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Appendix A. Proof of Theorem 1

In this appendix, we first derive a canonical form of the pencil Lg — ALy, and then prove the variational
principle in Theorem 1. For the simplicity of notation, in this appendix, we denote A = Lg and B = L. We

begin with the following lemma.

Lemma 1. If A — AB is a symmetric matriz pencil of order n with A = 0 and B = 0, then there exists an

orthogonal matriz Q@ € R™*™ such that
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where //1\22 =0 and EH > 0. Furthermore, the sub-pencil A—\B is regular and A >0 and B = 0.

Proof. Since B = 0, there exists an orthogonal matrix )7 € R™*"™ such that
T d

(0) — AT _r ]§11
B = QT BQ: d{ 0}

where By = 0. Applying transformation @); to matrix A, we have
I d

(0) — AT _r Ay Ap
AT =@iAd=, [A1T2 A22}

Note that Az = 0 due to the fact that A = 0.
For the d x d block matrix Ass, there exists an orthogonal matrix Qoo € R4*d guch that

ni m

ny A\
han0u=" | 42|,

where /ng = 0.
Let Q2 = diag(I, Q22). Then we have
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where [A\l% gu} = A12Q9. Note that since A1) = 0, we must have //1\13 = 0. Otherwise, if there exists an

~

element a;; # 0 in ;{13, then the 2 by 2 sub-matrix { Gii Qi } of AM) is indefinite, where @;; is the i-th diagonal

Qg 0
element of Ay;. This contradicts to the positive semi-definiteness of A1) > 0.
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Denote Q = Q1Q>. Then Q is orthogonal, and QT AQ, QT BQ have the form (1).
Finally, we show the pencil A — AB is regular. For any A\ € C, straightforward calculation gives that

det(A—\B) = det( An —ABu A )

Al Az

_ det A11 — A12A§£A,{2 — /\B11 R
A12 A22

= det(ggg) det(gn — 1,4\12;{27212{2 — )\Ell)-

Recall that ;{22 > 0. Furthermore, since §11 = 0, det(ﬁu — ﬁlgggzlﬁﬂ — )\En) % 0. Hence, det(ﬁ— Aé) Z0.
This means the pencil A — AB is regular. O

By Lemma 1, we have the following canonical form of the matrix pair {4, B} to show that the matrices A
and B are simultaneously diagonalizable with a congruence transformation.

Lemma 2. If A — AB is a symmetric matrix pencil of order n with A > 0 and B > 0, then there exists a
nonsingular matriz X € R™*"™ such that

T ni m T ni m
T A,- T 1

XTAX = n, I , X'BX = n, 0 , (4)
m 0 m 0

where A, is a diagonal matriz of non-negative diagonal elements Ay, ..., A, r = rank(B), m = dim(N (A)NN(B))
and ny; = dim(N(B)) — m.

Proof. By Lemma, 1, there exists an orthogonal matrix Q € R™*" such that

r ni m r ny m

r 411 412 r EU

AN = QTAQ = A{z Az and BW = QTBQ = m 0

m 0 " 0

Let
I,
X1 = _AgzlA{z A2_21/2
I,
Then
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Since Eu > 0, there exists a nonsingular matrix )A(g such that
XT[Ay — AVAAT)X, = A, XTB» Xy =1,.
Let Xy = diag()?g,lm,fs). Then we have
XTI AP X, = diag(A, I,,,,0,), XIB® X, = diag(I,, 0,,, 0,).

Denote X = QX1 X53. Then we obtain (4). The remaining results are eaily obtained from the canonical form

(2). O

The following remarks are in order:
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1. By Lemma 2, we know (i) there are » = rank(B) finite eigenvalues of the pencil A — AB and all finite
eigenvalues are real, nonnegative and non-defective. and (ii) there are ny = dim(N(B))—dim(N (A)NN(B))
non-defective infinite eigenvalues.

2. The canonical form (4) has been derived in [Newcomb, 1961]. Here we give the values of indices r, ni, m
in (4) and our proof seems more compact.

3. Lemma 3.8 in [Liang et al., 2013] deals with the canonical form of a general positive semi-definite pencil.
Obviously, the pencil A—AB considered here is a special case of positive semi-definite pencil. So Lemma 3.8
is applicable here. Our proof is constructive based on Fix-Heiberger’s reduction [Fix and Heiberger, 1972].

We now provide a proof of the variational principle in Theorem 1. Without loss of generality, we assume that
pencil A — AB is in the canonical form (4), i.e.,

T ni m T ni m
r A,- r 1
A= n I , B=n 0 . (5)
m 0 m 0

Let X C R"™ be a subspace of dimension n+1—14, where 1 < i < r and x € X be partitioned into z = [z7, 21 217

conformally with the form (5), then

xT Ax . rT Aoy + 2Tz . rT Aoy
in T = inf —————= inf —%—. (6)
zex x! Bz TEX 7 T zeX  x]X
zT Bz>0 le11>0 z1T11>0

Let XM = {[I,,0,,_,]z | € X}. Evidently, X" is a subspace of R". Moreover,
n+l—i>dimXY)>n4+1—i—ng—s=r+1—i.

Then there exists a subspace X C R" of dimension 7 + 1 — i such that X € X1, For the matrix A, by
Courant-Fischer min-max principle, we have

. rTAay . aT A xT Apmy o at A
inf —— = min —— < 1 —F— < max min ——— = A;.
ngeX 1T ziex® X Tq z1EX T1T1 dim(S)=r+1—i z1€S  T] T

zy 21>0 zT x>0 zT21>0 SCR” z] >0

Combining above equation with (6), we know that for any subspace X C R™ with dimension n + 1 — 4,

. 2T Ax )
min
zex xTBzx "
T Bz>0

On the other hand, let us consider a special choice of the subspace A

Si =R(S)),
where
r+1—i n—r
i1 0
Si = r+1—i I 0
n—r I

Then dim(S;) =n+1—4, and

STAS; = diag(A;, I, 05), STBS; = diag(lr41—i, On,, 0s),

where 1~\Z = diag(\;, -+, A). Let z, = S;e; € S;, where e; is a unit vector of dimension n + r — 4, then
x*TAx* B
zT Bz, v

Consequently, Eq.17 (Sec.4) follows from above equation and (7). Taking ¢ = 1 in (7), we get Eq.18 (Sec.4).
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Appendix B. Proof of Theorem 2

Similar to Appendix A, for the simplicity of notation, we denote A = Lg and B = Ly. By the definitions of
K and M in Theorem 2, we have
K=-B, M=A+uB+2SZ".

By Lemma 1, there exists an orthogonal matrix ¢ € R™*™ such that

m n—m m
~

QrAQ=""" [ 4 O}, Q'BQ=""" [ b 0} (®)

where the (n — m) x (n — m) sub-pencil A — A\B is regular and A = 0 and B = 0.
Let @ in (8) be conformally partitioned in the form @ = [Q1, Q2], where Q2 € R™*™. Then )5 is also an
orthonormal basis of N'(4) NN (B), i.e.,
Z =@Q2G (9)

for some orthogonal matrix G. B
For the regular pair {A, B}, by Lemma 2, there exists a nonsingular matrix X € R(=m)x(n=m) guch that

XTAX = diag(Ar, I,,), XTBX = diag(I,,0,,), (10)

where A, = diag(A1, -+, A) = 0.
Let X = Qdiag(X, I,;;). Then
XTKX = diag(X", I,)Q" (- B)Q diag(X, I,,,)
= diag(X”, I,,) diag(— B, 0,,,) diag(X”, I,,) by (8)
= dlag(_I’H Onuom) by (1O)a
and
XTMX = diag(X”, 1,)QT(A+ uB + Z2SZ")Q diag(X, I,,,)
= diag(X”, I,) diag(A 4+ uB, GSGT) diag(X, I,,) by (8) and (9)
= diag(A, + pl,, I,,,GSGT) by (10).

Since A, = 0, S > 0 and p > 0, M > 0. The nonzero eigenvalues of the pencil K — oM are o; = —1/(\; + 1)
fori=1,...,r.
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