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MINIMIZATION PRINCIPLES FOR THE LINEAR RESPONSE
EIGENVALUE PROBLEM I: THEORY∗

ZHAOJUN BAI† AND REN-CANG LI‡

Abstract. We present two theoretical results for the linear response eigenvalue problem. The
first result is a minimization principle for the sum of the smallest eigenvalues with the positive sign.
The second result is Cauchy-like interlacing inequalities. Although the linear response eigenvalue
problem is a nonsymmetric eigenvalue problem, these results mirror the well-known trace minimiza-
tion principle and Cauchy’s interlacing inequalities for the symmetric eigenvalue problem.
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1. Introduction. In this paper, we consider the eigenvalue problem of the form

(1.1) Hz ≡
[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
≡ λz,

where K and M are n× n symmetric positive semidefinite matrices and one of them
is definite. We refer to it as a linear response (LR) eigenvalue problem for the reason
to be explained later.

The LR eigenvalue problem (1.1) arises from computing excitation states (ener-
gies) of physical systems in the study of collective motion of many particle systems,
ranging from silicon nanoparticles and nanoscale materials to analysis of interstellar
clouds (see, e.g., [7, 20, 25]). In computational quantum chemistry and physics, the
excitation states are described by the random phase approximation (RPA), a linear re-
sponse perturbation analysis in the time-dependent density functional theory. There
has been a great deal of recent work on and interest in developing efficient numerical
algorithms and simulation techniques for excitation response calculations of molecules
for materials design in energy science [9, 21, 28, 29].

The heart of (nonrelativistic) RPA calculation is to compute a few smallest posi-
tive eigenvalues and corresponding eigenvectors of the following eigenvalue problem:

(1.2) HHH

[
u
v

]
≡
[

A B
−B −A

] [
u
v

]
= λ

[
u
v

]
,

where A and B are n × n real symmetric matrices such that the symmetric matrix
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[ A B
B A ] is positive definite1 [27, 32]. In physics literature, it is this eigenvalue problem
that is referred to as the LR eigenvalue problem (see, e.g., [24]), or the RPA eigenvalue
problem (see, e.g., [10]). We point out that this eigenvalue problem is also a special case
of the so-called Hamiltonian eigenvalue problem because HHH in (1.2) is a Hamiltonian
matrix. Therefore existing developments in, e.g., [3, 4, 18, 22, 35] on the Hamiltonian
eigenvalue problem apply. In general, the eigenvalues of a Hamiltonian matrix come
in pairs {λ,−λ̄} for the real case and in quadruples {±λ,∓λ̄} for the complex case
[18, Table 1]. But (1.2) is a special one: its eigenvalues are real and come in pairs
{λ,−λ}.

Define the symmetric orthogonal matrix

(1.3) J =
1√
2

[
In In
In −In

]
,

where In is the n× n identity matrix. It can be verified that JTJ = J2 = I2n and

(1.4) JTHHHJ =

[
0 A−B

A+B 0

]
,

which is H in (1.1) with

(1.5) K = A−B, M = A+B.

Hence the Hamiltonian matrix HHH in (1.2) and the matrix H in (1.1) with (1.5) are
similar through J , making it equivalent to solve the eigenvalue problem for one by
the one for the other. In fact, both have the same eigenvalues with corresponding
eigenvectors related by

(1.6)

[
y
x

]
= JT

[
u
v

]
,

[
u
v

]
= J

[
y
x

]
.

Furthermore, the positive definiteness of the matrix [ A B
B A ] is equivalent to both K

and M is positive definite since

(1.7) JT

[
A B
B A

]
J =

[
A+B

A−B

]
.

By the equivalence of the eigenvalue problems (1.2) and (1.1), in this paper, we also
refer to the eigenvalue problem (1.1) as the LR eigenvalue problem.

When both K and M are symmetric positive definite, it can be shown that the
Hamiltonian matrix HHH in (1.2) and thus the matrix H in (1.1) have only nonzero real
eigenvalues and their nonzero eigenvalues come in pairs {λ,−λ} (see section 2). In
this case, Thouless [31] showed that the smallest positive eigenvalue λmin admits the
following minimization principle:

(1.8) λmin = min
u,v

�(u, v),

where �(u, v) is defined by

(1.9) �(u, v) =

[
u
v

]T [
A B
B A

] [
u
v

]
|uTu− vTv| ,

1In this paper we will focus very much on this case, except that the eigenvalue 0 is allowed; i.e.,
(1.2) has only real eigenvalues and some of them may be 0.
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and the minimization is taken among all vectors u, v such that uTu − vTv �= 0. By
the similarity transformation (1.4) and using the relationships in (1.6), we have

(1.10) �(u, v) ≡ ρ(x, y)
def
=

xTKx+ yTMy

2|xTy| ,

and thus equivalently [34]

(1.11) λmin = min
x,y

ρ(x, y),

where the minimization is taken among all x and y such that either xTy �= 0 or
xTy = 0 but xTKx + yTMy > 0. This removes those x and y that annihilate both
the numerator and the denominator from the domain. In particular x = y = 0 is
excluded.

We will refer to both �(u, v) and ρ(x, y) as the Thouless functional but in different
forms. Although �(u, v) ≡ ρ(x, y) under (1.6), in this paper we primarily work with
ρ(x, y) to develop extensions of (1.11). Our contributions in this paper are threefold:

1. We extend the minimization principle (1.11) to include the case when one of
K and M is singular and thus λmin = 0 for which “min” needs to be replaced
by “inf.”

2. We prove a subspace version of the minimization principle (1.8):

(1.12)

k∑
i=1

λi =
1

2
inf

UTV =Ik
trace(UTKU + V TMV ),

where λi (1 ≤ i ≤ k) are the k smallest eigenvalues with the positive sign2 of
H , and U, V ∈ Rn×k. Moreover, “inf” can be replaced by “min” if both K
and M are definite.
Equation (1.12) suggests that

(1.13)
1

2
trace(UTKU + V TMV ) subject to UTV = In

is a proper subspace version of the Thouless functional in the form of ρ(x, y).
By exploiting the close relation through (1.6) between ρ and �, we also obtain
a subspace version of the minimization principle (1.8) in Theorem 3.4 for the
original LR eigenvalue problem (1.2) and, at the same time, a proper subspace
version of the Thouless functional in the form of �(u, v).

3. We prove that the ith eigenvalue with the positive sign of a structure-pre-
serving projection matrix H

SR
of H onto a pair of subspaces is no smaller than

the corresponding λi of H . In many ways, H
SR

plays the same role for the LR
eigenvalue problem (1.1) as the Rayleigh quotient matrix for the symmetric
eigenvalue problem [26].

2H has an even number of eigenvalues 0, if any. This happens when one of K and M is semidef-
inite, i.e., singular. Perturbing the singular one by εI and then letting ε → 0+, we see that half of
the 0’s come from some of the positive eigenvalues of perturbed H going to 0 from the right and the
other half from the opposites of these positive eigenvalues going to 0 from the left. In recognizing
this, we will associate the plus sign to half of the 0’s and the negative sign to the other half, and
speak of H having n eigenvalues with the positive sign and n eigenvalues with the negative sign
without causing any ambiguity. Our distinguishing +0 and −0 here is not unprecedented. In fact,
it is rather beneficial sometimes in computations [12], and it is built into the IEEE floating point
standard 754-1985 [1].
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These three theoretical contributions mirror the three well-known results for the sym-
metric eigenvalue problem, namely the minimization principle of the Rayleigh quo-
tient, the trace minimization principle (a corollary of Wielandt’s theorem [30, p. 199]),
and Cauchy’s interlacing inequalities (see, e.g., [26, 30]). They will be reviewed at the
beginning of section 3.

The eigenvalue problem (1.1) is equivalent to the generalized eigenvalue problem
for the matrix pencil

(1.14) AAA− λBBB ≡
[
M

K

]
− λ

[
0 In
In 0

]
.

It is not hard to show that AAA−λBBB is diagonalizable (using Theorem 2.3, for example)
if K and M are symmetric positive definite. So the results in [14, 23] apply. Also
when K and M are symmetric positive definite, AAA is definite and thus AAA − λBBB is a
symmetric definite pencil. Fischer’s min-max principle [30, p. 201] (naturally extended
to the generalized eigenvalue problem [17, Appendix A]) is applicable. Later we will
comment on what possible results may come out of such an approach.

This is the first paper of ours in a sequel on the subject. Here we focus on treat-
ing the theoretical aspect of the eigenvalue problem for H , and its numerical aspect
will be the subject of study in [2]. The rest of this paper is organized as follows.
In section 2, we review basic theoretical results about the eigenvalue problem (1.1)
and then introduce the concept of a pair of deflating subspaces and its approximation
properties. In section 3, we extend the minimization principle (1.11) by Thouless and
Tsiper to include several eigenvalues. In section 4, we present Cauchy-like interlac-
ing inequalities. In section 5, we present the deflation technique. For simplicity of
exposition, most proofs are deferred to Appendices A–C. Concluding remarks are in
section 6.

Throughout this paper, Rn×m is the set of all n×m real matrices, Rn = Rn×1, and
R = R1. In (or simply I if its dimension is clear from the context) is the n×n identity
matrix, and ej is its jth column. The superscript “·T” takes transpose only. We shall
also adopt MATLAB-like convention to access the entries of vectors and matrices. i : j
is the set of integers from i to j inclusive. For a vector u and an matrix X , u(j) is u’s
jth entry, X(i,j) is X ’s (i, j)th entry; X ’s submatrices X(k:�,i:j), X(k:�,:), and X(:,i:j)

consist of intersections of row k to row � and column i to column j, row k to row �,

and column i to column j, respectively. If X is nonsingular, κ(X)
def
= ‖X‖2‖X−1‖2

is its spectral condition number, where ‖ · ‖2 denotes the �2-norm of a vector or the
spectral norm of a matrix. For matrices or scalars Xi, both diag(X1, . . . , Xk) and
X1 ⊕ · · · ⊕Xk denote the same matrix⎡⎢⎣X1

. . .

Xk

⎤⎥⎦ .
The assignments in (1.1) will be assumed, namely H is always defined that way
for given K, M ∈ R

n×n which are assumed by default to be symmetric positive
semidefinite and one of which is definite, unless explicitly stated differently. This
assumption is essential to our main contributions in this paper and its following one
[2], although a few results do not require this. We will point them out along the way.
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2. Basic theory and pair of deflating subspaces.

2.1. Basic theory. In this subsection, we discuss some basic theoretical results
on the eigenvalue problem (1.1). Most results are likely known, but cannot be found
in one place. They are collected here for the convenience of our later developments.
Proofs of these results are straightforward.

Theorem 2.1.

1. Each nonzero μ = λ2 as an eigenvalue of KM (and MK) leads to two distinct
eigenvalues of H and two corresponding eigenvectors z.

2. The number of eigenvalues 0 of H is twice as many as the number of eigen-
values 0 of KM (or MK).

Remark 2.1. Theorem 2.1 is valid for all square matrices K and M .
Suppose that K and M are symmetric positive semidefinite. Since KM =

K1/2K1/2M has the same eigenvalues as K1/2MK1/2, which is also symmetric pos-
itive semidefinite, all eigenvalues of KM are real and nonnegative. Denote these
eigenvalues by λ2

i (1 ≤ i ≤ n) in ascending order, i.e.,

(2.1) 0 ≤ λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
n,

where all λi ≥ 0 and thus 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. The eigenvalues of MK are λ2
i

(1 ≤ i ≤ n), too. Theorem 2.1 implies that the eigenvalues of H are

(2.2) ±λi for i = 1, 2, . . . , n.

An immediate consequence of this is that the eigenvalues of H come in ±λ pairs.
Throughout this paper, we will stick to using λ2

i (1 ≤ i ≤ n) in ascending order as
in (2.1) to denote the eigenvalues of KM (when K and M are symmetric positive
semidefinite).

Set

(2.3) I =

[
0 In
In 0

]
,

which is symmetric but indefinite. The matrix I induces an indefinite inner product
on R2n:

〈z1, z2〉I def
= zT1 I z2.

The following theorem tells us some orthogonality properties among the eigenvectors
of H . It does not require that one of K and M are definite.

Theorem 2.2. Suppose K, M ∈ Rn×n are symmetric and positive semidefinite.
1. Let (α, z) be an eigenpair of H, i.e., Hz = αz and z = [ yx ] �= 0, where

x, y ∈ Rn. Then α〈z, z〉I = 2αxTy > 0 if α �= 0. In particular, this implies
〈z, z〉I = 2xTy �= 0 if α �= 0.

2. Let (αi, zi) (i = 1, 2) be two eigenpairs of H. Partition zi = [ yi

xi
] �= 0, where

xi, yi ∈ Rn.
(a) If α1 �= α2, then 〈z1, z2〉I = yT1 x2 + xT

1 y2 = 0.
(b) If α1 �= ±α2 �= 0, then yT1 x2 = xT

1 y2 = 0.
More can be said when one of K and M are definite. For the sake of presentation,

we shall always either assume that M is definite or only provide proofs for definite
M whenever one of K and M is required to be definite. Doing so loses no generality
because the interchangeable roles played by K and M makes it rather straightforward
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to create a version for the case when K is definite by simply swapping K and M
in each of their appearances. The following theorem is critical to our theoretical
developments.

Theorem 2.3. Suppose that M is definite. Then the following statements are
true:

1. There exists a nonsingular Y ∈ Rn×n such that

(2.4) K = Y Λ2Y T, M = XXT,

where Λ = diag(λ1, λ2, . . . , λn) and X = Y −T.
2. If K is also definite, then all λi > 0 and H is diagonalizable:

(2.5) H

[
Y Λ Y Λ
X −X

]
=

[
Y Λ Y Λ
X −X

] [
Λ
−Λ
]
.

3. H is not diagonalizable if and only if λ1 = 0, which happens when and only
when K is singular.

4. The ith column of Z = [ Y Λ
X ] is the eigenvector corresponding to λi, and it is

unique if
(a) λi is a simple eigenvalue of H, or
(b) i = 1, λ1 = +0 < λ2. In this case, 0 is a double eigenvalue of H but

there is only one eigenvector associated with it.
5. If 0 = λ1 = · · · = λ� < λ�+1, then H’s Jordan canonical form is

(2.6)

[
0 0
1 0

]
⊕ · · · ⊕

[
0 0
1 0

]
︸ ︷︷ ︸

�

⊕ diag(λ�+1,−λ�+1, . . . , λn,−λn).

Thus H has 0 as an eigenvalue of algebraic multiplicity 2� with only � linear
independent eigenvectors which are the columns of [ 0

X(:,1:�)
].

2.2. Pair of deflating subspaces. Let U ,V ⊆ Rn be subspaces. We call {U ,V}
a pair of deflating subspaces of {K,M} if
(2.7) KU ⊆ V and MV ⊆ U .
This definition is essentially the same as the existing ones for the product eigenvalue
problem [5, 8, 19]. Let U ∈ Rn×k and V ∈ Rn×� be the basis matrices for the
subspaces U and V , respectively, where dim(U) = k and dim(V) = �. Then (2.7)
implies that there exist K

R
∈ R�×k and M

R
∈ Rk×� such that

(2.8) KU = V K
R
, MV = UM

R
.

Given U and V , both K
R
and M

R
are uniquely determined by respective equations in

(2.8), but there are numerous ways to express them. In fact for any left generalized
inverses U� and V � of U and V , respectively, i.e., U�U = Ik and V �V = I�,

(2.9) K
R
= V �KU, M

R
= U�MV.

There are infinitely many left generalized inverses U� and V �. For example, two of
them for U are

U� = (UTU)−1UT
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and

(2.10) U� = (V TU)−1V T if (V TU)−1 exists.

But still K
R
and M

R
are unique. The left generalized inverse (2.10) will become

important later in preserving symmetry in K and M .

Define

(2.11) H
R
=

[
0 K

R

M
R

0

]
.

Then H
R
is the restriction of H onto V ⊕ U with respect to the basis matrix V ⊕ U :

(2.12)

[
0 K
M 0

] [
V

U

]
=

[
V

U

] [
0 K

R

M
R

0

]
.

This also says that V ⊕ U is an invariant subspace of H . On the other hand, every
invariant subspace of H yields a pair of deflating subspaces of {K,M} as well.

Theorem 2.4.

1. If {U ,V} is a pair of deflating subspaces of {K,M}, then V⊕U is an invariant
subspace of H.

2. Let Z be invariant subspace of H, and let Z = [VU ] be a basis matrix of Z,
where V ∈ Rn×�. Then {span(U), span(V )} is a pair of deflating subspaces
of {K,M}.

Proof. 1. It is a consequence of (2.12) that V ⊕ U is an invariant subspace of H .

2. There is a matrix D such that HZ = ZD, which leads to KU = V D and
MV = UD. Thus (2.7) holds for U = span(U) and V = span(V ).

The following theorem says a subset of eigenvalues and eigenvectors of H can be
recovered from those of H

R
.

Theorem 2.5. Let K
R
, M

R
, and H

R
be defined by (2.8) and (2.11). Then

H
R
ẑ ≡
[
0 K

R

M
R

0

] [
ŷ
x̂

]
= λ

[
ŷ
x̂

]
≡ λẑ

implies (1.1) with x = Ux̂ and y = V ŷ, where ẑ = [ ŷx̂ ] conformably partitioned.

Proof. H
R
ẑ = λẑ yields K

R
x̂ = λŷ and M

R
ŷ = λx̂. Therefore KUx̂ = V K

R
x̂ =

λV ŷ and MV ŷ = UM
R
ŷ = λUx̂, as was to be shown.

H
R
in (2.11) inherits the block structure in H in (1.1): zero blocks remain zero

blocks. But whenK and M are symmetric, as in the RPA case, in generalH
R
may lose

the symmetry property in its off-diagonal blocksK
R
andM

R
, not to mention preserving

the positive semidefiniteness of K and M . Now let us propose a modification to H
R
to

overcome this potential loss. Suppose that W
def
= UTV is nonsingular and is factorized

as W = WT
1 W2 with both W1 and W2 being nonsingular, and define

(2.13) H
SR

=

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
.

Note that H
SR

shares not only the block structure in H but also the symmetry and
semidefiniteness in its off-diagonal blocks. Similar to Theorem 2.5, a subset of eigen-
values and eigenvectors of H can be recovered from those of H

SR
.
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Theorem 2.6. Let H
SR

be defined by (2.13). Then H
SR

is the restriction of H
onto V ⊕ U with respect to the basis matrix VW−1

2 ⊕ UW−1
1 :

(2.14) H

[
VW−1

2

UW−1
1

]
=

[
VW−1

2

UW−1
1

]
H

SR
.

Consequently, H
SR
ẑ = λẑ implies (1.1) with x = UW−1

1 x̂ and y = VW−1
2 ŷ, where

ẑ = [ ŷx̂ ] is conformably partitioned.
Proof. The equations in (2.8) hold for some K

R
and M

R
. Thus

UTKU = (UTV )K
R
= WT

1 W2KR
,

V TMV = (V TU)M
R
= WT

2 W1MR
,

which gives

W−T
1 UTKUW−1

1 = W2KR
W−1

1 , W−T
2 V TMVW−1

2 = W1MR
W−1

2 .(2.15)

Now use (2.8) and (2.15) to get

K(UW−1
1 ) = V K

R
W−1

1

= (VW−1
2 )(W2KR

W−1
1 )

= (VW−1
2 )(W−T

1 UTKUW−1
1 ),

M(VW−1
2 ) = (UW−1

1 )(W−T
2 V TMVW−1

2 ).

They yield (2.14). Apply Theorem 2.5 to conclude the proof.
The equations in (2.15) imply that when W is nonsingular, H

R
and H

SR
are

similar:

(2.16) H
SR

=

[
0 W2KR

W−1
1

W1MR
W−1

2 0

]
=

[
W2

W1

]
H

R

[
W2

W1

]−1

,

which is not at all obvious from (2.11) and (2.13).
In defining H

SR
in (2.13), it is assumed that W = UTV is nonsingular. The

following lemma shows that the assumption is satisfied for the LR eigenvalue problem
in which we are interested.

Lemma 2.7. Suppose that one of K and M is definite. Let {U ,V} be a pair of
deflating subspaces of {K,M} with dim(U) = dim(V) = k, and let U ∈ Rn×k and
V ∈ Rn×k be the basis matrices of the subspaces U and V, respectively. Then UTV is
nonsingular.

Proof. The equations in (2.8) hold for some K
R
and M

R
. Thus

UTKU = UTV K
R
, V TMV = V TU M

R
.

Suppose that M is definite. Then V TMV is definite and thus nonsingular; so V TU
is nonsingular from the second equation.

A trivial pair of deflating subspaces {U ,V} is when U = V = Rn. In particular,
for U, V ∈ R

n×n satisfying UTV = In, matrices

(2.17) H =

[
0 K
M 0

]
and

[
0 UTKU

V TMV 0

]
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have the same eigenvalues. In fact, the two matrices in (2.17) are similar because of
(2.12), and for the current case[

V
U

]−1

=

[
UT

V T

]
.

Remark 2.2. For this subsection, our default assumption on K,M ∈ Rn×n is not
required, except for Lemma 2.7.

2.3. Invariant properties of H
SR
. In the previous subsection, H

SR
was intro-

duced as a structure-preserving projection of H onto a pair of deflating subspaces
{U ,V}. But its definition in (2.13) does not require {U ,V} being a pair of deflating
subspaces. In fact, it is well defined so long as UTV is nonsingular, where U, V ∈ Rn×k

are the basis matrices of U ⊂ R
n and V ⊂ R

n, respectively. This observation will
become critically important in numerical computation, where H

SR
is often defined for

a pair of approximate deflating subspaces and will play the same role in the LR eigen-
value computation as the Rayleigh quotient matrix does for the symmetric eigenvalue
computation [2].

As we just pointed out, we need the nonsingularity assumption on UTV to define
H

SR
. We note that this assumption is independent of the freedom in choosing basis

matrices. Now we present a necessary and sufficient condition for this assumption
in terms of canonical angles between subspaces. Recall that the canonical angles
between U and V are defined to be [30, Definition 5.3 on p. 43]

arccosσi, i = 1, 2, . . . , k,

where σi (1 ≤ i ≤ k) are the singular values of (UTU)−1/2UTV (V TV )−1/2. Further-
more, we define the angle ∠(U ,V) between U and V to be

∠(U ,V) = max
i

arccos(σi) = arccos(min
i

σi).

Note that the canonical angles arccosσi and the angle ∠(U ,V) are independent of the
choices of basis matrices.

Lemma 2.8. Let U, V ∈ Rn×k be basis matrices of U ,V ⊂ Rn, respectively.
1. UTV is nonsingular if and only if ∠(U ,V) < π/2.
2. If ∠(U ,V) < π/2, then Rn = U ⊕ V⊥ = V ⊕ U⊥, where U⊥ and V⊥ are the

orthogonal complements of U and V, respectively.
Proof. We use the notation in the definition of ∠(U ,V) above. UTV is nonsingular

if and only if all 1 ≥ σi > 0, which is equivalent to all arccos(σi) < π/2. This proves
item 1.

Suppose ∠(U ,V) < π/2 and thus UTV is nonsingular. Any x ∈ Rn can be written
as x = Px+ (I − P )x, where

(2.18) P = U(V TU)−1V T.

Evidently Px ∈ U . It can be verified that V T(I−P ) = 0, which implies (I−P )x ∈ V⊥.
Hence Rn = U + V⊥. Furthermore, if x ∈ U and x ∈ V⊥, then

x = Ux̂, 0 = V Tx = V TUx̂,

which implies x̂ = 0 and so must x = 0 because V TU is nonsingular. This proves
Rn = U ⊕ V⊥. Similarly, Rn = V ⊕ U⊥.
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Unique subspaces U = span(U) and V = span(V ) are implied by the way H
SR

is
defined, and they satisfy ∠(U ,V) < π/2. On the other hand, two subspaces U and
V satisfying ∠(U ,V) < π/2 lead to (infinitely) many H

SR
, due to the following two

nonunique choices:

(2.19)

{
1. Factorization W = WT

1 W2 is not unique.

2. Basis matrices U and V are not unique.

In the next theorem, we present two invariant properties of H
SR

with respect to these
two nonunique choices. The properties are important in speaking about eigenvalue
and eigenvector approximations from a pair of approximate deflating subspaces in [2].

Theorem 2.9. Let U ,V ⊂ Rn be two subspaces of dimension k such that
∠(U ,V) < π/2. We have the following invariant properties of H

SR
:

1. The eigenvalues of H
SR

defined by (2.13) are invariant with respect to any of
the nonuniqueness listed in (2.19).

2. For any invariant subspace E of H
SR
,

(2.20)

{[
VW−1

2

UW−1
1

]
ẑ : ẑ ∈ E

}
is invariant with respect to any of the nonuniqueness listed in (2.19). By
which we mean for any two realizations H0 and H1 of H

SR
and the subspace

(2.20) obtained from an invariant subspace E0 of H0, there exists an invariant
subspace E1 of H1 which produces the same subspace (2.20). In particular,
if E has dimension 1, this gives an invariant property on the eigenvectors of
H

SR
.

Proof. We first show the invariant properties with respect to different factoriza-

tions W = WT
1 W2. To this end, we note that H1

def
= H

SR
with W = WT

1 W2 and

H0
def
= H

SR
with W = ITk ·W are similar:[

W−T
1

W1

]−1

H1

[
W−T

1

W1

]
=

[
WT

1

W−1
1

]
H1

[
W−T

1

W1

]
= H0.

Next we verify the invariant properties with respect to different choices of basis ma-
trices. To this end, it suffices to verify the invariant properties under the following
substitutions:

(2.21) UR← U, V S ← V, W1R←W1, W2S ←W2,

where R, S ∈ Rk×k are nonsingular because we have just proved the properties with
respect to different decompositions of W . The verification is straightforward because
H

SR
and [

VW−1
2

UW−1
1

]
do not change under the substitutions (2.21).

Remark 2.3. For this subsection, our default assumption on K,M ∈ Rn×n is not
required.
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3. Minimization principles. We recall three well-known results for a symmet-
ric matrix ΞΞΞ ∈ Rm×m. Denote by θi (1 ≤ i ≤ m) ΞΞΞ’s eigenvalues in ascending order.
The first well-known result is the following minimization principle for ΞΞΞ’s smallest
eigenvalue θ1:

(3.1) θ1 = min
x

xTΞΞΞx

xTx
.

The trace (or subspace) version of (3.1), the second well-known result, is

(3.2)

k∑
i=1

θi = min
U∈Rm×k,UTU=Ik

trace(UTΞΞΞU),

which is a corollary of Wielandt’s theorem [30, p. 199]. Furthermore, given any U ∈
Rn×k such that UTU = Ik, denote by μi (1 ≤ i ≤ k) the eigenvalues of the projection
matrix UTΞΞΞU in ascending order. We have Cauchy’s interlacing inequalities—the
third well-known result:

(3.3) θi ≤ μi ≤ θi+m−k for 1 ≤ k.

The proofs of these well-known theoretical results can be found, for example, in [6,
26, 30]. They are crucial to the establishment of efficient numerical methods for
the symmetric eigenvalue problem, and largely responsible for why the symmetric
eigenvalue problems are regarded as nice eigenvalue problems in a wide range of
applications.

In this and the next sections, we establish analogues of these results for the LR
eigenvalue problem (1.1). The following theorem is an analogue of the minimization
principle (3.1) for the symmetric matrix ΞΞΞ. It is essentially (1.11) due to Tsiper
[33, 34] who deduced it from (1.8) due to Thouless [31], except we allow one of K
and M to be singular. We note that Theorem 3.2 presents a subspace version of
Theorem 3.1. Although Theorem 3.1 is a corollary of Theorem 3.2, we decide to give
a short proof because the proof of Theorem 3.2 is long and is deferred to Appendix A.

Theorem 3.1. Suppose that one of K, M ∈ Rn×n is definite. Then we have

(3.4) λ1 = inf
x,y

ρ(x, y),

where the infimum is taken over all x, y ∈ Rn such that xTy �= 0. Moreover, “ inf ”
can be replaced by “min ” if and only if both K and M are definite. When they are
definite, the optimal argument pair (x, y) gives rise to an eigenvector z = [ yx ] of H
associated with λ1.

Proof. Note that ρ(x, y) ≥ 0 for any x and y. If K is singular, then λ1 = +0.
Pick x �= 0 such that Kx = 0. Then xTMx > 0 since one of K and M is assumed
definite. We have

ρ(x, εx) = |ε|xTMx/(2|xTx|)→ 0 as ε→ 0.

This is (3.4) for the case. We now show that “inf” cannot be replaced by “min.”
Suppose there were x and y such that xTy �= 0 and ρ(x, y) = 0. We note that
ρ(x, y) = 0 and xTy �= 0 imply xTKx = yTMy = 0, which in turn implies Kx =
My = 0, contradicting that one of K and M is definite.
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Suppose K and M are definite. Then λ1 > 0 and the equations in (2.4) hold for
some nonsingular Y ∈ Rn×n and X = Y −T. We have

min
x,y

xTKx+ yTMy

2|xTy| = min
x,y

xTY Λ2Y Tx+ yTY −TY −1y

2|xTY Y −1y|
= min

x̃,ỹ

x̃TΛ2x̃+ ỹTỹ

2|x̃Tỹ|
≥ min

x̃,ỹ

2
∑

i λi|x̃(i)ỹ(i)|
2|∑i x̃(i)ỹ(i)|(3.5)

≥ λ1,(3.6)

where x̃ = Y Tx and ỹ = Y −1y. Suppose 0 < λ1 = · · · = λ� < λ�+1 ≤ · · · ≤ λn. Both
equality signs in (3.5) and (3.6) hold if and only if

x̃(i)λi = ỹ(i) for 1 ≤ i ≤ �,

x̃(i) = ỹ(i) = 0 for � < i ≤ n,

i.e., ỹ = Λx̃ and x̃(�+1:n) = ỹ(�+1:n) = 0. So for their corresponding optimal argument
pair (x, y),

Kx = KY −Tx̃ = KXx̃ = Y Λ2x̃ = Y Λỹ = λ1Y ỹ = λ1y,

and similarly My = λ1x.
Remark 3.1. Equation (3.4) is actually true even if both K and M are singular

(but still positive semidefinite, of course). There are two cases.
1. Both K and M are singular and their kernels are not orthogonal to each

other; i.e., there are nonzero vectors x and y such that Kx = My = 0 and
xTy �= 0. For such a case, we have

(3.7) λ1 = min
x,y

ρ(x, y).

2. Both K and M are singular but their kernels are orthogonal to each other.
For such a case, we have (3.4), but “inf” cannot be replaced by “min.” Here
is why: Since K is singular, we pick x �= 0 such that Kx = 0. Then Mx �= 0
because the kernels of K and M are orthogonal to each other. So xTM =
(Mx)T �= 0, which says that at least one of the columns ofM is not orthogonal
to x, and we take y to be one such column. Now we see

ρ(x, εy) = |ε| yTMy/(2|xTy|)→ 0 as ε→ 0.

This gives (3.4) since ρ(·, ·) ≥ 0 always. To see that “inf” cannot be replaced
by “min,” we assume there were x and y such that xTy �= 0 and ρ(x, y) = 0.
We note that ρ(x, y) = 0 and xTy �= 0 imply xTKx = yTMy = 0, which in
turn implies Kx = My = 0, contradicting the assumption that the kernels of
K and M are orthogonal to each other.

Remark 3.2. The first part of Theorem 3.1—(3.4) for positive definite K and
M—can also be deduced from the equivalence between the eigenvalue problem (1.1)
and the one in (1.14). Suppose that both K and M are definite; so is AAA in (1.14).
Note that λ−1

1 and −λ−1
1 are the largest and smallest eigenvalues of the definite pencil

BBB − λAAA, respectively, and thus for any 0 �= z = [ yx ] ∈ R2n,

(3.8)
zTBBBz

zTAAAz
∈ [−λ−1

1 , λ−1
1

]
implies that

zTAAAz

zTBBBz
∈ (−∞,−λ1] ∪ [λ1,∞).
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Since ±λ−1
1 are eigenvalues of BBB − λAAA and thus attainable by zTBBBz/zTAAAz for some

z, so are ±λ1 by zTAAAz/zTBBBz for some z. By (3.8) and that zTAAAz > 0 for z �= 0, we
have

λ1 = min
z �=0

∣∣∣∣ zTAAAzzTBBBz

∣∣∣∣ = min
z �=0

xTKx+ yTMy

2|xTy| ,

which is (3.4) (with “inf” replaced by “min”) for positive definite K and M . One may
also use Fischer’s min-max principle [30, p. 201] on BBB−λAAA to deduce expressions for
other λ−1

j :

λ−1
j = max

Sj

min
0�=z∈Sj

zTBBBz

zTAAAz
= max

Sj

min
0�=z∈Sj

2xTy

xTKx+ yTMy
(3.9a)

and

λ−1
j = min

S2n−j+1

max
0�=z∈S2n−j+1

zTBBBz

zTAAAz
= min

S2n−j+1

max
0�=z∈S2n−j+1

2xTy

xTKx+ yTMy
,(3.9b)

where Sk is a subspace of Rn of dimension k. But it seems that they do not yield
any min-max principle of λj in terms of (xTKx+ yTMy)/(2xTy) without additional
constraints because it can be positive, 0, and negative. However, by enforcing xTy > 0,
we can obtain some min-max principle for λj using the results in [15].

Our next theorem presents a subspace version of Theorem 3.1. It is the reason
we mentioned in section 1 that the expression in (1.13) can be regarded as a proper
subspace version of the Thouless functional in the form of ρ(·, ·).

Theorem 3.2. Suppose that one of K, M ∈ Rn×n is definite. Then we have

(3.10)

k∑
i=1

λi =
1

2
inf

UTV =Ik
trace(UTKU + V TMV ).

Moreover, “inf” can be replaced by “min” if and only if both K and M are definite.
When they are definite and if also λk < λk+1, then for any U and V that attain
the minimum, {span(U), span(V )} is a pair of deflating subspaces of {K,M} and the
corresponding H

SR
(and H

R
, too) has eigenvalues ±λi (1 ≤ i ≤ k).

Proof. The proof is deferred to Appendix A.
Corollary 3.3. Suppose that one of K, M ∈ Rn×n is definite. Then

(3.11)

n∑
i=1

λi =
1

2
inf

UTV =In
trace(UTKU + V TMV ).

Remark 3.3. In (3.2), which is for the symmetric eigenvalue problem of ΞΞΞ =
ΞΞΞT ∈ R

m×m, if k = m, then

(3.12)

m∑
i=1

θi = trace(UTΞΞΞU),

regardless of U ∈ Rm×m so long as UTU = Im. There is certainly a strong resemblance
between (3.11) and (3.12), but a fundamental difference, too. That is that “inf” has
to be there in (3.11). Without “inf,” (3.11) becomes

(3.13)

n∑
i=1

λi ≤ 1

2
trace(UTKU + V TMV )
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for any two U, V ∈ Rn×n satisfying UTV = In. For example, consider

K =

[
λ2
1

λ2
2

]
, M = I2, U =

[
ξ1

ξ2

]
, V = U−T =

[
ξ−1
1

ξ−1
2

]
,

where 0 < λ1 ≤ λ2 and 0 �= ξi ∈ R. Then we have

1

2
trace(UTKU + V TMV ) =

2∑
i=1

ξ2i λ
2
i + ξ−2

i

2
≥

2∑
i=1

λi,

where the equality sign holds if and only if |ξi| = 1/
√
λi for i = 1, 2.

Exploiting the close relation through (1.6) between the two different forms of the
Thouless functionals �(·, ·) and ρ(·, ·), we have by Theorem 3.2 the following theorem.
It suggests that
(3.14)

1

2
trace

([
U
V

]T [
A B
B A

] [
U
V

])
subject to UTU − V TV = 2Ik, U

TV = V TU

is a proper subspace version of the Thouless functional in the form of �(·, ·).
Theorem 3.4. Suppose that A and B are n×n real symmetric matrices and that

A+B and A−B are positive semidefinite and one of them is definite. Then we have

(3.15)

k∑
i=1

λi =
1

2
inf

UTU−V TV =2Ik
UTV =V TU

trace

([
U
V

]T [
A B
B A

] [
U
V

])
.

Moreover, “inf” can be replaced by “min” if and only if both A±B are definite.
Proof. Assume the assignments in (1.5) for K and M . We have by (1.7)[

U
V

]T [
A B
B A

] [
U
V

]
=

[
V̂

Û

]T [
M

K

] [
V̂

Û

]
= ÛTKÛ + V̂ TMV̂ ,

where [
V̂

Û

]
= JT

[
U
V

]
=

1√
2

[
U + V
U − V

]
,

and J is given by (1.3). Therefore,

(3.16) inf
ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ )

= inf
(U−V )T(U+V )=2Ik

trace

([
U
V

]T [
A B
B A

] [
U
V

])
.

We claim

(3.17) (U − V )T(U + V ) = 2Ik ⇔ UTU − V TV = 2Ik and UTV = V TU.

This is because (U − V )T(U + V ) = 2Ik and its transpose version give

UTU + UTV − V TU − V TV =2Ik,(3.18a)

UTU + V TU − UTV − V TV =2Ik.(3.18b)

Add both equations in (3.18) to get UTU − V TV = 2Ik and subtract one from the
other to get UTV = V TU . That the right-hand side in (3.17) implies its left-hand
side can be seen from either of the equations in (3.18). Equation (3.15) is now a
consequence of Theorem 3.2, (3.16), and (3.17).
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4. Cauchy-like interlacing inequalities. In the following theorem, we obtain
inequalities that can be regarded as an extension of Cauchy’s interlacing inequalities
(3.3).

Theorem 4.1. Suppose that one of K, M ∈ Rn×n is definite. Let U, V ∈ Rn×k

such that UTV is nonsingular. Write W = UTV = WT
1 W2, where Wi ∈ R

k×k are
nonsingular, and define H

SR
by (2.13). Denote by ±μi (1 ≤ i ≤ k) the eigenvalues of

H
SR
, where 0 ≤ μ1 ≤ · · · ≤ μk. Then

(4.1) λi ≤ μi ≤
√
min{κ(K), κ(M)}
cos∠(U ,V) λi+n−k for 1 ≤ i ≤ k,

where U = span(U) and V = span(V ), and κ(K) and κ(M) are spectral condition
numbers. Furthermore, if λk < λk+1 and λi = μi for 1 ≤ i ≤ k, then3

1. U = span(X(1:k,:)) when M is definite, where X is as in Theorem 2.3;
2. {U ,V} is a pair of deflating subspaces of {K,M} corresponding to the eigen-

values ±λi (1 ≤ i ≤ k) of H when both K and M are definite.
Proof. The proof is deferred to Appendix B.
Remark 4.1. When K and M are definite, then the LR eigenvalue problem (1.1)

and the one in (1.14) are equivalent. Let

Z =

[
VW−1

2

UW−1
1

]
,

then we have

(4.2) ZTAAAZ =

[
W−T

2 V TMVW−1
2

W−T
1 UTKUW−1

1

]
, ZTBBBZ =

[
0 Ik
Ik 0

]
.

The eigenvalues of H
SR

are the same as those for the pencil ZTAAAZ − λZTBBBZ. Apply
Cauchy’s interlacing inequalities (extended for the generalized eigenvalue problem) to
BBB − λAAA and ZTBBBZ − λZTAAAZ to get

λ−1
i ≥ μ−1

i ≥
{
λ−1
i+2n−2k if i+ 2n− 2k ≤ n,

0 otherwise.

Equivalently

(4.3) λi ≤ μi ≤ λi+2n−2k for 1 ≤ i ≤ k,

where we assign λj = ∞ for j > n. Inequalities in (4.3) remain valid for the case
when only one of K and M are definite, too. Suppose now that K is singular. Let
K(ε) = K + εIn which is definite for any ε > 0. Define accordingly H(ε) and its
eigenvalues ±λi(ε), HSR

(ε) and its eigenvalues ±μi(ε). By what we just proved, we
have

(4.4) λi(ε) ≤ μi(ε) ≤ λi+2n−2k(ε) for 1 ≤ i ≤ k,

where λj(ε) = ∞ for j > n. From the definition of H
SR

above, we see that limε→0+

H
SR
(ε) exists and the limit is the H

SR
. Since eigenvalues are continuous functions of

matrix entries, letting ε→ 0+ in (4.4) yields (4.3).

3A similar statement for the case in which K is definite (but M is semidefinite) can be made,
noting that the decompositions in (2.4) no longer hold but that similar decompositions exist.
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The second inequality in (4.3) looks more elegant than those in (4.1) but not
without the price that some of them could be ∞. Later, in Remark 4.2, we will
present an example to show the factor [cos∠(U ,V)]−1 in (4.1) cannot be removed.

Corollary 4.2. Suppose that one of K, M ∈ Rn×n is definite. Let Kp and
Mp be k × k principal submatrices of K and M , extracted with the same row and

column indices for both. Denote by ±μi (1 ≤ i ≤ k) the eigenvalues of [
0 Kp

Mp 0 ], where
0 ≤ μ1 ≤ · · · ≤ μk. Then

(4.5) λi ≤ μi ≤
√
min{κ(K), κ(M)}λi+n−k for 1 ≤ i ≤ k.

Proof. Let i1, i2, . . . , ik be the row and column indices of K and M that give Kp

andMp, and let U = (ei1 , ei2 , . . . , eik) ∈ Rn×k. ThenKp = UTKU andMp = UTMU .
Apply Theorem 4.1 with V = U to conclude the proof.

Remark 4.2. Inequalities (4.1), (4.3), and (4.5) mirror Cauchy’s interlacing in-
equalities (3.3). But the upper bounds on μi by (4.1) and (4.5) are more complicated.
The following example shows that the factor [cos∠(U ,V)]−1, in general, cannot be
removed. Consider

K =

[
α2

β2

]
, M = I2, U =

[
0
1

]
, V =

[
t
1

]
,

where 0 < α < β and t = tan∠(U ,V). Then the positive eigenvalue of H
SR

is

μ1 =
√
UTKUV TMV = β

√
1 + t2 =

λ2

cos∠(U ,V) .

An application of (4.3) leads to α = λ1 ≤ μ1 ≤ λ1+4−2 = ∞, in which the
upper bound λ3 = ∞ does not provide any useful information. We suspect that√
min{κ(K), κ(M)} in (4.1) and (4.5) could be removed or at least be replaceable

by something that does not depend on the condition numbers, but we have no proof,
except for the special case as detailed in the following theorem.

Theorem 4.3. Under the assumptions of Theorem 4.1, if either U ⊆ MV when
M is definite or V ⊆ KU when K is definite, then

(4.6) λi ≤ μi ≤ λi+n−k for 1 ≤ i ≤ k.

Proof. We will prove (4.6), assuming M is definite and U ⊆ MV . Since M is
definite, dim(MV)⊥ = n−k, where (MV)⊥ is the orthogonal complement of MV . Let
V⊥ ∈ Rn×(n−k) be a basis matrix of (MV)⊥. Then V T

⊥ MV = 0 and also UTV⊥ = 0
because U ⊆MV . Let

UUU =
[
UW−1

1 ,MV⊥(V T
⊥ MV⊥)−1/2

]
, VVV =

[
VW−1

2 , V⊥(V T
⊥ MV⊥)−1/2

]
.

It can be verified that UUUTVVV = In (which implies VVV TUUU = In also) and

M̂
def
= VVV TMVVV =

[
W−T

2 V TMVW−1
2

In−k

]
.

Let K̂ = UUUTKUUU . Notice that

eig(K̂M̂) = eig(M̂1/2K̂M̂1/2) = {λ2
i , i = 1, 2, . . . , n},
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where eig(·) is the set of eigenvalues of a matrix. The k × k leading principal matrix

of M̂1/2K̂M̂1/2 is

(4.7) (W−T
2 V TMVW−1

2 )1/2(W−T
1 UTKUW−1

1 )(W−T
2 V TMVW−1

2 )1/2,

whose eigenvalues are μ2
i , i = 1, 2, . . . , k. Apply Cauchy’s interlacing inequalities to

M̂1/2K̂M̂1/2 and its k × k leading principal matrix (4.7) to get

λ2
i ≤ μ2

i ≤ λ2
i+n−k for 1 ≤ i ≤ k,

which yields (4.6).

5. Deflation. Deflation is a commonly used technique in solving eigenvalue
problems. The basic idea is to avoid computing these eigenpairs that have been
already computed to a prescribed accuracy, and it is accomplished by orthogonalizing
current vectors against all already converged eigenvectors. Return to the symmetric
eigenvalue problem for ΞΞΞ we discussed at the beginning of section 3. Denote by xi

(1 ≤ i ≤ m) the eigenvectors of ΞΞΞ corresponding to θi. We may assume xT
i xj = 0

for i �= j. In (3.1), if “min” is restricted to all x orthogonal to xi (1 ≤ i ≤ �),
then the minimum becomes θ�+1. Similarly, if U is restricted to those such that

UTxi = 0 (1 ≤ i ≤ �), then the minimum in (3.2) is
∑k

i=1 θ�+i, and (3.3) becomes
θ�+i ≤ μi ≤ θi+m−k. The next theorem gives similar results for H .

Theorem 5.1. Suppose that one of K, M ∈ Rn×n is definite. Denote by zi = [ yi

xi
]

(1 ≤ i ≤ �) the linear independent eigenvectors of H corresponding to eigenvalues λi,
respectively, where all xi, yi ∈ Rn. Set Y1 = (y1, y2, . . . , y�) and X1 = (x1, x2, . . . , x�).

1 We have

(5.1)

k∑
i=1

λ�+i =
1

2
inf

UTV =Ik
UTY1=0,V TX1=0

trace(UTKU + V TMV ).

Moreover, “inf” can be replaced by “min” if and only if λ�+1 > 0. If also
0 < λ�+1 and λ�+k < λ�+k+1, then for any U and V that attain the minimum,
{span(U), span(V )} is a pair of deflating subspaces of {K,M} corresponding
to the eigenvalues ±λ�+i (1 ≤ i ≤ k) of H.

2. Let U, V ∈ Rn×k such that UTV is nonsingular, UTY1 = 0 and V TX1 = 0.
Write W = UTV = WT

1 W2, where Wi ∈ Rk×k are nonsingular, and define
H

SR
by (2.13). Denote by ±μi (1 ≤ i ≤ k) the eigenvalues of H

SR
, where

0 ≤ μ1 ≤ · · · ≤ μk. Then

(5.2) λ�+i ≤ μi ≤
√
min{κ(K), κ(M)}
cos∠(U ,V) λi+n−k for 1 ≤ i ≤ k.

If also 0 < λ�+1 and λ�+k < λ�+k+1 and if λ�+i = μi for 1 ≤ i ≤ k, then
{span(U), span(V )} is a pair of deflating subspaces of {K,M} corresponding
to the eigenvalues ±λ�+i (1 ≤ i ≤ k) of H.

Proof. See Appendix C for the proof.

6. Concluding remarks. We have obtained new minimization principles and
Cauchy-like interlacing inequalities for the LR eigenvalue problem. Also obtained is
a structure-preserving projection H

SR
of H onto a pair of subspaces. The role of H

SR

for the LR eigenvalue problem (1.1) in many ways is the same as that of the Rayleigh
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quotient matrix for the symmetric eigenvalue problem. These new results mirror the
three well-known results for the eigenvalue problem of a real symmetric matrix. They
lay the foundation for our numerical investigation in the sequel to this paper [2], where
new efficient numerical methods will be devised for computing the first few smallest
eigenvalues with the positive sign and corresponding eigenvectors simultaneously.

Although, throughout this paper and its sequel, it is assumed that both K and
M are real matrices, all results are valid for Hermitian positive semidefinite K and
M with one of them being definite after minor changes: replacing all R by C and all
superscripts (·)T by complex conjugate transposes (·)H.

The second inequalities in Theorem 4.1 and Corollary 4.2 that mirror Cauchy’s
interlacing inequalities for the standard symmetric eigenvalue problem are not as
satisfactory as we would like. We demonstrated that the factor [cos∠(U ,V)]−1

is, in
general, not removable, but the factor

√
min{κ(K), κ(M)} could be an artifact of our

proof and thus might be removed. No proof has been found yet.

Appendix A. Proof of Theorem 3.2.
Lemma A.1. Let ωi ∈ R for 1 ≤ i ≤ n be arranged in ascending order, i.e.,

ω1 ≤ ω2 ≤ · · · ≤ ωn, and let αi ∈ R for 1 ≤ i ≤ n. Denote by α↓
i (i = 1, . . . , n) the

rearrangement of αi (i = 1, . . . , n) in descending order, i.e., α↓
1 ≥ · · · ≥ α↓

n. Then

(A.1)

n∑
i=1

ωiαi ≥
n∑

i=1

ωiα
↓
i .

If (A.1) is an equality and if αk > αk+1 and ωk < ωk+1 for some 1 ≤ k < n, then

(A.2) {α↓
j , j = 1, . . . , k} = {αj , j = 1, . . . , k},

i.e., αj , j = 1, . . . , k, give the largest k values among all αi’s.
Proof. Inequality (A.1) is well known. See, for example, [6, eq. (II.37) on p. 49].

We now prove (A.2), under the conditions that (A.1) is an equality, α↓
k > α↓

k+1, and
ωk < ωk+1. Suppose, to the contrary, that (A.2) did not hold. Then there would exist

�1 ≤ k and �2 > k such that α�1 = α↓
�2
,

j1 ≤ k and j2 > k such that α↓
j1

= αj2 .

Since

ω�1α�1 + ωj2αj2 − (ω�1αj2 + ωj2α�1) = (αj2 − α�1)(ωj2 − ω�1)

= (α↓
j1
− α↓

�2
)(ωj2 − ω�1)

≥ (α↓
k − α↓

k+1)(ωk+1 − ωk) > 0,

we have
n∑

i=1

ωiαi =
∑

i�=�1,j2

ωiαi + ω�1α�1 + ωj2αj2 >
∑

i�=�1,j2

ωiαi + ω�1αj2 + ωj2α�1 ≥
n∑

i=1

ωiα
↓
i ,

contradicting that (A.1) is an equality. This proves (A.2).
Lemma A.2. Let U ∈ Rn×k and Ω = diag(ω1, ω2, . . . , ωn), where ω1 ≤ ω2 ≤

· · · ≤ ωn. Then

(A.3) trace(UTΩU) ≥
k∑

i=1

σ2
i ωi,
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where σi (i = 1, . . . , k) are the k singular values of U in descending order, i.e., σ1 ≥
· · · ≥ σk ≥ 0. If (A.3) is an equality, ωk < ωk+1, and σk > 0, then U(k+1:n,:) = 0,
i.e., the last n− k rows of U are zeros.

Proof. Write αi = (UUT)(i,i), the ith diagonal entry of UUT. By Lemma A.1,

(A.4) trace(UTΩU) = trace(UUTΩ) =

n∑
i=1

ωiαi ≥
n∑

i=1

ωiα
↓
i ,

where α↓
i (i = 1, . . . , n) are defined as in Lemma A.1. Since UUT is symmetric positive

semidefinite, its diagonal entries, αi (i = 1, . . . , n), are majorized by its n eigenvalues,
σ2
i (i = 1, . . . , k) and σ2

i = 0 (i = k + 1, . . . , n) [6, eq. (II.14) on p. 35], meaning

(A.5) tj
def
=

j∑
i=1

α↓
j ≤ sj

def
=

j∑
i=1

σ2
i for 1 ≤ j ≤ n− 1, and tn = sn.

Therefore, by [16, Lemma 2.3],

(A.6)
n∑

i=1

ωiα
↓
i ≥

k∑
i=1

ωiσ
2
i ,

which, combined with (A.4), lead to (A.3). But in order to characterize those matrices
U that make (A.3) an equality, we need to look into when (A.6) becomes an equality.
To that end, we still have to give a proof of (A.6), despite [16, Lemma 2.3]. Let
t0 = s0 = 0. We have

n∑
i=1

ωiα
↓
i =

n∑
i=1

ωi(ti − ti−1) = ωntn +

n−1∑
i=1

(ωi − ωi+1)ti

≥ ωnsn +

n−1∑
i=1

(ωi − ωi+1)si(A.7)

=

n∑
i=1

ωiσ
2
i .

This is (A.6); note that σi = 0 for i > k.
Now if (A.3) is an equality and if ωk < ωk+1, then the equal sign in (A.7) must

hold, and thus tk = sk because ωk−ωk+1 < 0. It follows from σ2
i = 0 (i = k+1, . . . , n)

that tk = sk = · · · = sn = tn; so α↓
j = 0 for j > k by (A.5). Because (A.4) must be an

equality, α↓
k > 0 = α↓

k+1 (since σk > 0), and ωk < ωk+1, we conclude by Lemma A.1

that (A.2) holds, and thus αj = (UUT)(j,j) = 0 for j > k, which implies

(UUT)(i,j) = 0 for max{i, j} > k

because UUT is symmetric positive semidefinite. In particular,

U(k+1:n,:)U
T
(k+1:n,:) = (UUT)(k+1:n,k+1:n) = 0,

which implies U(k+1:n,:) = 0, as expected.
Proof of Theorem 3.2. Suppose that M is definite. The equations in (2.4) hold

for some nonsingular Y ∈ Rn×n and X = Y −T. We have by (2.4)

UTKU + V TMV = UTY Λ2Y TU + V TXXTV
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= ÛTΛ2Û + V̂ TV̂ ,(A.8)

where Û = Y TU and V̂ = XTV . It can be verified that ÛTV̂ = UTV and that the
correspondences between U and Û and between V and V̂ are one-one. Therefore,

(A.9) inf
UTV =Ik

trace(UTKU + V TMV ) = inf
ÛTV̂=Ik

trace(ÛTΛ2Û + V̂ TV̂ ).

For any given Û and V̂ , denote their singular values, respectively, by αi (i =
1, . . . , k) and βi (i = 1, . . . , k) in descending order. Then by Lemma A.2,

trace(ÛTΛ2Û + V̂ TV̂ ) ≥
k∑

i=1

α2
iλ

2
i +

k∑
i=1

β2
i(A.10)

=

k∑
i=1

(α2
i λ

2
i + β2

k−i+1)

≥ 2

k∑
i=1

αiβk−i+1λi(A.11)

≥ 2

k∑
i=1

λi.(A.12)

The last inequality holds because of [11, eq. (3.3.18) on p. 178], which says αiβk−i+1

is greater than or equal to the kth largest singular value of UTV = Ik, which is 1.
Combine (A.9) and (A.12) to get

(A.13)
1

2
inf

UTV=Ik
trace(UTKU + V TMV ) ≥

k∑
i=1

λi.

Now if all λi > 0 (i.e., K is also definite), then it can be seen that picking U and V
such that

Û =

⎡⎢⎣diag(λ
−1/2
1 , . . . , λ

−1/2
k )

0

⎤⎥⎦ , V̂ =

⎡⎢⎣diag(λ
1/2
1 , . . . , λ

1/2
k )

0

⎤⎥⎦
gives 1

2 trace(U
TKU + V TMV ) =

∑k
i=1 λi, which, together with (A.13), yield (3.10)

with “inf” replaced by “min.”
When K is singular, λ1 = 0 and (A.11) is always a strict inequality. So

(A.14)
1

2
trace(UTKU + V TMV ) >

k∑
i=1

λi for any UTV = Ik.

Suppose 0 = λ1 = · · · = λ� < λ�+1 ≤ · · · ≤ λk. We pick U and V such that

Û =

⎡⎢⎢⎢⎣
ε−1I�

diag(λ
−1/2
�+1 , . . . , λ

−1/2
k )

0

⎤⎥⎥⎥⎦ , V̂ =

⎡⎢⎢⎢⎣
εI�

diag(λ
1/2
�+1, . . . , λ

1/2
k )

0

⎤⎥⎥⎥⎦ .
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Then 1
2 trace(U

TKU +V TMV ) =
∑k

i=1 λi+ �ε2, which goes to
∑k

i=1 λi as ε→ 0. So
we have (3.10) by (A.14), and “inf” cannot be replaced by “min.”

Now suppose 0 < λ1 and λk < λk+1, and suppose that U and V attain the
minimum, i.e.,

1

2
trace(UTKU + V TMV ) =

k∑
i=1

λi.

For this to happen, all equal signs in (A.10), (A.11), and (A.12) must take place. For
the equality sign in (A.10) to take place, by Lemma A.2 we have Û(k+1:n,:) = 0. We
then partition

Û =

[
Û1

0

]
, V̂ =

[
V̂1

V̂2

]
, Û1, V̂1 ∈ R

k×k.

We claim V̂2 = 0, too. Here is why: For the equality sign in (A.12) to take place,
we have αiβk−i+1 = 1 for 1 ≤ i ≤ k. Now Ik = ÛTV̂ = ÛT

1 V̂1 implies αiγk−i+1 ≥ 1
[11, eq. (3.3.18) on p. 178], where γi (i = 1, . . . , k) are the singular values of V̂1 in
descending order. Since V̂ TV̂ = V̂ T

1 V̂1 + V̂ T
2 V̂2, we have γi ≤ βi for 1 ≤ i ≤ k and

thus

1 ≤ αiγk−i+1 ≤ αiβk−i+1 = 1,

which implies γi = βi for 1 ≤ i ≤ k. So V̂2 = 0. Now use U = XÛ and V = Y V̂
to conclude that {span(U), span(V )} is the pair of deflating subspaces of {K,M}
corresponding to the eigenvalues ±λi (1 ≤ i ≤ k) of H .

Remark A.1. The first part of Theorem 3.2, equation (3.10), for the case when
both K and M are definite has a quick proof upon using the results of Kovač-Striko
and Veselić [14]. Recall the equivalence between the eigenvalue problem (1.1) and the
one for (1.14). Since BBB − λAAA is diagonalizable if both K and M are definite, we have
by Theorem 3.1 and Corollary 3.3 of [14] that

k∑
i=1

λi = min
ZTAAAZ=Ik

trace(ZTBBBZ).

Write Z = [ V̂Û ], where U, V ∈ Rn×k, to get

k∑
i=1

λi = min
UTV +V TU=Ik

trace(UTKU + V TMV )(A.15)

=
1

2
min

UTV +V TU=2Ik
trace(UTKU + V TMV )(A.16)

≤ 1

2
min

UTV =Ik
trace(UTKU + V TMV ).(A.17)

The equal sign in (A.16) is due to scaling both U and V by 1/
√
2, and the inequality

(A.17) is due to {(U, V ) : UTV = Ik} ⊆ {(U, V ) : UTV + V TU = 2Ik}. Finally,
we notice that the equal sign in (A.17) is attainable using Theorem 2.3. This gives
(3.10) for the case when both K and M are definite. While this does seem to provide
a short and quick proof of (3.10) for the definite case, we point out that the argument
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in [14] that leads to (A.15) is nontrivial and lengthy (no shorter than ours that leads
to the complete proof of Theorem 3.2).

Appendix B. Proof of Theorem 4.1. Assume that M is definite. Without
loss of generality, we may simply assume UTV = Ik and W1 = W2 = Ik; otherwise
substitutions

U ← UW−1
1 , V ← VW−1

2 , Ik ←W1, Ik ←W2

will give new U and V with UTV = Ik and at the same time the same H
SR
.

The equations in (2.4) hold for some nonsingular Y ∈ Rn×n and X = Y −T. Then

UTKU = UTY Λ2Y TU = ÛTΛ2Û ,(B.1a)

V TMV = V TXXTV = V̂ TV̂ ,(B.1b)

where Û = Y TU and V̂ = XTV . Still ÛTV̂ = UTV = Ik. Decompose V̂ as

(B.2) Ṽ
def
= QTV̂ =

[
Ṽ1

0

]
, QTQ = In, Ṽ1 nonsingular.

This can be proved, for example, using the SVD of V̂ . Then V̂ TV̂ = Ṽ T
1 Ṽ1. Partition

(B.3) Ũ
def
= QTÛ =

[
Ũ1

Ũ2

]
, Ũ1 ∈ R

k×k.

Then ÛTV̂ = (QTÛ)TQTV̂ = ŨT
1 Ṽ1 = Ik, which implies ŨT

1 = Ṽ −1
1 . Set

(B.4) A = QTΛ2Q, E = Ũ2Ṽ
T
1

to get

(B.5) ÛTΛ2Û = ŨTAŨ, Ũ Ṽ T
1 =

[
Ik
E

]
.

By Theorem 2.1, μ2
i (1 ≤ i ≤ k) are all the eigenvalues of

(B.6) (UTKU)(V TMV ) = (ÛTΛ2Û)(V̂ TV̂ ) = (ŨTAŨ)(Ṽ T
1 Ṽ1),

whose eigenvalues are the same as Ṽ1(Ũ
TAŨ)Ṽ T

1 , a real symmetric positive semi-
definite matrix. Set

P = Ũ Ṽ T
1 (Ik + ETE)−1/2.

Then PTP = Ik by (B.5). Denote by νi (1 ≤ i ≤ k) the eigenvalues of PTAP in
ascending order. We have

(B.7) λ2
i ≤ νi ≤ λ2

i+n−k for 1 ≤ i ≤ k

by Cauchy’s interlacing theorem [26, 30]. For any û ∈ Rk, letting u = (Ik+ETE)1/2û
gives

(B.8) (1 + ‖E‖22)
uT(PTAP )u

uTu
≥

ûT
[
Ṽ1(Ũ

TAŨ)Ṽ T
1

]
û

ûTû
≥ uT(PTAP )u

uTu
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since

ûTû ≤ uTu = ûTû+ ûTETEû ≤ (1 + ‖E‖22)ûTû.

Denote by Ûi and Ui subspaces of Rk of dimension i. Using the Courant–Fisher
min-max principle (see [26, p. 206], [30, p. 201]), we have

μ2
i = min

Ûi

max
û∈Ûi

ûT
[
Ṽ1(Ũ

TAŨ)Ṽ T
1

]
û

ûTû

≥ min
Ui=(Ik+ETE)1/2Ûi

max
u∈Ui

uT(PTAP )u

uTu
(by (B.8))

= min
Ui

max
u∈Ui

uT(PTAP )u

uTu

= νi ≥ λ2
i , (by (B.7))

and

μ2
i ≤ (1 + ‖E‖22) min

Ui=(Ik+ETE)1/2Ûi

max
u∈Ui

uT(PTAP )u

uTu
(by (B.8))

= (1 + ‖E‖22) νi
≤ (1 + ‖E‖22)λ2

i+n−k. (by (B.7))

It remains to bound 1 + ‖E‖22. We have from (B.2)–(B.5) that√
1 + ‖E‖22 = ‖Ũ Ṽ T

1 ‖2 ≤ ‖Ũ‖2‖Ṽ T
1 ‖2 = ‖Û‖2‖V̂ ‖2

= ‖Y TU‖2‖XTV ‖2 ≤ ‖Y T‖2‖Y −1‖2‖U‖2‖V ‖2
=
√
κ(M) ‖U‖2‖V ‖2.(B.9)

In Theorem 2.9, we proved that the eigenvalues of H
SR

do not change with respect to
the choices of basis matrices. Which means, in proving this theorem, we can use H

SR

constructed from different basis matrices for U and V . What we are going to do is
pick new U and V such that the right-hand side of (B.9) is√

κ(M)

cos∠(U ,V) .

To this end, we compute QR decompositions

U = Q1R1, V = Q2R2,

where Q1, Q2 ∈ Rn×k have orthonormal columns. By [30, Theorem 5.2 on p. 40],
there are orthogonal matrices P ∈ Rn×n and S1, S2 ∈ Rk×k such that

PQ1S1 =

⎡⎣
k

k I
k 0

n−2k 0

⎤⎦, PQ2S2 =

⎡⎣
k

k Γ
k Σ

n−2k 0

⎤⎦ if 2k ≤ n,

(B.10a)
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PQ1S1 =

⎡⎣
n−k 2k−n

n−k I 0
2k−n 0 I
n−k 0 0

⎤⎦, PQ2S2 =

⎡⎣
n−k 2k−n

n−k Γ 0
2k−n 0 I
n−k Σ 0

⎤⎦ if 2k > n,

(B.10b)

where Γ = diag(γ1, . . . , γ�) and Σ = diag(σ1, . . . , σ�), � = k or n − k, all γi, σi ≥ 0
and γ2

i + σ2
i = 1. With (B.10), we pick new U and V to be

PT

⎡⎣Γ−1

0
0

⎤⎦ , PT

⎡⎣ΓΣ
0

⎤⎦ if 2k ≤ n,

PT

⎡⎣Γ−1 0
0 I2n−k

0 0

⎤⎦ , PT

⎡⎣Γ 0
0 I2n−k

Σ 0

⎤⎦ if 2k > n,

respectively. These new U and V span the same space as the old U and V and satisfy
UTV = Ik and ‖U‖2‖V ‖2 = [cos∠(U ,V)]−1

. The proof of (4.1) is completed for the
case when M is definite.

Now if λk < λk+1 and λi = μi for all i = 1, 2, . . . , k, then νi = λ2
i for all

i = 1, 2, . . . , k since μ2
i ≥ νi ≥ λ2

i . In particular, trace(PTAP ) =
∑k

i=1 λ
2
i . Apply [16,

Theorem 2.2] or [13, Theorem 4] on −A = QT(−Λ2)Q to conclude that (QP )(1:k,:) is
orthogonal and (QP )(k+1:n,:) = 0. Write

Û =

[
Û1

Û2

]
, V̂ =

[
V̂1

V̂2

]
, Û1, V̂1 ∈ R

k×k, Λ2
1 = diag(λ2

1, . . . , λ
2
k).

Since QP = Û Ṽ T
1 (Ik + ETE)−1/2 by (B.3), we conclude that Û2 = 0 and thus

U = span(X(1:k,:)). Use ÛTV̂ = Ik to get ÛT
1 V̂1 = Ik or, equivalently, ÛT

1 = V̂ −1
1 .

Note, by (B.6), that

(UTKU)(V TMV ) = ÛT
1 Λ2

1Û1V̂
TV̂ ,

which has the same eigenvalues as Λ2
1Û1V̂

TV̂ ÛT
1 , which has the same eigenvalues as

Λ1Û1V̂
TV̂ ÛT

1 Λ1 = Λ2
1 + Λ1Û1V̂

T
2 V̂2Û

T
1 Λ1.

Since by assumption the eigenvalues of (UTKU)(V TMV ) are λ2
i (1 ≤ i ≤ k), we have

k∑
i=1

λ2
i = trace(Λ2

1 + Λ1Û1V̂
T
2 V̂2Û

T
1 Λ1) =

k∑
i=1

λ2
i + trace(Λ1Û1V̂

T
2 V̂2Û

T
1 Λ1),

which implies trace(Λ1Û1V̂
T
2 V̂2Û

T
1 Λ1) = 0, and thus if λ1 > 0, then V̂2Û

T
1 = 0 ⇒

V̂2 = 0. Therefore,

U = XÛ = X(1:k,:)Û1, V = Y V̂ = Y(1:k,:)V̂1,

as expected.

Appendix C. Proof of Theorem 5.1. The equations in (2.4) hold for some
nonsingular Y ∈ Rn×n and X = Y −T. Since the columns of Z = [Y Λ

X ] are the eigen-

vectors of H corresponding to λi (i = 1, 2, . . . , n) and the eigenvectors corresponding
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to a multiple λi can be picked as any 〈·, ·〉I -orthogonal basis vectors of the associated
invariant subspace, we may assume that zi is parallel to Z(:,i), the ith column of Z.

Now for any UTX1 = 0 and V TY1 = 0, ÛTΛ2Û and V̂ TV̂ in (A.8) and (B.1) become

ÛTΛ2Û = ÛT
2 Λ2

2Û2, V̂ TV̂ = V̂ T
2 V̂2,

where

Û =

[
� 0

n−� Û2

]
, V̂ =

[
� 0

n−� V̂2

]
, Λ2 = diag(λ�+1, . . . , λn).

The rest of the proof is the same as the corresponding parts in the proofs of Theo-
rems 3.2 and 4.1.
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