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ABSTRACT 

This note is concerned with the quadratic convergence of Kogbetliantz algorithm 
for computing the singular value decomposition of a triangular matrix in the case of 
repeated or clustered singular values. 

1. INTRODUCTION 

The idea of using different rotations on each side of a matrix A in order 
to compute the singular value decomposition of A was first suggested by 
Kogbetliantz [3] and analysed by Forsythe and Henrici [2]. Forsthye and 
Henrici have proved the convergence of the cyclic Kogbetliantz algorithm 
under the assumption that all pairs of rotation angles {~bk, ~Pk} lie in a closed 
interval 1 c ( - ~r/2, rr/2) independent of k: 

~bk, ~kk e 1, k = 1,2 . . . .  (1) 

In a recent paper, Paige and Van Dooren [4] have shown that the cyclic 
Kogbetliantz algorithm ultimately converges quadratically when no patho- 
logically close singular values are present. 
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Since efficiency can often be gained in computing the SVD ff the input 
matrix is first orthogonally transformed into triangular form [1], it has been 
suggested that the matrix be preprocessed by computing its QR decomposi- 
tion, before using Kogbetliantz algorithm to compute its SVD. This note is 
concerned with the asymptotic quadratic convergence of cyclic Kogbetliantz 
algorithm for computing the SVD of a triangular matrix in the case of 
repeated or clustered singular values. We have assumed that the cyclic 
Kogbetliantz algorithm is convergent. 

In this note, I1" IIF and I1"11~ denote Frobenius and 2-norm respectively, 
and s(A) denotes the sum of squares of the off-diagonal elements of matrix 
A. st(A ) [su(A)] is the sum of squares of the strictly lower [upper] triangular 
elements of A. 

2. DESCRIPTION OF THE ALGORITHM OF KOGBETLIANTZ 

Let A be a n × n real matrix, and let 

A = U Z V  r (2) 

be the SVD of A. The algorithm of Kogbetliantz for computing the decom- 
position (2) is based on the following observation. Let ai/ and a/i be two 
off-diagonal elements of A. Let the rotation matrices 

Ok= ( COS*k sin*k 1 
- -  sin~k cos~k] (3) 

and 

be chosen such that 

cos ~bk sin ~k ] (4) 

is the SVD of the 2 × 2 submatrix subtended by the rows and columns i and j 
of A. The rotations of (3) and (4) can be constructed to satisfy (1) and (5) 
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simultaneously [9.]. Let U k and Vk be the unit matrix with the elements 
(i, i),(i, j ) , ( j ,  i),(], ]) replaced by the elements (1,1),(1,2),(2,1),(2,2) of 0 k 
and Vk, respectively; then Ak+ t = UTAkVk satisfies 

aii -- aii. (8) 

In this scheme, a sweep consists of zeroing the off-diagonal elements in the 
natural row ordering. For example with n = 4, this is 

(i, j )  -- (1,2),(1,3),(1,4),(2,3),  (2,4),(3,4). 

We will call the Kogbetliantz algorithm with row ordering the cyclic 
Kogbetliantz algorithm. 

Heath et al. [5] discuss in detail the effect of the cyclic Kogbetliantz 
algorithm on a triangular matrix. They show that an upper triangular matrix 
A, after the first sweep, becomes lower triangular. The second sweep puts it 
back to upper triangular form, and so on. Moreover, it is easy to show that if 
A is an upper trapezoidal matrix of the form 

where All is nonsingular, then after the second sweep, it has the form 

[ A (s) ), 
A s = [  0n 0 O 

where A~ is nonsingular upper triangular. So without loss of generality, we 
may assume that A is a nonsingular triangular matrix. 

3. MAIN RESULT AND PROOF 

This section gives a proof of the asymptotic quadratic convergence of the 
cyclic Kogbetliantz algorithm in the case of repeated or clustered singular 
values. We begin our formal development with a lemma. 
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L~.MMA 3.1. Let the 2 X 2 nonsingular upper triangular matrix 

a 11 a 121 
0 a~]  

satisfy lalxl = c, [axd, la~l >> e, e is small. Let 

alx alz PIa = al~ l R12P12 0 a~  a11]' (7) 

where PI~ is a permutation and R 1~, a rotation• Then for any Ol, a2 we have 

lall l  
[ o ~ - d t t  I < [ o t - a ~ l + O ( e  2) " ' (8)  laz~l z 

and 

la2 - ~zal < la2 - a ~ l +  O(e ~) 
1 (~) 

laz~l 

Proof. Let the rotation have the form 

.,__(c 

Then from ~ ,  we know that c =az~ /h ,  s = a l 2 / h ,  where h = 
sign(azz)~/a ~ + a~z. Since lal~J = ,, a n d ,  is small, it follows that 

O(c ~___)) 
h = ~  ~-~ +cz  = l a ~ l +  la~l 

and 

1 1 o(~ ~) 
= + 
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From (7), we know that for any Ol, o2 

Io l -  anl = IOl- ancl 

~<[o l -an l+ lan l l  1 - c  I 

lanl 
lot - a id+ 0(¢ 2) lazd2 

and 

Io2 - a ~ l  = Io2 - h i  

1 
~< Io2 - a z d +  O(e ~') 

l a ~ l '  

which is the desired result. 

The lemma essentially tells us that if at1 --} o l, a m ~ 0 2, and o 1 and o 2 
are reasonably separated, then on symmetric permutation and premultiplying 
with a rotation matrix, the new at1 and ~ =  will still converge to o I and o 2 
respectively. 

For proving the quadratic convergence in the case of repeated or clus- 
tered singular values, we suppose that all the a .  which converge to repeated 
or clustered singular values o are at the bottom of A's diagonal. This can 
always be obtained by a suitable reordering, but it not automatically obtained 
by the cyclic Kogbethantz algorithm. We can then partition A accordingly as 

0 A=] (10) 

where both A n and Az~ are upper triangular, and A~--}oI, and the 
off-diagonal elements of A satisfy 

II~IIF < 7, (11) 

where ,/ is small. We illustrate how to obtain (10) for n = 5. Suppose 
a 11 ~ °1, a ~  --} o 1, and other diagonal elements converge to distinct singular 
values. By the preceding lemma, we can put a l l  and a N at the bottom of 
A's diagonal through symmetric permutation and premultiplying with ap- 
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propriate rotation: 

I 
1 x x x 
0 2 x x 

A ~ P 1 2  0 0 3 x 
0 0 0 4 
0 0 0 0 

x lxl o x 
x 

x P12 -'* R 
~c 

0 x x 

1 x x 

1 x x 

0 3 x 
0 0 4 
0 0 0 

i xxxx I (2xxx 
1 x x 0 3 0 x 

--* Pz3 0 0 3 x x Pz3--" Pz3 0 x 1 x 

1 o o o , ; )  o o o ,  
0 0 0 0 0 0 0 I xxxx I i xxx 
3 x x 3 x x 

-'*P34 0 0 1 x x P34--'R34 0 0 4 0 

/0  0 0 4 ~] 1 0 0 x 1 
0 0 0 0 0 0 
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i/ 
x 

x 

X 

x 

5 

X , 

where the indices indicate the position of the initial diagonal elements of 
matrix, and x represents the general matrix element. When treating the 
cyclic Kogbetliantz algorithm below, we will assume that a reordering step 
has been performed as soon as the cluster becomes apparent. 

Starting from (10) with the cyclic Kogbetliantz algorithm, we have after 
one sweep 

AI=Dl+E1=(AI1A__2x -4~0 ), (12) 

where D 1 is diagonal, E x is strictly lower triangular, All, A~ are lower 
triangular, and Xz~ --* oi. Then 

and from the convergence of the cyclic Kogbetliantz algorithm, 

[IFI[IF ~< 7 2, (14) 
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where F l is the strictly lower triangular part of ErlEI . From (13), we have 

o)(0, A r A I - ° 2 I = ( z  I I )' (15) 

where 

x° = a~l&, + a~lF,=,- o~I, 

t o -  a~X=-a~x-  a~&lxa,a~,x~, 

Z -~ 7~rlX21X~ i. 

Now observe that the rank of ArA1- o~I is n -  m. By Sylvester's law of 
inertia (see e.g. [6]) the rank of the block diagonal factor must be n - m, and 
so Yo = 0. Thus 

A T / ~  -- a9I = A~  X21X ~- 1.T,~lAz2. (16) 

By our assumption_we know that after a certain number of sweeps, all the 
singular values of All will be separated from o by 8 or more, in other words, 

1 1 
P =  (~11Al1-O2I)-112 ~ min lo , -o l  < 8" (17) 

Thus from (16) and (17), we have 

~< s,(ArA1)p I[I + 7,rlA--21(7,rlAn- o2I ) - 1 ] - 1  IF 

1 1 

<~ s,(/~A,) 8 1 -  II/~IlI~F/8 

1 1 

.< ~,(a~Al) 8 1 -  ~ / 8 '  
i.e., 

1 
V~s}/2(Tlr A, z~ ) <~ 8- -~s , (  arAt) (18) 
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This is the core inequality for proving the main result. In order to show the 
result more dearly, we need the following proposition. 

I~aOPOSITION 3.2. Denote a nonsingular lower triangular matrix A as 

a = O + E (19) 

where D is diagonal and E is triangular. Then there exist m and M such that 

0 < m <<.dmm<~dm~< M 

and 

~m~sx( A ) -IIFIl~ ~ sx(A~A) ~ 2M2s,(A)  m- 211FIl~ (20) 

where dma x and dmi n denote the largest and smallest elements o f  D respec- 
tively. F is a strictly lower triangular part o f  ErE. 

Proof. From (19), we know 

a~a -~ (D + E ) r ( D  + E) 

= D ~ + DE + ETD + ETE. 

Let ETE = Y. + F + F r, where ~ is diagonal and 
triangular. Then 

sz( ArA ) = IIDE + FIl~ 

~< (llOEllv + IIFII~) 2 

~< 2(IIDEII~ + IIFII~) 

2M~IIEII~ +211FII~ 

= 2M~st(A)+211FIl~. 

On the other hand, since for arbitrary matrices A and B 

F is a strictly lower 
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we have 

sl( ATA ) = IIDE + FII2F 

>/~[IDEII2F - IIFII2F 
~ 1  2 2 2 

~m IIEIIF--IIFIIr 

= ~mZst(A) -[IFI[~. 

Thus the proposition is proved. • 

Now, from (18) and (20) and the convergence of the Kogbetliantz 
algorithm, we know that there exist m 1, M 1, 0 < m 1 ~< Omh a ~< Oma ~ ~< M1, 
where Omm and Om~ denote the smallest and largest singular values of A 
respectively, such that 

_~lsz(A1) + 0(~/2). (21) 

And from (6), we know that 

We then have 

st(A1)<~su(A). 

2 
s~/2(A~) <~ ~ --~l su(A)+O(~2)" (22) 

This shows that at some stage, after a sweep, the new off-diagonal elements 
will be the squares of the old ones. This behavior thus shows asymptotic 
quadratic convergence. 

I am grateful to my advisor Professor E. 1iang for his encouragement, and 
to Professor G. W. Stewart and Professor D. P. O'Leary for their reading of  
this paper and many helpful suggestions. I am also indebted to the referee for 
his comments. 
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