criteria give rise to quasi-con̈ ex pro-
grams and can be solved by linear-time dual simplex methods or steepest
descent primal simplex methods. Because of the generality of these meth-
ods, they can also solve mixed-criterion optimization problems.

We generalize the theory to quadrilateral meshes and to simplicial
meshes in three and higher dimensions. In these more complicated mesh-
ing problems, effective smoothing methods are a more critical need and
asymptotic time complexity is more important. We show that again quasi-
convex programming often arises; for instance it can maximize the mini-
mum solid angle. We believe optimization-based three-dimensional mesh
smoothing should outperform Laplacian smoothing in practice. Indeed, in

w xan experimental work Freitag and Ollivier-Gooch 21 show that optimiza-
tion-based smoothing for minimum dihedral angle outperforms Laplacian
smoothing, both alone and in conjunction with flipping.

Finally, we show that although several other optimal point placement
problems do not form quasi-convex programs, we can solve them effi-
ciently by other means. This direction may also be relevant in practice;
Freitag and Ollivier-Gooch recommend smoothing for the sine of the
dihedral, a non-quasi-convex quality measure.

2. GENERALIZED LINEAR PROGRAMMING

Many problems in computational geometry, such as separating points by
a hyperplane, can be modeled directly as low-dimensional linear programs.
Many other problems, such as the circumcircle of a point set, are not
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linear programs, but the same techniques often apply to them. To explain
this phenomenon, various authors have formulated a theory of generalized

w xlinear programming 3, 23, 29 .
Ž .A generalized linear program GLP, also known as an LP-type problem

consists of a finite set S of constraints and an objectï e function f mapping
subsets of S to some totally ordered space and satisfying the following
properties:

Ž . Ž .1. For any A ; B, f A F f B .
Ž . Ž � 4. Ž � 4.2. For any A, p, and q, if f A s f A j p s f A j q , then

Ž . Ž � 4. 1f A s f A j p, q .

Ž .The problem is to compute f S using only evaluations of f on small
subsets of S.

Ž .For instance, in linear programming, S is a set of halfspaces and f S is
the point in the intersection of the halfspaces at which some linear
function takes its minimum value. Another standard example of a GLP is
the problem of computing the minimum radius of a disk containing all of a
set of n points; in this example, the finite set S consists of the points

Ž .themselves, and f S is the minimum disk. It is not hard to see that this
system satisfies the properties by which a GLP was defined earlier:
removing points can only make the radius shrink or stay the same, and if a
disk contains the additional points p and q separately it contains them
both together.

Ž . Ž .A basis of a GLP is a set B such that for any A n B, f A - f B . The
dimension d of a GLP is the maximum cardinality of a basis. With the
standard example of the minimum disk problem, the dimension turns out
to be 3, because each circle is determined by two or three points. This set
of two or three points is the basis.

w xA number of efficient GLP algorithms are known 1, 3, 10, 15, 23, 29 .
Ž Ž . .Their best running time is O dnT q f d E log n where n is the number

of constraints, T measures the time to test a proposed solution against a
Ž Ž ..constraint typically this is O d , f is exponential or subexponential, and

E is the time to find a basis of a constant-sized subproblem. Indeed, these
algorithms are straightforward to implement and have small constant
factors, so they should be practical even for the modest values of n

Žrelevant in our problems. The number of constraints should range roughly
from 10 to 100 in the planar problems, depending on how complicated
a criterion one chooses to optimize and on the degree of the initial

1 Ž .Property 2 is often expressed in the more complicated form that, if A ; B and f A s
Ž . Ž . Ž � 4. Ž . Ž � 4.f B , then, for any p, f A s f A j p iff f B s f B j p . A simple induction shows

this to be equivalent to our formulation.
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mesh, and may possibly reach several hundred in the three-dimensional
.problems.

Our GLPs have the following form, which we call ‘‘quasi-convex pro-
gramming.’’ We wish to minimize some objective function that is the
pointwise maximum of a finite set of functions. Such a problem is a

Žlow-dimensional GLP if the level sets of the functions regions in which
.the function is bounded above by some particular value are all convex.

Note that this does not necessarily imply that the functions themselves are
convex; in convex analysis, functions with convex level sets are called
quasi-con̈ ex.

Ž .More formally, define a nested con¨ex family to be a map k t from the
nonnegative real numbers to compact convex sets in R d such that if a - b

Ž . Ž . Ž . Ž .then k a ; k b , and such that for all t, k t s F k t9 . Any nestedt 9) t
Ž . � Ž .4 dconvex family k determines a function f x s inf t N x g k t on R ,k

Ž .with level sets that are the boundaries of k t . If f does not take ak

Ž .constant value on any open set, and if k t9 is contained in the interior of
Ž .k t for any t9 - t, we say that k is continuously shrinking.
Note that, in our proof of Lemma 2, we consider the restriction of

convex families to affine subspaces; such restrictions do not necessarily
preserve the property of being continuously shrinking. However, if k is
continuously shrinking, and its restriction to any affine subspace A has
f s t on some open set in A, then all points of this open set are on thek

Ž . Ž .boundary of k t and f t9 must have an empty intersection with A fork

any t9 - t.

� Ž .LEMMA 1. Let k be a nested con¨ex family, and let t* s inf t N k t is
4 Ž .nonempty . Then k t* is nonempty.

Ž .Proof. Choose a point p in the set k t q 1ri for i s 0, 1, 2, . . . .i
Ž .Because all of these points are contained in the compact set k t q 1 , they

Ž .have a limit point p*. Then for any i, k t q 1ri contains all but finitely
Ž .many of the points p , so p* is a limit point of the closed set k t q 1rii

Ž . Ž .and must be in k t q 1ri . Because p* is in all of the sets k t q 1ri it is
Ž .in their intersection k t* .

� 4If S s k , k , . . . , k is a set of nested convex families, we define1 2 n
Ž . � Ž .4 Ž . Ž .S t s F k t . Then S t is itself a nested convex family: each set S t isi

the intersection of closed bounded convex sets, hence is itself closed,
Ž . Ž .bounded, and convex. The further requirement that S t s F S t9t 9) t

can easily be seen to follow by commutativity of intersections.
� 4If S s k , k , . . . , k is a set of nested convex families, and A ; S, let1 2 n

f A s inf t , x x g k t ,Ž . Ž . Ž .F i½ 5
k gAi
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where the infimum is taken in the lexicographic ordering, first by t and
then by the coordinates of x. Note that the values of t are bounded below

Ž Ž . .by zero because k t is only defined for nonnegative t , so the infimum ofi
t exists. The rest of this lexicographic infimum is also well defined because

Ž .Lemma 1 shows that, if t* is the value determined by the infimum, A t* is
a nonempty compact set, and x is simply the lexicographic minimum of
this set. We use this same lexicographic ordering to compare the values of
f on different subsets of S.

Ž w x.Recall Helly’s theorem e.g., see 3 : If a family of compact convex sets
d Ž .in R or a finite family of noncompact convex sets has an empty

Ž .intersection, then some d q 1 -tuple of those sets also has an empty
intersection.

We define a quasi-con̈ ex program to be a finite set S of nested convex
families, with the objective function f described previously.

LEMMA 2. Any quasi-con̈ ex program forms a GLP of dimension at most
2 d q 1. If each k in the set S is either constant or continuously shrinking,i
the dimension is at most d q 1.

Proof. Property 1 of GLPs is obvious. Property 2 follows from the
Ž . Ž . Ž . Ž � 4.observation that, if t*, x* s f A , then f A s f A j k if and only ifj

Ž .x* g k t* . It remains only to show the stated bounds on the dimension.j
First consider the general case, where we do not assume continuous

Ž . Ž . Ž .shrinking of the families in S. Let t*, x* s f S . For any t - t*, S t s
Ž . Ž . Ž .F k t s B so by Helly’s theorem some d q 1 -tuple of sets k t has ani i

Ž .empty intersection. Because there are only finitely many d q 1 -tuples, we
can choose a tuple By that has an empty intersection for all t - t*. Then
Ž y. Ž . yf B s t*, x for some x, so the presence of B forces the GLP

Ž .solution to have the correct value of t. By Lemma 1, S t* / B, so x* is
Ž . qthe minimal point in S t* , and is determined by some d-tuple B of the

Ž . Ž y q. Ž .sets k t* . Then f B j B s f S , so some basis of S is a subset ofi
Byj Bq and has cardinality at most 2 d q 1.

Finally, suppose each k in S is constant or continuously shrinking. Ouri
strategy is to again find a tuple By that determines t*, and a tuple Bq

that determines x*, but we use continuity to make the sizes of these two
tuples add to at most d q 1.

Ž .S t* has empty interior: otherwise, we could find an open region X
Ž . Ž .within S t* , and a family k such that k t l X s B for any t - t*,i i

violating the assumption that k is constant or continuously shrinking. Ifi
Ž . Ž .the interior of some k t* contains a point of the affine hull of S t* , wei

say that k is ‘‘slack’’; otherwise we say that k is ‘‘tight.’’ The boundary ofi i
Ž . Ža slack k intersects S t* in a subset of measure zero relative to thei

Ž ..affine hull of S t* , so we can find a value x in the relative interior of
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Ž .S t* and not on the boundary of any slack k . Form the projectioni
d dydim SŽ t*. Ž .p : R ¬ R perpendicular to S t* .

dydim SŽ t*. Ž Ž ..For any ray r in R starting at the point p S t* , we can lift
that ray to a ray r in R d starting at x, and we can find a hyperplaneˆ

Ž . Ž . � 4containing S t* and separating the interior of some k t* from r _ x .ˆi
ŽThis separated k must be tight because it has x on its boundary as thei

.origin of the ray so the separating hyperplane must contain the affine hull
Ž . Ž Ž .of S t* otherwise some point in S t* within a small neighborhood of x

.would be interior to k . Therefore the hyperplane is projected by p to ai
Ž Ž .. Ž Ž ..lower dimensional hyperplane separating p k t* from p S t* . Be-i

Ž Ž ..cause one can find such a separation for any ray, F p k t* cannottight k ii

contain any points of any such ray and must consist of the single point
Ž Ž ..p S t* .

ŽAt least one tight k must be continuously shrinking rather thanj
. Ž .constant , because otherwise S t would be nonempty for some t - t*. The

Ž Ž ..intersection of the interior of p k t* with the remaining projected tightj
Ž Ž ..constraints p k t* is empty, so by Helly’s theorem, we can find ai

Ž Ž . . yd y dim S t* q 1 -tuple B of these convex sets having an empty inter-
section, and the presence of By forces the GLP solution to have the
correct value of t. Similarly, we can reduce the size of the set Bq

Ž .determining x* from d to dim S t* , so the total size of a basis is at most
Ž Ž . . Ž .d y dim S t* q 1 q dim S t* s d q 1.

w xThe first part of this lemma is similar to 3, Theorem 8.1 . Note that we
only used the assumption of convexity to prove the dimension bound;
similar nested families of nonconvex sets still produce GLP problems, but
could have arbitrarily large dimension.

By Lemma 2 we can solve quasi-convex programs using GLP algorithms.
We can also perform a more direct local optimization procedure to find
Ž . Ž . Ž .t, x : because S t is a nested convex family we can find f S by applying
steepest descent, nested binary search, or other local optimization tech-

Ž .niques to find the point minimizing the associated function f x . Thus weS
can justify the correctness of the local optimization mesh smoothing
procedure used by Freitag, Jones, and Plassmann. In practice, it may be
appropriate to combine this approach with the dual simplex methods
coming from GLP theory by using steepest descent to perform the basis
exchange operations needed in GLP algorithms.

3. QUASI-CONVEX MESH SMOOTHING IN R2

Ž .Let q D measure the quality of a triangulation element D. We are
given a triangulation, and we wish to move one of its Steiner points in such
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Ž .a way as to minimize max q D , where the maximization occurs overi

elements incident to the moving point.
In this section we describe ways of formulating such problems as

Žquasi-convex programs. We can assume without loss of generality e.g., by
. Ž .appropriate change of variables that q D G 0 for any D. The basic idea is

Ž . � Ž Ž .. 4to construct for each D a nested convex family k t s x N q D x F t ,i i i
Ž .where D x indicates the triangle formed by moving the Steiner point toi

position x. In other words, if we are given a bound t on the triangulation
Ž .quality, k t is the feasible region in which placement of the Steiner pointi

will allow D to meet the quality bound. Finding the optimal Steiner pointi

placement is equivalent to finding the optimal quality bound that allows a
feasible placement.

Ž .The families k t are clearly nested and closed, and they satisfy thei

intersection property used in the definition of nested convex families, but
they may not be convex or bounded. Convexity will need to be proven
using the detailed properties of the quality measure q. Continuous shrink-
ing may or may not hold depending on the quality measure q. Bounded-

Ž .ness can be imposed while preserving continuous shrinking by intersect-
Ž . Ž .ing k t with the set of points within distance exp t of a bounding ball ofi

the triangulation.
One can then find the optimal placement x by solving the quasi-convex

program associated with this collection of nested convex families. To make
sure that the result is a valid triangulation, we add additional halfspace
constraints to our collection, forming constant nested families, to force x
into the kernel of the star-shaped polygon formed by removing the Steiner

Ž .point from the triangulation Fig. 1a .

Ž .FIG. 1. a Steiner point may move within the kernel of star-shaped region formed by its
Ž .removal; b For size-based criteria such as length the optimal placement may be on the

kernel boundary.
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Ž .It remains to show convexity of the feasible regions k t for variousi
quality measures. In the remainder of this section, we describe these
measures and their corresponding feasible regions. As shown in Fig. 2,
many different criteria have identical feasible regions; however they do not
necessarily lead to the same Steiner point placement as the parametriza-
tion of the nested families could differ.

Area. The feasible regions for maximizing minimum triangle area are
Ž .strips parallel to the fixed external sides of the triangles. In the presence

of the halfspace constraints forcing the Steiner point into the kernel of its
polygon, we can simplify these strips to halfspaces. The intersection of one
such halfspace and the corresponding kernel constraint is shown in Fig. 2a.
One can also maximize minimum area, using a halfspace with the same

Ž .boundary but opposite orientation Fig. 2b .
ŽAltitude. The external altitude of D the altitude having the fixed sidei

.of D as its base can be minimized or maximized using halfspace feasiblei
Ž .regions identical to those for area Fig. 2a, b . The feasible regions in

which the other two altitudes are at least h are the intersections of pairs of
halfspaces through one fixed point, passing at distance h from the other

Ž .FIG. 2. Feasible regions for planar mesh smoothing quality criteria: a minimizing
Ž .maximum area or external altitude; b maximizing minimum area, external altitude, or

Ž . Ž .external aspect ratio; c minimizing maximum external angle; d maximizing minimum
Ž .external angle, or maximizing minimum internal altitude; e maximizing minimum internal

Ž . Ž . Ž .angle; f maximizing internal aspect ratio; g minimizing maximum perimeter; h minimiz-
Ž . Ž .ing maximum edge length a similar but larger lune occurs when minimizing diameter ; i

minimizing containing circle.
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point; one such halfspace is shown in Fig. 2d and the other is its vertical
reflection. The feasible regions for minimizing the maximum internal
altitude are not convex.

w xAngle. As noted by Matousek, Sharir, and Welzl 29 , one can maxi-ˇ
mize the minimum angle by using constraints of two types. For the internal
angles at the Steiner points, the region in which the angle is at least u

Žforms either the union or intersection of two congruent circles as u is
.acute or obtuse, respectively having the fixed side of D as a chord. In thei

former case this may not be convex, but in the presence of the kernel
Ž .constraints we can simplify the feasible region to circles Fig. 2e . The

regions in which the external angles are at least u form wedges bounded
by rays through a fixed vertex of D , which can again be simplified in thei

Ž .presence of the kernel constraints to halfspaces Fig. 2d . It is also natural
to minimize the maximum angle; unfortunately the feasible regions for the

Ž .internal angles are nonconvex complements of circles . However one can
still minimize the maximum angle at external vertices, using halfspace

Ž .regions Fig. 2c .

Edge length. The feasible region for minimizing the length of the
internal edges of D is an intersection of two circles of the given radius,i

Ž .centered on the fixed vertices of D Fig. 2h . We can use the samei
Ž .two-circle constraints with larger radii than depicted in the figure to

minimize the maximum element diameter.

Aspect ratio. The aspect ratio of a triangle is the ratio of its longest
side length to its shortest altitude. We consider separately the ratios of the
three sides to their corresponding altitudes; the maximum of these three
give the overall aspect ratio. The ratio of external sides to altitude has a

Ž .feasible region after taking into account the kernel constraints forming a
halfspace parallel to the external side, like that in Fig. 2b. To determine
the aspect ratio on one of the other two sides of a triangle D , to normalizei

Ž .the triangle coordinates so that the moving point has coordinates x, y
Ž . Ž .and the other two have coordinates 0, 0 and 1, 0 . The side length is then

2 2 2 2' 'x q y , and the altitude is yr x q y , so the overall aspect ratio has
Ž 2 2 .the simple formula x q y ry. The locus of points for which this is a

2 2 2 Ž Ž ..2constant b is given by x q y s by, or equivalently x q y y br2 s
Ž .2br2 . Thus the feasible region is a circle tangent to the fixed side of D i

Ž .at one of its two endpoints Fig. 2f .

Perimeter. The feasible region for minimizing the maximum perime-
Ž .ter is an ellipse Fig. 2g .

Circumradius and containing circle. The feasible regions for minimiz-
ing the maximum circumradius are nonconvex lunes bounded by pairs of

Žcircular arcs. However, minimizing the maximum containing circle the
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smallest circle containing the given triangle, without necessarily having the
.vertices on its boundary produces convex feasible regions, formed by using

the same region as the circumcircle within a vertical slab perpendicular to
the fixed segment of the triangle, and a lune similar to that for edge length
or diameter outside the slab. These regions’ boundaries are three circular
arcs, meeting at common tangents, with the radius of the middle arc equal

Ž .to half that of the arcs on either side Fig. 2i .
Inradius. The feasible region for maximizing the minimum inradius

of any triangle can be found as follows. Assume without loss of generality
Ž . Ž .that the two fixed points have coordinates 0, 0 and 0, 1 , the moving

Ž .point has coordinates x, y , and the inradius bound is r. We can then
Ž .place the incenter at a point a, r and we can solve simultaneous equa-

Ž . Ž . Ž . Ž .tions stating that lines from 0, 0 to x, y and from 1, 0 to x, y are at
distance r from this point. The solution to these equations was simplified
in Mathematica to

y8r 3 x q 8 r 3 x 2 q 4 r 2 y y 4 r 4 y q 4 r 2 xy y 4 r 2 x 2 y y 4 ry2

q 8 r 3 y2 q y3 y 4 r 2 y3s0.

Affine transformation of the coordinates further simplifies this to

y8r 5 q r 2 y y 20 r 4 y y x 2 y q 2 ry2 y 16 r 3 y2 q y3 y 4 r 2 y3 s 0,

Ž .which has only one term involving x, letting us solve this as x s f y for a
function f in the form of the square root of a rational function,

2 2 3'x s "f y s " r q y y 1 y 4 r y 8 r ry .Ž . Ž . Ž .Ž .

To show that this bounds a convex region, we need only show that f has a
nonpositive second derivative within the range of values y leading to a
feasible solution. We used Mathematica to compute this derivative,

34 3 28 r r q y 6 r y y q 2 r yŽ . Ž .
f 0 y s .Ž . 3r235r2 2 3y r q y y 1 y 4 r y 8 rŽ . Ž .Ž .

Most of the terms in this formula clearly have a consistent sign. The final
3 Ž 2 .polynomial in the denominator has a root at y s 8 r r 1 y 4 r , which

Žturns out to be the point at which y is minimum, corresponding in the
1.original coordinate system prior to our affine transformation to x s ;2

smaller values of y are infeasible. The final polynomial in the numerator
3 Ž 2 .has a root at y s 6 r r 1 y 2 r , which is always below this minimum
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feasible value of y. Therefore f 0 has a consistent sign throughout the
interval of interest, and the feasible region for inradius is convex.

w xArea o¨er squared edge length. Bank and Smith 6 define yet another
measure of the quality of a triangle, computed by dividing the triangle’s
area by the sum of the squares of its edge lengths. This gives a dimension-
less quantity which Bank and Smith normalize to be one for the equilateral

Ž .triangle and less than one for any other triangle . They then use this
quality measure as the basis for a local improvement method for mesh
smoothing. As Bank and Smith show, the feasible region for this measure
forms a circle centered on the perpendicular bisector of the two fixed
points, so our methods offer an alternative way to find the optimum point
placement.

Mixtures of criteria. We have described the various optimization
criteria in the preceding text as if only one is to be used in the actual mesh
smoothing algorithm. But clearly, the same formulation applies to prob-
lems in which we combine various criteria, for instance some measuring
element shape and others measuring element size, with the overall quality
of an element equal to the weighted maximum of these criteria. Indeed,
this idea can alleviate a problem with criteria such as edge length,
perimeter, etc., which depend more strongly on the size of an element than
on its shape: if one optimizes such a criterion on its own, the optimal point
placement may lie on the boundary of the kernel, giving rise to a degener-

Ž .ate triangulation Fig. 1b . If one combines these criteria with scale-
invariant criteria such as angles or aspect ratio, this complication cannot
occur. We define the quality of a mixture of criteria q to be max w q ,i i i

Žwhere the weights w may be chosen arbitrarily. Even more generally wei
.could replace the linear function w q with any monotonic function of q .i i i

To solve such a mixed problem, we simply include constraints for each
different criterion in the combination.

THEOREM 1. The Steiner point placement optimizing the criteria described
earlier, or a weighted maximum of criteria, can be computed in linear time by
quasi-con̈ ex programming.

Proof. By Lemma 2 we can solve these problems using any algorithm
for GLP-type problems. As noted earlier, a number of algorithms are
known for solving such problems in a linear number of operations, where
each operation involves testing a potential solution against one of the

Žconstraints which in our case amounts to computing the quality of a single
.element or finding the solution of a subproblem of constant size. These

constant-size subproblems can be solved in constant time in the algebraic
decision tree model standard for geometric algorithms.
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4. QUADRILATERAL MESH SMOOTHING

Much of the same theory we have outlined earlier applies equally well to
quadrilateral meshes, meshes consisting of planar straight-line graphs in
which all faces are convex quadrilaterals. In this case, to preserve element
convexity, the Steiner point must not only stay within the kernel of the
star-shaped polygon formed by adjacent elements, it must also avoid
crossing any element diagonal. Also, some of the quality measures outlined
previously do not make as much sense when applied to quadrilaterals, and
others have feasible regions differing somewhat from those for triangular
elements. We outline in the following text some possible quality criteria
for quadrilateral meshes and the changes needed to adapt our triangular-
mesh smoothing methods to these criteria.

Area, angle, edge length, perimeter. The feasible regions for placing a
Steiner point according to these criteria are essentially the same as for
triangular meshes.

Width. This corresponds to the altitude of a triangle. The width is
the minimum distance between a point and one of the two opposite edges,
and the minimum width can be maximized by a feasible region formed by
the intersection of six halfspaces, one for each vertex-edge pair involving
the moving point.

Containing circle. The minimum containing circle for a quadrilateral
is the same as the largest of the four circles formed by choosing three of

Ž .the four points in each of four possible ways and considering the
containing circle of that triple of points. Therefore, the feasible regions for
minimizing the maximum containing circle are the intersections of three of
the regions arising in the triangular case, one for each of the three triples
involving the moving point. Because each of these regions is convex, the
overall feasible region is convex.

Diameter. The diameter of a quadrilateral is either its longest edge
or its longest diagonal. Hence the feasible region for diameter is an
intersection of circles, similar to that for edge length, but with the
difference that we include a third circle centered on the vertex opposite
the moving point.

Inradius. Our proof that the triangle inradius function has convex
feasible regions does not immediately generalize to quadrilaterals. We
conjecture that quadrilateral inradii also give convex feasible regions.

THEOREM 2. The Steiner point placement optimizing the quadrilateral
Ž .mesh criteria described pre¨iously except possibly inradius , or a weighted

maximum of criteria, can be computed in linear time by quasi-con̈ ex
programming.
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Some other natural quality measures for quadrilaterals, such as cross
Ž .ratio ratio of products of opposite side lengths and sums of opposite pairs

Žof angles, do not have convex feasible regions, but because their feasible
.regions are bounded by circular arcs can be optimized using the tech-

niques described in Theorem 5.

5. MESH SMOOTHING IN HIGHER DIMENSIONS

Many of the two-dimensional quality criteria discussed previously have
higher dimensional generalizations that also have convex feasible regions.

Volume and altitude. Just as the area of a triangle with a fixed base is
proportional to its height, the volume of a simplex with a fixed base is
proportional to its altitude. The triangulation minimizing the maximum
volume, or maximizing the minimum volume, can be found using feasible
regions in the form of halfspaces parallel to the fixed face of the simplex.
The same type of feasible region can be used to optimize the altitude at
the moving Steiner point. The feasible regions for maximizing the mini-
mum of the other altitudes are the intersections of pairs of halfspaces
through d y 1 of the fixed points.

Boundary measure. The measure of any boundary face of a simplex is
proportional to the distance of the moving Steiner point from the affine
hull of the remaining fixed points on the facet, so one can minimize the
maximum face measure using ‘‘generalized cylinders’’ formed by taking a
Cartesian product of a sphere with this affine hull. In particular the
Steiner point placement minimizing the maximum edge length can be
found by using spherical feasible regions centered on each fixed point, and
in R3 the placement minimizing the maximum triangle area can be found
using cylindrical feasible regions centered on each fixed edge. These face
measures are convex functions, so their sums are also convex, implying
that the level sets for total surface area of all triangles in a tetrahedron, or
total length of all edges in a tetrahedron, again form convex feasible
regions.

Containing sphere. As in R2, the feasible regions for the minimum
containing sphere are bounded by 2 d y 1 algebraic patches, in which the
containing sphere has some fixed set of vertices on its boundary. These
patches meet the plane of the fixed vertices perpendicularly, and are

Žlocally convex they are figures of rotation of lower dimensional feasible
regions, except for the one corresponding to the region in which the
containing sphere equals the circumsphere, which is a portion of that

. 3sphere . In R , these patches are portions of spheres and tori. Further,
Žthey meet at a continuous boundary because the containing sphere radius
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.is a continuous function of the moving point’s location and are continu-
Žously differentiable where they meet at each point where two patches

.meet, they share tangent planes with the containing sphere itself . Thus
these patches combine to form a convex region.

Dihedrals. The dihedral angles of a simplex are formed where two
faces meet along an axis determined by some d y 1 points. If these axis
points are all fixed, one of the two faces is itself fixed, and the feasible
region is a halfspace forming the given angle with this fixed face. However,
if the axis includes the moving point, the feasible regions are in general
nonconvex.

Solid angles. As we show in the next section, the feasible regions for
Žmaximizing the minimum solid angle measured at the fixed points of each

tetrahedron, for three-dimensional problems, or at the moving point in any
.dimension are convex.

THEOREM 3. In any constant dimension, the Steiner point placement
optimizing each of the criteria described earlier except exterior solid angle, or a
weighted maximum of criteria, can be computed in linear time by quasi-con̈ ex
programming. The exterior solid angles as well can be optimized in three
dimensions.

6. FEASIBLE REGIONS FOR SOLID ANGLES

We now prove that the feasible regions for maximizing the minimum
solid angles of the mesh elements are convex, for the angles at the moving
point, in any dimension, and for the angles at fixed points of tetrahedra in
R3 only. Convexity of the feasible regions for solid angles at fixed points in
higher dimensions remains open.

We start with the simpler case, in which we are interested in the solid
angle at one of the fixed vertices of a tetrahedron in R3. This angle can be
measured by projecting the other three vertices onto a unit sphere cen-
tered on the fixed vertex, and measuring the area of the spherical triangle
formed by these three projected points. If the three projected points are

Žrepresented by three-dimensional unit vectors a, b, and c with a repre-
senting the moving point and b, c, and the origin representing the three

.fixed points then the solid angle E at the origin satisfies the equation,

E a ? b = cŽ .
tan s ,

2 1 q b ? c q c ? a q a ? b
w x Ž .18 . Therefore, the boundary of the feasible region on the unit sphere is
given by an equation of the form,

a ? b = c s k 1 q b ? c q c ? a q a ? b ,Ž . Ž .
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Žwhich is linear in a and therefore forms a circle on the unit sphere. Note
that unlike in the planar case, this circle does not pass through b and c,

.but instead passes through their diametric opposites. In terms of the
original unprojected points, the feasible region is therefore a convex
circular cone.

To prove that the feasible regions for the interior solid angles are also
w x Ž .convex, we use some facts from convex analysis 13 . A function f ¨ from

some convex subset of a vector space V to R is said to be con¨ex if, for any
x, y g V, and any 0 F t F 1,

f t ? x q 1 y t ? y F t ? f x q 1 y t ? f y .Ž . Ž . Ž . Ž .Ž .

Ž . � Ž . 4A function f ¨ is said to be quasi-concä e if its level sets ¨ N f ¨ G k
Ž . sare convex. A function is s-concave if f ¨ is convex; in the cases of

interest to us s is always negative. If f is quasi-concave we also say that it
Ž . Žis y` -concave and if f is logconcave; i.e., if log f is convex, we also say

.that it is 0-concave .
w xThe next result appears as 13, Theorem 3.21 . The ‘‘usual conventions’’

Ž .from that source imply that, if s s y1rn, the integral is y` -concave,
i.e., quasi-concave.

LEMMA 3. Let f be s-conca¨e on an open con¨ex set C in R mq n. Let C*
m Ž .be the projection of C on R and for x g C*, let C x be the x-section of C.

Define

f * x s f x , y dy , x g C*.Ž . Ž .H
Ž .C x

Ž .If y1rn F s F `, then f * is s*-conca¨e on C*, where s* s sr 1 q ns with
the usual con¨entions when s s y1rn or s s `.

� 4COROLLARY 1. Let f : U ¬ R be y1rk-concä e, and let g : V ¬ 0, 1
be the characteristic function of a con¨ex set k in a k-dimensional subspace V
of U. Then the con¨olution of f and g is quasi-concä e.

Ž . Ž .Proof. Let h u, ¨ s f u , defined on the Cartesian product of U with
V. Then h is also y1rk-concave, and the convolution can be computed as
Ž .h* u y ¨ . The result follows from Lemma 3.

A special case of Corollary 1, in which k equals the dimension d of the
Ž . w xdomain of f , appears with a different proof as 13, Theorem 3.24 . For

our application, we are interested in a different case, in which k s d y 1.
The solid angle of a d-simplex in d-dimensional space, measured at the
moving point, can be interpreted as the fraction of the field of view at that
moving point taken up by the convex hull k of the remaining fixed points.
This fraction can be computed as the convolution of the characteristic



AMENTA, BERN, AND EPPSTEIN318

Ž .function of k with a function f ¨ measuring the fraction of field of view
Ž .taken by an infinitesimally small surface patch of k . This function f ¨ is

Ž .inversely proportional to the square d y 1 power, for general d of
the distance from ¨ to the patch, and directly proportional to the sine
of the incidence angle of ¨ onto the patch. If we translate this patch to the

Ž . < < dorigin, f has the simple form ¨ ? e r ¨ where e is a vector normal to the
patch.

Ž . Ž . < < dLEMMA 4. The function f ¨ s ¨ ? e r ¨ , defined on the open halfspace
Ž .¨ ? e ) 0, is y1r d y 1 -conca¨e.

Proof. Because of the rotational symmetry of f , we need only prove
Ž . Ž 2 2 .d r2this for the two-dimensional function f x, y s yr x q y in the

halfplane y ) 0. We used Mathematica to compute the principal determi-
nants of the Hessian of f s. These are

Ž .dr 2 dy22 2 1rŽdy1. 2 2 2 2 dx y x q y x q d y 1 yŽ .Ž . Ž .Ž .y1r dy1f x , y s ,Ž .2 22 2 2 2 y d y 1 y x q yŽ . Ž .

Ž .which is always positive for y ) 0, d ) 1 , and

 2  2  2  2
Ž .y1r dy1y f x , y s 0.Ž .2 2ž / x  y  y  x x  y

Because both principal determinants are nonnegative, the function is
convex.

THEOREM 4. The feasible region for the solid angle at the mo¨ing point of
a simplex is con¨ex.

Proof. As described previously, we can express the solid angle as the
Ž .convolution of f ¨ with the characteristic function of the convex hull of

Ž .the fixed points. By Lemma 4, f is y1r d y 1 -concave within a halfspace
defined by the kernel constraints. Therefore we can use Corollary 1 to
show that the solid angle is quasi-concave and therefore has convex level
sets.

Our proof for the interior solid angles generalizes to any dimension, but
that for the exterior solid angles does not. There seems to be some
correspondence between the feasible regions of interior solid angles in
dimension d, and the feasible regions of exterior solid angles in dimension
d q 1; perhaps this correspondence can be exploited to show that the
exterior solid angle feasible regions are convex in higher dimensions as
well.
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7. NONQUASICONVEX MESH SMOOTHING

We have seen that many mesh smoothing criteria give rise to quasi-
convex programming problems; however, other criteria, including minmax
angle, minmax circumradius, and maxmin perimeter, do not have convex
feasible regions.

Perhaps this can be seen as evidence that these measures are less
appropriate for mesh smoothing applications, because it means among
other things that there may be many local optima instead of one global
optimum. Indeed, it seems likely that the height and perimeter criteria
mentioned earlier do not lead to good element shapes. However there is
evidence that the maximum angle is an appropriate quality measure for

w xfinite element meshes 4 , so we now discuss methods for optimizing this
measure. Our results should be seen as preliminary and unready for
practical implementation.

THEOREM 5. We can find the placement of a Steiner point in a star-shaped
Ž c .polygon, minimizing the maximum angle, in time O n log n for some

constant c.

Proof. Each feasible region in which some particular angle is at most u
forms either a halfplane or the complement of a disk. The lifting transfor-

Ž . Ž 2 2 . 3mation x, y ¬ x, y, x q y maps these regions to halfspaces in R ; u
is feasible if the intersection of all these halfspaces meets the paraboloid

2 2 w xz s x q y . The result follows by applying parametric search 30 to a
w xparallel algorithm that constructs the intersection 2, 25 and tests whether

any of its features crosses the paraboloid.

We can of course combine the maximum angle with the many other
criteria, including circumradius, for which the feasible regions are bounded
by lines and circles.

An alternate approach suggests itself, which may have a better chance of
leading to a practical algorithm. Define a generalized Voronoi diagram the
cells of which determine which mesh angle would be worst if the Steiner
point were placed in the cell. Are the cells of this diagram connected? If so

w xit seems likely that generalized Voronoi diagram algorithms 26, 27, 31
Ž . Ž .can construct this diagram in time O n log n or perhaps even O n . We

could then find the optimal placement by examining the features of this
diagram.

Finally, we consider one last criterion, minimum total edge length. This
does not fit into our quasi-convex programming framework, because the
overall quality is a sum of terms from each element rather than a
minimum or maximum of such terms; however the corresponding optimal
triangulation problem remains a topic of considerable theoretical interest
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w x Ž .14, 28 . A mesh improvement phase might also help reduce the large
constant factors in known approximate minimum weight Steiner triangula-

w xtion algorithms 17 . Without the kernel constraints enforcing that the
result is a valid triangulation, the problem of placing one Steiner point to
minimize the total distance to all other points is a facility location problem
known as the Weber or Fermat]Weber problem. Although it has no good

Žexact solution the solution point is a high degree polynomial in the inputs
w x. w x5, 11 one can easily solve it approximately by steepest descent 35 . The
kernel constraints do not change the overall nature of this solution. Thus
this version of the mesh smoothing problem can again be solved efficiently.

8. CONCLUSIONS

We have described a general framework for theoretical analysis of mesh
smoothing problems, and we have shown how to perform optimal Steiner
point placement efficiently for many important quality measures. There
remain some open problems, for instance it is not clear to what extent our

Žresults extend to hexahedral meshing in which one cannot generally move
.a single vertex at a time while preserving element convexity . There also

remain some quality measures that may possibly be quasi-convex, but for
which a proof of quasi-convexity has eluded us. However we believe the
most important directions for future research are empirical: which of the
criteria we have described leads to the best quality meshes, and to what
extent can theoretical generalized linear programming algorithms serve as
practical methods for the solution of these problems?

REFERENCES

1. I. Adler and R. Shamir, A randomization scheme for speeding up algorithms for linear
and convex quadratic programming problems with a high constraints-to-variables ratio,

Ž .Math. Programming 61 1993 , 39]52.
2. N. Amato, M. T. Goodrich, and E. A. Ramos, Parallel algorithms for higher dimensional

convex hulls, in ‘‘The Thirty-Fifth IEEE Symposium on the Foundations of Computer
Science,’’ 1994, pp. 683]694; http:rrwww.cs.tamu.edur researchr roboticsr Amator
Papersr focs94.300.ps.gz.

3. N. Amenta, Helly-type theorems and generalized linear programming, Discrete Comput.
Ž .Geom. 12 1994 , 241]261; http:rrwww.geom.umn.edur;ninarpapersrdcg.ps.

4. I. Babuska and A. Aziz, On the angle condition in the finite element method, SIAM J.ˇ
Ž .Numer. Anal. 13 1976 214]227.

5. C. Bajaj, The algebraic degree of geometric optimization problems, Discrete Comput.
Ž .Geom. 3 1988 , 177]191.

6. R. E. Bank and R. K. Smith, Mesh smoothing using a posteriori error estimates, SIAM J.
Ž . wNumer. Anal., 34 1997 , 921]935. ftp:rrmath.ucsd.edurpubr scicompr rebr ftpfilesr

xa67.ps.Z.



OPTIMAL POINT PLACEMENT FOR MESH SMOOTHING 321

7. M. Bern, L. P. Chew, D. Eppstein, and J. Ruppert, Dihedral bounds for mesh generation
in high dimensions, in ‘‘The Sixth ACMrSIAM Symposium on Discrete Algorithms,’’
1995, pp. 189]196; http:rrwww.ics.uci.edur;eppsteinr pubsr p-dihedral.ps.Z. See also
D. Eppstein, Tetrahedra classified by bad angles, http:rrwww.ics.uci.edur;eppsteinr
junkyardrtetraqual.html.

8. M. Bern and D. Eppstein, Mesh generation and optimal triangulation, in ‘‘Computing in
Euclidean Geometry,’’ 2nd ed., World Scientific, Singapore, pp. 47]123, 1995.

9. M. Bern and P. E. Plassmann, Mesh generation, manuscript, 1996.
10. K. Clarkson, A Las Vegas algorithm for linear programming when the dimension is small,

in ‘‘Twenty-Ninth IEEE Symposium on Foundations of Computer Science,’’ 1988, pp.
Ž .452]456; J. Assoc. Comput. Mach. 42 1995 , 488]499; http:rrcm.bell-labs.comr whor

clarksonrlp2.html.
11. E. J. Cockayne and Z. A. Melzak, Euclidean constructability in graph minimization

Ž .problems, Math. Mag. 42 1969 , 206]208.
12. E. F. D’Azevedo and R. B. Simpson, On optimal interpolation triangle incidences, SIAM

Ž .J. Sci. Statist. Comput. 10 1989 1063]1075.
13. S. Dharmadhikari and K. Joag-Dev, ‘‘Unimodality, Convexity and Applications,’’ Aca-

demic Press, San Diego, 1988.
Ž .14. M. T. Dickerson and M. H. Montague, A usually? connected subgraph of the minimum

weight triangulation, in ‘‘The Twelfth ACM Symposium on Computational Geometry,’’
1996, pp. 204]213; http:rrwww.middlebury.edur;dickersormwtskel.html.

15. M. E. Dyer and A. M. Frieze, A randomized algorithm for fixed-dimensional linear
Ž .programming, Math. Programming 44 1989 , 203]212.

16. N. Dyn, D. Levin, and S. Rippa, Data dependent triangulations for piecewise linear
Ž .interpolation, IMA J. Numer. Anal. 10 1990 , 137]154.

17. D. Eppstein, Approximating the minimum weight Steiner triangulation, Discrete Comput.
Ž .Geom. 11 1994 , 163]191; http:rrwww.ics.uci.edur; eppsteinrpubsrp-mwst.html.

Ž . Ž .18. F. Eriksson, On the measure of solid angles, Math. Mag. 63 3 1990 , 184]187.
19. L. A. Freitag, M. T. Jones, and P. E. Plassmann, An efficient parallel algorithm for mesh

smoothing, in ‘‘The Fourth International Meshing Roundtable,’’ Sandia Labs., 1995, pp.
47]58; ftp:rrfea1.ansys.comrpubrsowenrfreitag.epsi.gz.

20. L. A. Freitag, M. T. Jones, and P. E. Plassmann, A parallel algorithm for mesh
smoothing, in ‘‘Proceedings of the Eighth Conference on Parallel Processing for Scien-
tific Computing,’’ 1997.

21. L. A. Freitag and C. Ollivier-Gooch, A comparison of tetrahedral mesh improvement
techniques, manuscript, 1996.

22. L. A. Freitag, C. Ollivier-Gooch, M. T. Jones, and P. E. Plassmann, Scalable unstructured
mesh computation, http:rrwww.mcs.anl.govrhomerfreitagrSC94demor.

23. B. Gartner, A subexponential algorithm for abstract optimization problems, SIAM¨
Ž .J. Comput. 24 1995 , 1018]1035; http:rrwww.inf.fu-berlin.derinstrpubsrtr-b-93-05.

abstract.html.
24. C. Gold, T. Charters, and J. Ramsden, Automated contour mapping using triangular

element data structures and an interpolant over each irregular triangular domain, in
‘‘Proceedings of the SIGGRAPH,’’ 1977, pp. 170]175.

25. M. T. Goodrich, Geometric partitioning made easier, even in parallel, in ‘‘The Ninth
ACM Symposium on Computational Geometry,’’ 1993, pp. 73]82.

26. R. Klein and A. Lingas, Hamiltonian abstract Voronoi diagrams in linear time, in ‘‘The
Fifth International Symposium on Algorithms and Computation,’’ Lecture Notes in
Computer Science, Vol. 834, Springer-Verlag, BerlinrNew York, 1995, pp. 11]19; Tenth
European Workshop on Computational Geometry, 1994, pp. 1]4; http:rrwww.dna.lth.ser
ResearchrAlgorithmsrPapersrandrzej4.ps.



AMENTA, BERN, AND EPPSTEIN322

27. R. Klein, K. Mehlhorn, and S. Meiser, Randomized incremental construction of abstract
Ž .Voronoi diagrams, Comput. Geom. Th. Appl. 3 1993 , 157]184.

28. C. Levcopoulos and D. Krznaric, Quasi-greedy triangulations approximating the mini-
mum weight triangulation, in ‘‘The Seventh ACMrSIAM Symposium Discrete Algo-
rithms,’’ 1996, pp. 392]401.

29. J. Matousek, M. Sharir, and E. Welzl, ‘‘A Subexponential Bound for Linear Program-ˇ
ming,’’ Technical Report B 92-17, Freie Univ. Berlin, Fachb. Mathematik, Aug. 1992.

30. N. Megiddo, Applying parallel computational algorithms in the design of sequential
Ž .algorithms, J. Assoc. Comput. Mach. 30 1983 852]865.

31. K. Mehlhorn, S. Meiser, and C. O’Dunlaing, On the construction of abstract Voronoi
Ž .diagrams, Discrete Comput. Geom. 6 1991 , 211]224.

32. S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer.
Ž . Ž .Anal. 29 1 1992 , 257]270.

33. S. Rippa and B. Schiff, Minimum energy triangulations for elliptic problems, Comput.
Ž .Methods Appl. Mech. Engrg. 84 1990 , 257]274.

34. G. Strang and G. J. Fix, ‘‘An Analysis of the Finite Element Method,’’ Prentice-Hall,
Englewood Cliffs, NJ, 1973.

35. E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnes est
Ž .minimum, Tohoku Math. J. 43 1937 , 355]386.ˆ


	1. INTRODUCTION
	2. GENERALIZED LINEAR PROGRAMMING
	3. QUASI-CONVEX MESH SMOOTHING IN R ^(2)
	FIG. 1.
	FIG. 2.

	4. QUADRILATERAL MESH SMOOTHING
	5. MESH SMOOTHING IN HIGHER DIMENSIONS
	6. FEASIBLE REGIONS FOR SOLID ANGLES
	7. NONQUASICONVEX MESH SMOOTHING
	8. CONCLUSIONS
	REFERENCES

