Structured Orthogonal Inversion
of Block p-Cyclic Matrices on Multicores
with GPU Accelerators*

Sergiy Gogolenko!, Zhaojun Bai?, and Richard Scalettar?

! Donetsk National Technical University, Donetsk, 83001, Ukraine
sergiy.gogolenko@gmail.com
2 University of California, Davis, CA 95616, USA
{bai@cs,scalettar@physics}@ucdavis.edu

Abstract. We present a block structured orthogonal factorization
(BSOF) algorithm and its parallelization for computing the inversion of
block p-cyclic matrices. We aim at the high performance on multicores
with GPU accelerators. We provide a quantitative performance model
for optimal host-device load balance, and validate the model through nu-
merical tests. Benchmarking results show that the parallel BSOF based
inversion algorithm attains up to 90% of DGEMM performance on hybrid
CPU+GPU systems.

Keywords: p-cyclic matrix, matrix inversion, structured orthogonal
factorization, performance modelling, GPU acceleration.

1 Introduction

Since the pioneering works of Varga, Young, Romanovsky, and others in the

1950s, p-cyclic matrices have been found to be a very useful class of struc-

tured matrices with applications in numerical methods for differential equations,

Markov chain modeling and quantum Monte Carlo simulations. The concept of

block p-cyclic matrices in its modern term refers to matrices which can be trans-

formed to the following normalized block p-cyclic form by row and/or column
permutations:
Ay B,
Bl A2
H=| B24s (1)
B,1 A,

* This work was supported by the National Science Foundation under grant NSF-
PHY-1005503. SG would like to thank the Fulbright Program Office in Ukraine
and the Institute of International Education for financial support during this study.
This research used resources of the National Energy Research Scientific Computing

Center, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 524-535, 2014.
© Springer International Publishing Switzerland 2014

BSOI on Multicores with GPUs 525

where A; and B; are non-zero blocks. For the sake of simplicity, in this paper,
we are concerned entirely with the normalized block p-cyclic matrices, and fur-
thermore, we assume that A; and B; are n-by-n square blocks, although in some
applications A; and B; are rectangular. The fact that we discuss only matrices
with the square blocks A; and B; does not limit the generality of approaches
presented in this paper.

The early studies of p-cyclic matrices were closely related to numerical solu-
tion of differential equations [3,9,10]. In these applications, the p-cyclic matrices
are also referred to as bordered almost block diagonal (BABD) matrices. An
incomplete list of BABD-based numerical algorithms includes multiple shooting
and finite difference schemes for two-point boundary value problems (BVPs), or-
thogonal spline collocation methods for separable elliptic BVPs, method of lines
and Keller’s box scheme for various initial BVPs [3,9]. The p-cyclic matrices also
appear in Markov chain modeling, where the p-cyclic stochastic matrices rep-
resent infinitesimal generators of continuous-time Markov chains with periodic
transition graphs for queuing networks and stochastic Petri nets [2]. In quan-
tum Monte Carlo (QMC) simulations of Hubbard models for strongly correlated
materials, the inverses of p-cyclic matrices, referred to as Green’s functions, are
required to be repeatedly computed ezplicitly for physical observables (see [1,6]
and references therein). Other sources of applications of p-cyclic matrices include
some linear least-square problems and parameter estimation with non-linear dif-
ferential algebraic equations (DAE) models.

In contrast to the subject of solving block p-cyclic linear systems, where we
observe tremendous progress over the last six decades, the problem of computing
p-cyclic matrix inversion explicitly remains in a state of infancy. The recent
advances are mainly related to computing some particular blocks in the inverse
of a p-cyclic matrix using well-known explicit expressions [1]. For instance, the
paper [6] addresses stabilized algorithms for calculation of diagonal blocks of
the inverse of block p-cyclic matrices. To the best of our knowledge, there is no
previous work focused on numerical algorithms for the entire inversion of block
p-cyclic matrices, which is required for time-dependent physical measurements
in the quantum Monte Carlo simulation [1]. Filling this gap is the main purpose
of our paper.

In this paper, we pay particular attention to algorithmic solutions designed
specifically for high performance computing on GPU accelerated multicore sys-
tems. We should point out that numerical libraries for GPGPU computing, in-
cluding widely used CUSPARSE, CULA, PARALUTION, and CUSP, do not
support inversion of structured matrices. Furthermore, solvers in dense linear
algebra libraries for GPUs such as CUBLAS, MaGMA [7], and CULA, do not
implement mechanisms for avoiding redundant computations with zero-blocks.

2 Previous Work

Historically, the studies of p-cyclic matrices were primarily focused on iterative
and direct methods for p-cyclic linear systems. The vast literature on iterative

526 S. Gogolenko, Z. Bai, and R. Scalettar

methods covers in detail successive overrelaxation, aggregation and disaggrega-
tion, Chebyshev semi-iterative, and Krylov subspace methods [2]. On the other
hand, the attention to the direct solvers is also remarkable. Researchers explored
numerous variations of Gaussian elimination and orthogonal factorization ap-
proaches for solving p-cyclic systems. There is a large volume of literature on
Gaussian elimination dealing with a special case of p-cyclic systems, called al-
most block diagonal (ABD) systems [9]. Nevertheless, while handling the ABD
systems successfully, Gaussian elimination processes could fail in more general
cases of p-cyclic systems. In fact, in [10], it is shown that the Gaussian elimi-
nation with row partial pivoting produces exponential error growth for p-cyclic
systems arising from multiple shooting for some linear BVPs with mixed two-
point boundary conditions. There is a number of approaches that enlarge the
class of linear systems for which numerical stability is ensured, such as certain
forms of pre-scaling and replacing row-by-row pivoting with more accurate panel
pivoting strategies. In the recent paper [5] Khabou et al. propose to use a panel
rank-revealing pivoting strategy based on strong rank revealing QR, which sig-
nificantly reduces the growth factor, and thus results in practical stability of
Gaussian elimination in most cases.

Due to numerical stability issues of Gaussian elimination algorithms, Wright
proposed to use a structured orthogonal factorization (SOF) [9]. He described a
serial and two parallel block SOF algorithms. The first parallel algorithm uses
the recursive factorization process similar to cyclic reduction, whereas the second
one factorizes p-cyclic matrix in two steps, at first splitting the entire matrix in
parts and factorizing these parts concurrently, and then performing factorization
of the reduced p-cyclic matrix formed from border blocks of the parts factorized
in the previous step. A proof of the stability of SOF is presented in [9].

3 Basic Algorithms

This section gives a brief overview of an algorithm for structure-exploiting or-
thogonal inversion of block p-cyclic matrices. It is referred to as BSOFI. For
more details of the BSOFI and its modifications such as blocking and batching,
we refer readers to our technical report [4].

The algorithmic framework of BSOFI is composed of three phases. The first
one is the block SOF of H: H = QR. Once factors Q and R are computed,
the inverse is calculated by the identity H~! = R7'Q” in two phases, namely
inversion of the factor R and applying the transpose of the factor Q.

Block structured orthogonal factorization (BSOF) is a block structured QR
factorization algorithm introduced in [9], and has an identical complexity to the
best known block structured Gaussian elimination based algorithms. The essence
of this algorithm is in transformation of the matrix H through a sequence of p—1
block row updates (Fig. 1).

BSOI on Multicores with GPUs 527

Data: H, n, p
Result: R, {Q"™[1 <k <p—1}

1 R« O; A; + A1 ; By « By;

2 for k€ {1,2,....,p— 2} do
3 Compute regular QR: Q(k) {ng} = [gk},
k
R k41 Rk,p:| w\T { 0 Bk]
4 p . — ;
l:Ak+1 Byt (Q) Ary1 O

5 Compute the QR: Q(Pfl) {RP*S’P* R]I%;:P] - {gpf ipfl];
3 P— D,p

Fig. 1. BSOF — Wright’s serial version of SOF algorithm

This reduction process results in the factorization H = @QR, where @ is a
product of the orthogonal 2n-by-2n matrices Q(*) extended by identity blocks:

p—1 p—1 Q(k) (k)
Q = H Qk? = H In(kfl) 3 Q(k) @ In(p7k71)7 Q(k) = [%]i) %lg)‘|)
k=1 k=1 Qa1 @2
and R has block upper bidiagonal form with full last block column:
Ri1 Ry Ry
Roo Ros Ry)
Ry 1p-1 Rp1p

Rpp

Inversion of matriz R via block back substitution is the second phase. The
inverse X = R~! is block upper triangular, and its non-zero blocks can be
computed via block back substitution (BBS). We obtain a row version of the
BBS Fig. 2a by taking into account the zero-blocks of R, while solving the matrix
equation RX = I for X. Likewise, the column version of the BBS algorithm is
based on solving XR = 1.

Both versions of the BBS have their virtues and flaws. The columnwise BBS
requires two times more floating point operations (flops) compared to its row
version. On the other hand, we are able to perform SOF and the column version
in parallel, which overcomes lack of parallelism in the factorization phase (see
Fig.1). In contrast, the latter is impossible in the row version.

Applying the orthogonal factor QT to R™' is the last phase. Due to the or-
thogonality of Q*), the inverse of Q is equal to

p—1 p—1 T
Ql=Q" = [[@" s = [[Tnrsn @ Q") &Ly @)
k=1 k=1

! Batched denotes group of kernels that can be implemented in a single batched run.

528 S. Gogolenko, Z. Bai, and R. Scalettar

Data: R, n, p Data: R, n, p
Result: X Result: X
1 X« O; 1 X« O;
2 Xp72:p,p721p < R;}z:p’p,21p§ 2 Batched ;=3 {ij +— R;jl};
3 Batched ;=1.p—3 {Xn — R;l} ; 3 Batched j=3.p-1
4 Xip-3p ¢ Rip-3pXpp ; {Xj-15 + —Rj-1;X55};
5 Batched i=1:p-3 4 Xi21:2 R;;m; Xip + X11X1,p;
{Xip « —XiiRip, 5 for j € {3,...,p—1} do
Xiyifl <~ —XiiRi,i+1 } 5 6 Batched {Xl;jij — AX1;J'71J‘71.XJ'J'7
6 foric{p—3,p—4,..,1} do Xijo1p ¢
7 §’m’+2?7) <_X ¥ Xijo1p+Xij1-1Rj-1,p}
.o . + .o
8 Xl.yl.+2 Z:_ X_ZTHIX_HITHQ. P 7 Xlipflyp A Xl:pflyp + Xl:pflyplepfl,m
1,541 1,04+ 1Ni+1,441, 8 Xl:pfl,p P _Rlzpfl,po,zﬂ

(a) BSTRIRV — Row Version of the BBS (b) BSTRI_CV — Column Version of the BBS

Fig. 2. Inversion of matrix R via block back substitution®

Data: X, {Q®1<k<p—1},n,p Data: X1 xkt1, Q®), n, p
Result: X Result: X1.p k41
1 forke{p—1,p—2,..,1} do 1 Wikt ktt & Xk Q7
2 L Xl:p,k;k+1 — Xl;p,k;k+1Q(k>T 2 Wk+21p,k=k+l <~ Xk+21p,k=k+lQ§}:€2),€;
3 Xipkkt1 & W;
(a) BSOI — Update X via applying Q" (b) BSOI_Qk — Applying QF

Fig. 3. Applying the orthogonal factors (Householder reflectors) to R™!

Thus, computing product R~'Q” is equivalent to applying Householder reflec-

tors of (Q(k))T to the pairs of column panels of R~! from right in a backward
order, as shown in Fig. 3a. This is the gist of the last phase of BSOFI.

If matrices Q*) are given in an explicit form, we benefit from the upper
triangular structure of matrix R~ by means of replacing line 2 in Fig. 3a by the
algorithm BSOI_Qk from Fig.3b. This simple modification reduces the number
of flops in the algorithm shown in Fig. 3a from 8n3p(p — 1) to 2n3(3p? —p — 4).
Note that complete reconstruction of matrices Q¥ from Householder reflectors
requires O(n3p) extra flops.

Computational complexity of the BSOFI algorithms is shown in Table 1. If
BSTRI RV is used, the total flops is ©(7TnN?), where N = nxp. This is roughly
just two times more than the minimum flops count @(ZnN?) for the unstable
Gaussian elimination based inversion without pivoting.

2 The lower order terms are omitted for the sake of simplicity. More accurate formulae
are presented in [4].

BSOI on Multicores with GPUs 529

Table 1. Operation counts for the three phases of BSOFI algorithm?

Phase|Routine | Additions | Multiplications | Total Flops
I|BSOF in* (46np — 60n + 15p)|In” (46np — 60n + 39p)[+n” (46np — 60n + 27p)
IIBSTRIRV| In®(3p”+7p—21) | In®(3p° +7p—21) [In® (3p° +7p—21)
BSTRICV| zn’ (6p° —11p+12) | zn’ (6p” —11p+12) | 20’ (6p” — 11p + 12)
I1I|BSOI n?p (3np — 2n + p) n’p (3np — 2n + p) 2n°p (3np — 2n + p)

4 Parallel Implementation on Multicore with GPU
Accelerators

Parallel “host-device” BSOFI algorithm. We design our parallel “host-device”
algorithm in a way to maximally benefit through extensive use of well optimized
vendor-specific linear algebra kernels. The latter implies paying attention to the
limited choice of batched linear algebra kernels for GPUs and the diversity in
the kernel’s performance on throughput and latency oriented processors.

Specifically, our design is inspired by the following well-known observation.
The performance efficiency highly varies for different numerical kernels, and the
matrix-matrix multiplication routine DGEMM tends to be the most efficient among
other BLAS/LAPACK kernels. Furthermore, performance gaps between DGEMM
and other kernels are usually much lower for latency oriented processors com-
pared to the throughput oriented ones. At the same time, in both cases, the
gaps become smaller as the size of the problems grows. Hence, to attain bet-
ter performance of hybrid CPU+GPU algorithm, it is preferable to exploit the
throughput oriented GPU accelerators only for DGEMM and, conversely, to use the
latency oriented CPUs for the whole variety of required kernels. In addition, such
work distribution strategy avoids those LAPACK kernels for GPU platforms,
which require CPU resources, and thus may interfere with pure CPU kernels
executed in parallel. Specifically, following the recipes given in [8], QR factor-
ization routines from the state-of-the-art LAPACK API implementations for
GPUs, such as MAGMA [7] and CULA, usually use an approach, where column
panels are factorized on CPU and afterwards sent to GPU for trailing matrix
update.

Since a vast part of computations in the BSOFT is spent on DGEMM, this al-
gorithm has a great potential to be reorganized in accordance with the work
distribution strategy discussed above. The necessary modifications are sketched
in Fig.4. To overcome the lack of parallelism and DGEMM operations in the fac-
torization phase, we modify the basic BSOFI algorithm by merging the first two
phases — factorization of H and inversion of factor R — in a single factoriza-
tion/inversion algorithm BSOFTRI. Hence, in the BSOFTRI, factorization is a part
of computation process which utilizes both host and devices in parallel.

The merged factorization/inversion phase consists of three steps. At the first
step, we perform partial factorization of input p-cyclic matrix H on the host,
where we run lp loop iterations of BSOF algorithm (see Fig.1). This step is

530 S. Gogolenko, Z. Bai, and R. Scalettar

T
L

\ i ‘
L. CPy .. | — GRU(s)_______. !

Step 1 l Partial factorization of A H .
L I

Step 2 l Completing factorization of A I l Partial inversion of R via column version of BBS I:
i |

Step 3 l Completing inversion of R via row version of BBS I:
I

I

|
l Applying Householder reflectors I

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - --—----------------"-"---.

BSOI| BSOFTRI

Fig. 4. Framework of the BSOFI adopted to execution on hybrid CPU4+GPU platforms

aimed at preparing columns of R for further inversion and avoiding idles re-
lated to synchronizing concurrent threads in the next step. Since the optimal
number of iterations [is usually relatively small, this step does not influence
the overall performance of the algorithm much. At the second step, we fork the
computational process on two asynchronous threads. The first thread completes
factorization on CPU, whereas the second one computes upper left corner of ma-
trix R~! performing iterations of the column-wise inversion algorithm BSTRI_CV
(see Fig.2b). Once the SOF is completed, we join both threads and proceed to
the third step, where we continue computing R~! via row version of the BBS
algorithm BSTRI RV (see Fig.2a) omitting treatment of the jr already inverted
blocks columns of R~!. Switching from column-wise to row-wise inversion algo-
rithm reduces computational complexity of BSOFTRI compared to the algorithm
which uses only column version of BBS.

Depending on the ratio between multicores and device performance and the
value of p, we make a decision on the need for processing the last column panel
in BSOFTRI inversion thread. If device performance is insufficient to invert more
than first p — 2 column panels of R while H is factorizing, we postpone pro-
cessing the last column panel in order to avoid doubling of computational costs
introduced by the original column version of BBS shown in Fig. 2b (see table 1).

In order to minimize data transfers from host to device in BSOFTRI algorithm,
we employ devices in computing only those blocks of R~!, which correspond to
the zero blocks of R. The workload distribution between CPU and GPU(s) is
controlled by parameters [; and I; respectively as illustrated in Fig. 5a and 5b.

In the phase of applying Householder reflectors to R~!, we update block
column pairs by means of explicit reconstruction of matrices Q*) and the scheme
similar to the algorithm shown in Fig.3b. In this way, we replace DORMQR calls
for applying reflectors to column panels in favor of more efficient DGEMM calls
under the small computational overhead. The upper parts of block columns are
updated on the host, whereas devices are used to update lower parts. Since the
lower part of R~! has more zero blocks, this approach requires less data transfers
from CPU to GPUs. In order to avoid physical data transfers inside devices, we
store block columns of the input matrix W in the reversed order with respect to
the natural order of columns in matrix X. Namely, the (k + 1)th block column

3 White — zero blocks, light gray — input non-zero blocks, dark gray — blocks processed
(partially or fully) in the preceding iteration. Irrelevant zero blocks are omitted.

BSOI on Multicores with GPUs 531

Di*‘"’ Iul BN
N N N N I A
) (MR e W N
: : :E A-Ellrr% I’—lk+1D.1
IJ-D:lz CPU kHD-f . l‘
Banll A e L B
o 7\:> F———CPU——— = GPU(s) >I=™ *D.T. +|:|.75
-2 - & I p—i—li—2+ t——1L —> P—lp+1 - k+1 !
CRHY NgU U OoOo -
ON NH - BN N Omls oOmsl
(a) BSTRI_CV (b) BSTRI_.RV (c) BSOI_Qk, if (d) BSOI_Qk, if

lk+k<p e +k>p

Fig. 5. Workload distribution between host and device(s) while processing jth block
column and ith block row of R™! (a,b) and applying Q% to R™* (c,d)?

of X corresponds to W. ; and the kth block column of X corresponds to W, s.
Herewith we use the following equality to update column pairs on device

T
Xp—lk:p,k:k:—i-lQ(k)T = [prlk:p,qul prlk:p,k] [9?2))2 gk2)y1:| (4)

The workload distribution between host and device is controlled by I. If
I + k <p (Fig.5¢), then X,_;, .px = 0, and hence device does not require sub-
matrix Q§k2)1 to compute update according to (4). In contrast, if I + k > p
(Fig. 5¢c), whole matrix Q*) and non-zero blocks of kth column panel of X
should be sent from host to device for further processing. For more details on
the algorithm presented in this paragraph, see [4].

Performance modelling and load balancing. The parameters l;, 5, I and Ip
introduced in the previous paragraph, control workload distribution between
host and devices, and play a crucial role in performance tuning. The following
text is an excerpt of results related to choosing above-mentioned parameters and
performance modelling. These results are based on the following assumptions:
(i) the elapsed time for multiplying mn-by-n and kn-by-n matrices is nearly mk
times more than the wall time for computing the product of two n-by-n matrices;
(ii) the performance of numerical kernel is roughly proportional to the number
of CPU cores utilized in its computing. These assumptions are consistent with
benchmarking results for moderate and large values of n [4]. For more details
and derivation of formulae, we refer to [4].

The formulae presented below use the following notation for time measures.
Ti(ey denotes the wall time for BLAS and LAPACK routines R with a tuple of
parameters P on the computational resource CPU or GPU, respectively. E.g.,
Toeemum, a0 15 an elapsed time for computing a product of m-by-k and k-by-n
matrices by means of the routine DGEMM on the CPU. We alias the routines for
copying rectangular matrices to and from GPU with SET and GET respectively.
We use braces if these data exchange operations can be executed algorithmi-
cally in parallel with some numerical kernel(s). L.e., {7t n.nys Totra,m) 15

532 S. Gogolenko, Z. Bai, and R. Scalettar

equal to max{T5 . o oy Tearca. o J if cOPying is asynchronous and implemented
via cublasGetMatrixAsync, and Tiipwy o oy + Tearca, if Synchronous routine
cublasGetMatrix is used.

The optimal values of the parameters [;, l;, and [; correspond to the situa-
tion if the elapsed time of processing assigned kernels on both host and devices
are roughly the same in each iteration. These conditions result in the following

approximations

1
lim———(j+¢ l; ~ —min{?, jrt+1+¢ 5
J 1+/€C(] J)v 7 1+’£R(p {7.]F} 1)7 ()
) koD — 2 — ¢,
p+k+2+4+c,—c)), if < DL 2 G
L~ 1+ KQ KQ + 2
e (r+ 22— k) 4142 —). ifk> L2 o
—~(p— /2 —¢ i — =
T+rg VT 2P k k) ko +2
where
Ko = {TDgGl;leVIlM(n,n,n)) TGgEI;'l(ln,n) ci = 2TDCTI})11';RI(11) + 2TDCT%§IM(n,n) -1 > l
Tl;:GI;Z‘leM(n,n,n) (1 + 77) n 2T];:GI])EZ‘;M(n,n,n) 67
KR = {TDgG%;M(n,n,n) ’ T(;gEI;‘zn,n) = 2T[;:TP;.‘1J"RI(I1) + 311[;:Tl;;ll’lub’l(n,n) —2> _1
’ Tl)CGI])':leVlIM(n,n,n) T 2Tl)CGI])':leVIIM(n,n,n) 37
Ko = {TDgGl;leVIlMQ*n,n,n) U TGg]':Zl;‘l(ln,n) C;c _ Tl)CUI])Il(;QR(2*n,2*n,n) —2> 1 CZ _ TSg]':Zl;‘l(ln,n)
- cpu) - cpu) - cpu)
TDGI?EMM(Z*n,n,n) TDG%MMQ*n,n,n) 3 TDGI?EMM(Z*n,n,n)

7 is a ratio between the number of cores involved in factorization of H and the
number of cores involved in inversion of R in the second step of BSOFTRI (e.g.,
the typical values of 7 for single hexa-core are 3:3,4:2, or 5: 1).

In order to reduce idle time related to the synchronization of parallel threads
in the merged factorization/inversion phase, the total elapsed time for inversion
of the first jr columns should be less than the elapsed time for performing jr—Ig
factorization steps. This condition leads to the following lower bound for /g

1 on 1 58F
Ip(0) > = —c; + —— [2 P —_— 7
r(8) = 3 <+ o (cj+c] 4) 261" (7)
where epu epu
- Togrqrr (2#n,m) T IporMarOR?, N7, 240,0,m)
ﬁF - 5Tcpu)

DGEMM(n,n,n)
0 = 1 if the last column panel inversion is postponed in the second step of
BSOFTRI, and § = 2 otherwise. The latter inequality usually holds true for some
2<Ilp<6.If =1, lF and jp are linked by expression

A, 1 n 1 ke .2 .
l =p—=|—1= 1+ 2¢; —4c; — 6 1) -3 10).
#lir) == 3 (o5 (T (3 + (4 26)ip — ey -) +1) =39+ 10)

Hence, postponed processing of the last column panel in the second step of
BSOFTRI makes sense only if [p(1) > [p(p—2) for minimal [which satisfies (7).

BSOI on Multicores with GPUs 533

Table 2. Performance model of parallel “host-device” BSOFI, where Metric 1 is the
number of flops on GPU, Metric 2 is the number of words CPU=GPU and Metric 3
is the number of messages CPU=GPU

Metric| BSOFTRI | BSOI

1 e (028 (14 222 (14 1)) 4o+ 14+ 20) [222 (3p + 1+ 26, — 4))
2 112:1%%(92%4_1)-%5-%2@—&—2@) %%?’:g—ﬁ

3 2p+2(2—5)9\/{§—5(1+$)(p—2)+25—12 2p—2

Results of the theoretical performance study are summarized in the table 2.
For the sake of simplicity, the lower order terms are neglected. 6 is a decreasing
function of [r. Its upper bound is 24/2. The lower bound on 8 is V3 if § = 1.

5 Experimental Results and Analysis

Ezxperimental setup. In order to examine our algorithmic solutions, we developed
codes for stand-alone CPU and GPU processing, as well as hybrid CPU+GPU
implementation. Our solvers receive p-cyclic matrix H in an unpacked form as
input, and replace it with its inverse H ! by performing in-place inversion.
The POSIX threads are used for threading in the second step of BSOFTRI.
For performance data presented below, the codes were compiled with ICC and
linked against CUBLAS, MAGMA, and Intel’s MKL library. Our codes are pub-
licly available from https://github.com/SGo-Go/BSOFI. The performance data
were collected on a 2-socket Intel Xeon X5670 coupled with NVIDIA GeForce
GTX480 GPU. Intel Xeon X5670 is a 6-core processor with 2.9GHz clock rate.
GTX480 is a CUDA-enabled NVIDIA GPU, which implements Fermi archi-
tecture, and has 15 streaming multiprocessors with 32 CUDA cores in each.
For multi-GPU studies, we used a multi-GPU Fermi node on the Dirac cluster,
housed at NERSC of Lawrence Berkeley National Laboratory. This node con-
tains 2 Intel 5530 2.4GHz Quad core Nehalem processors, and 4 C1060 NVIDIA
Tesla GPUs.

Performance tuning. In order to make our hybrid CPU+GPU codes architecture-
aware, we perform benchmarking of basic kernels used in the modified BSOFI
algorithm, evaluate parameters for (5)—(7), and embed their approximate mod-
els into the code. Our experiments have shown that parameters kg, k¢, and
kg depend dramatically on the block size n if n is small, and this dependence
can be sufficiently well approximated by the first order rational functions. We
obtain parameters of these rational functions by Gauss-Markov estimator. The
correction parameters ¢;, ¢;, ¢}, and ¢} are approximated by descending step-
wise functions of n. At first, we filter curves for these parameters received after

https://github.com/SGo-Go/BSOFI

534 S. Gogolenko, Z. Bai, and R. Scalettar

2_00 e n =128 A A n =256 m® =512
5 T T T T

I CPU (6 threads)

[|E3 CPU (12 threads)
200

_ || GPU
[|mEE CPU/GPU

Performance, GFlop/s

z
(=N
=
=)
I
=
Q
a
s
g
-
£
8
~

I I I I
32 %320 64 x160 100 x 102 256 x 40 512 x 20 1024 x 10 0 10000 20000 30000 40000 50000

N=nxP N=nxDP
(a) Performance of the CPU, GPU and hy- (b) Performance of the hybrid BSOFI
brid BSOFT codes codes

Fig. 6. Performance of BSOFI on a 2-socket Intel Xeon X5670 coupled with NVIDIA
GeForce GTX480 GPU

benchmarking, and afterwards round the filtered curves to the closest integers.
The same approach is used to build a step-wise approximation for parame-
ter lp.

Benchmarking results. To investigate the quality of exploiting structure by
BSOFT algorithm, we compare performance of our CPU implementation with
naive BLAS3 LU inversion and inversion by multifrontal sparse LU solvers from
UMFPACK. Benchmarking shows significant speed-up of BSOFI with respect to
LU inversion. We observe up to 22x speed-up if n x p < 104 and n > 32. The
general tendency is an increase of speed-up with a decrease of n.

Fig. 6a shows the performance of BSOFI codes on different platforms for NV =
10240. Hybrid implementation is up to 1.7x faster over the best of CPU and
GPU codes. Its peak performance is higher than peak performance of DGEMM on
CPU and is only 1.1x lower than the peak of DGEMM on GPU. Moreover, the
difference in performance in the interval 32 < n < 1024 does not exceed 1.5x
for our hybrid CPU+GPU implementation. Fig.6b compares the performance
of CPU+GPU codes for different sizes of p-cyclic matrices if n is fixed. If n
is large, performance of subroutine BSOI on the single GPU node is two times
more in the case of CPU+GPU implementation than in the case of pure CPU
implementation. At the same time, performance improvements for subroutine
BSOFTRI are less significant than for BSOI. If n 2 512, performance curves are
close to each other. This is a consequence of reaching maximum performance for
DGEMM on both CPU and GPU.

More benchmarking results on both single and multi-GPU platforms can be
found in [4].

BSOI on Multicores with GPUs 535

6 Conclusions and Further Directions

We presented serial and parallel algorithms for structured orthogonal inversion
of block p-cyclic matrices. We provided a performance model and discussed host-
device load balance. Finally, we developed and explored CPU, GPU and hybrid
CPU+GPU codes for in-place inversion of p-cyclic matrices. Benchmarking has
shown that our codes for multicores with GPU accelerators maintain sustain-
able performance for different values of problem size n, and attain up to 90%
of realistic peak performance in terms of the operation of the matrix-matrix
multiplication.

There are numerous ways to extend the results presented in this paper. Since
GPUs have a lot in common with Intel MIC architecture, it seems natural to
verify the approaches on multicores with MIC accelerators. Another promising
direction is in coupling of BSOFI with inversion based on explicit formulae. We
conclude by mentioning that the solutions proposed here can be extended to the
problems with other block structured matrices such as block upper Hessenberg
matrices. This leads us to believe that the BSOFI could be a vital substitute to
conventional Gaussian elimination based inversion for broader classes of block
structured matrices.

References

1. Bai, Z., Chen, W., Scalettar, R., Yamazaki, I.: Numerical methods for Quantum
Monte Carlo simulations of the Hubbard model. In: Hou, T.Y., Liu, C., Liu, J.G.
(eds.) Multi-Scale Phenomena in Complex Fluids. Contemporary Applied Mathe-
matics, ch. 1, vol. 12, pp. 1-100. World Scientific (2009)

2. Ernst, O.G.: Equivalent iterative methods for p-cyclic matrices. Numerical Algo-
rithms 25(1-4), 161-180 (2000)

3. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems.
STAM Review 46(1), 49-58 (2004)

4. Gogolenko, S., Bai, Z.: A structured orthogonal inversion of block p-cyclic matrices
on multicores with GPU accelerators. Tech. Rep. CSE-2013-78, CS Dept., UC Davis
(2013),
http://www.cs.ucdavis.edu/research/tech-reports/2012/CSE-2013-78.pdf

5. Khabou, A., Demmel, J., Grigori, L., Gu, M.: LU factorization with panel rank re-
vealing pivoting and its communication avoiding version. STAM J. Matrix Analysis
Applications 34(3), 1401-1429 (2013)

6. Tomas, A., Chang, C.C., Scalettar, R., Bai, Z.: Advancing large scale many-
body QMC simulations on GPU accelerated multicore systems. In: Proceedings
of IPDPSW 2012, pp. 308-319. IEEE, Washington, DC (2012)

7. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for
multicore with GPU accelerators. In: Proceedings of IPDPSW 2010, pp. 1-8. IEEE,
Atlanta (2010)

8. Volkov, V., Demmel, J.: LU, QR and Cholesky factorizations using vector capabil-
ities of GPUs. Tech. Rep. UCB/EECS-2008-49, EECS Dept., UC Berkeley (2008)

9. Wright, S.J.: Stable parallel algorithms for two-point boundary value problems.
SIAM J. Sci. Stat. Comput. 13(3), 742-764 (1992)

10. Wright, S.J.: A collection of problems for which Gaussian elimination with partial
pivoting is unstable. STAM J. Sci. Comput. 14(1), 231-238 (1993)

http://www.cs.ucdavis.edu/research/tech-reports/2012/CSE-2013-78.pdf

	Structured Orthogonal Inversion of Block p-Cyclic Matrices on Multicores with GPU Accelerators
	1 Introduction
	2 Previous Work
	3 Basic Algorithms
	4 Parallel Implementation on Multicore with GPU Accelerators
	5 Experimental Results and Analysis
	6 Conclusions and Further Directions

