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A METHOD FOR PROFILING THE DISTRIBUTION
OF EIGENVALUES USING THE AS METHOD

Kenta Senzaki, Hiroto Tadano, Tetsuya Sakurai and Zhaojun Bai

Abstract. This paper is concerned with solving large-scale eigenvalue prob-
lems by algebraic sub-structuring and contour integral. We combine Algebraic
Sub-structuring (AS) method and the Contour Integral Rayleigh-Ritz (CIRR)
method. The AS method calculates approximate eigenpairs fast and has been
shown to be efficient for vibration and acoustic analysis. However, the appli-
cation areas of this method have been limited because its accuracy is usually
lower than other methods. On the other hand, if the appropriate domains are
chosen, the CIRR method produces accurate solutions. However, it is difficult
to choose these domains without the information of eigenvalue distribution.
We propose a combination of AS and CIRR such as the AS method is used
as a method for profiling a distribution of eigenvalues, and the accurate solu-
tions are produced by the CIRR method using the information of eigenvalue
distribution provided by AS. We show our method is effective from the result
of applying this method to the molecular orbital calculations.

1. INTRODUCTION

Large-scale eigenvalue problems appear in engineering computations such as
vibration, structure, and acoustic analysis. A method for these problems has been
developed by Benighof et al., known as Automated Multi-Level Sub-structuring
(AMLS) method [1]. This method is a multi-level extension of a sub-structuring
method called component mode synthesis (CMS) [3] originally developed in the
1960s for solving eigenvalue problems arising from structure analysis. The AMLS
method has recently shown to be efficient for noise, vibration, and harshness (NVH)
analysis, in particular, large-scale finite element models of automobile bodies [12].
The frequency response analysis performed in these studies requires several thou-
sand eigenvalues and eigenvectors. It has been reported that the AMLS method is
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significantly faster than the shift-invert Lanczos (SIL) method commonly used in
structure engineering [11].

The term Algebraic Sub-structuring (AS) is used to refer to the process of
applying matrix reordering and partitioning algorithm to divide the large-scale sparse
matrix into smaller submatrices from which a subset of spectral components are
extracted and combined to form an approximate solution to the original eigenvalue
problem [10], and this term includes AMLS. Hence, we use the term AS in this
paper.

It is important to note that the accuracy of approximate solutions produced by the
AS method tends to be lower than the other methods because several submatrices are
ignored in AS process for speed up. There are several ways to improve the accuracy
of AS itself. These methods have been proposed in [6] to find other application of
AS.

In this paper, we improve the accuracy of approximate solutions produced by the
AS method using the Contour Integral Rayleigh-Ritz (CIRR) method, which is also
referred to as the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR)
[9, 18]. TheCIRRmethod is based on a root-finding methodfor an analytic function
[13]. This method finds eigenvalues and corresponding eigenvectors in a given
domain. The combination of the CIRR method and the blocking method proposed
in [8, 17] allows us to set the domain more flexibly with considerable accuracy.

If appropriate domains are determined, the CIRR method produces the highly
accurate solutions. However, it is difficult to estimate such domains in advance,
hence domains are determined empirically with knowledge of target problems in
practice. These empirically-determined domains often produce the less-accurate
solutions as a result of the CIRR method.

We show that a combination of the AS mehod and the CIRR method produces
highly accurate solutions. We profile a distribution of eigenvalues using the AS
method, and after that, the accurate solutions are calculated by the CIRR method
using the information of eigenvalue distribution provided by the AS method. In
the next section, we show a brief overview of the AS method. In section 3, we
show a brief overview of the CIRR method and propose the estimation method
of circular domains for the CIRR method. In section 4, we apply the proposed
method to a generalized eigenvalue problem which appears in molecular orbital
calculations, and show the effectiveness of the method from the results of some
numerical experiments.

2. THE AS METHOD

2.1. Single-Level Sub-structuring
We are concerned with the generalized eigenvalue problem

Ax = λBx,(1)
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where A∈Rn×n is symmetric and B∈Rn×n is symmetric positive definite. Let P

be a permutation matrix obtained by applying a matrix reorder and partitioning
algorithm such as the nested dissection (ND) algorithm [2] to the structure of the
matrix |A| + |B| (ignoring numerical cancellation), and let Ã and B̃ are permuted
matrices with P . The structures of Ã and B̃ are followed.

n1 n2 n3 n1 n2 n3

Ã=PTAP=

n1

n2

n3




A11 A13

A22 A23

AT
13 AT

23 A33


 , B̃=PTBP=

n1

n2

n3




B11 B13

B22 B23

BT
13 BT

23 B33


 .

The labels n1, n2, and n3 indicate the dimensions of the submatrix blocks, and
hold n1 + n2 + n3 = n.

We apply a block factorization

Ã = LDLT,

where

L =




In1

In2

AT
13A

−1
11 AT

23A
−1
22 In3


 , D =




Â11

Â22

Â33


 .

Ini is a ni ×ni identity matrix, Â11 = A11, Â22 = A22, and the last diagonal block
of D, often known as Schur complement, is defined by

Â33 = A33 − AT
13A

−1
11 A13 − AT

23A
−1
22 A23.

Let Â and B̂ be matrices applied a congruence transformation to matrices Ã and B̃

with the inverse of the lower triangle matrix L. Â and B̂ are defined as

Â = L−1ÃL−T = D, B̂ = L−1B̃L−T =




B̂11 B̂13

B̂22 B̂23

B̂T
13 B̂T

23 B̂33


 ,

where B̂11 = B11, B̂22 = B22, and the last diagonal block of B̂ satisfies

B̂33 = B33 −
2∑

i=1

(AT
i3A

−1
ii Bi3 + BT

i3A
−1
ii Ai3 − AT

i3A
−1
ii BiiA

−1
ii Ai3),

and the off-diagonal blocks satisfy

B̂i3 = Bi3 − BiiA
−1
ii Ai3, for i = 1, 2.
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The eigenvalues of (Â, B̂) are identical to those of (A, B), and corresponding
eigenvectors x̂ are related to the eigenvectors of the original problem (1) through
x̂ = LTx.

At the end phase of the AS algorithm, approximate eigenpairs are calculated
from projected matrix. Let S be a n × p matrix in the form of

k1 k2 k3

S =

n1

n2

n3




S1

S2

S3


 ,

where Si is a matrix which consists of ki selected eigenvectors of matrix pencil
(Âii, B̂ii), and labels k1, k2, and k3 hold k1 + k2 + k3 = p. We assume p � n.
The approximate eigenpairs are obtained by projecting the pencil (Â, B̂) to the
subspace spanned by S. The eigenvalues of the projected pencil (STAS, STBS)
are approximate to original eigenvalues, and corresponding eigenvectors q are related
to the eigenvectors of the original problem (1) through z = L−TSq. Note that the
method for decision of ki have been proposed in [7, 10].

Fig. 1. Separator trees generated by the ND ordering.

The Single-Level Sub-structuring algorithm can be extended to a Multi-Level
algorithm in a natural way using the recursive ND ordering. A matrix can be
partitioned into three submatrices with ND ordering. Their relation can be illustrated
by the graph in Figure 1(a). The stroked node shows the node before partitioning.
The nodes marked {1, 2} are independent of each other, and the node marked {3}
is a boundary part for node {1} and node {2}.

We can divide a matrix into a number of smaller substructures applying the
ND ordering recursively to the independent nodes such as {1, 2}. Figure 1(b) is
the separator tree generated by two-level dissection. Multi-Level Sub-structuring
method can be realized using the structure of the partitioned matrix.
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3. ESTIMATION OF CIRCULAR DOMAINS FOR THE CIRR METHOD

USING THE RESULT OF AS

3.1. The CIRR method

Contour Integral Rayleigh-Ritz method (CIRR) [9, 18] is a solver for large-scale
generalized eigenvalue problems. This method finds several eigenvalues located
inside given circles, and also calculates the corresponding eigenvectors. We show
the brief of this method below.

In this method, the Rayleigh-Ritz subspace Z ∈ Rn×M is provided by a contour
integral. Let Γ be a circle with radius ρ and centered at γ , and let λ1, λ2, . . . , λm

be m eigenvalues of the matrix pencil (A, B), which are supposed to be located
inside Γ. For a nonzero vector v ∈ Rn, we define

sk :=
1

2πi

∫
Γ

zk(zB − A)−1Bvdz, k = 0, 1, . . . , M − 1,(2)

with a complex parameter z. When M ≥ m and Z is the orthonormal basis of the
space spanned by {s0, s1, . . . , sM−1}, then m Ritz values are λ1, λ2, . . . , λm [18].
This implies that the eigenvalues inside Γ can be obtained by the contour integral.

By approximating the contour integral via the N -point trapezoidal rule, we
obtain the following approximation for sk:

sk ≈ ŝk :=
1
N

N−1∑
j=0

(
ωj − γ

ρ

)k+1

(ωjB − A)−1Bv, k = 0, 1, . . . , M − 1,(3)

where

ωj := γ + ρe
2πi
N

(j+ 1
2
), j = 0, 1, . . . , N − 1.(4)

Hence, computing ŝk is equivalent for solving N linear systems

(ωjB − A)yi = Bv, j = 0, 1, . . . , N − 1.(5)

Since ŝk suffer from the quadrature error which arises from eigenvalues located
outside the circle, we take the size of the subspace larger than the exact number of
the eigenvalues inside the circle. Thus we set, in practice,

Z ∈ span (ŝ0, ŝ1, . . . , ŝM−1) ,(6)

with M (> m), and this approach is efficient to decrease the influence of the
quadrature error.

A block variant of the method is proposed in [8, 17], which improves numerical
accuracy. In this method, a matrix V := [v1, . . . , vL] ∈ Rn×L is used instead of v
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in (5), where v1, . . . , vL are linearly independent, and positive value L is a block
size.

The CIRR method is appropriate for distributed computing environment because
not only each circular domain can be computed in parallel, but also ŝk can be
computed in parallel.

3.2. Initial guess of circular domains for the CIRR method

Fig. 2. Circular domains of the CIRR method. (bullet • on the real axis denote an
eigenvalue).

The desirable circular domain for the CIRR method, such as Figure 2(a), is
the domain which have following features: 1) The number of eigenvalues involved
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inside a domain is nearly equal in each domain. 2) Smaller circular domains are
put in dense area of eigenvalues, and larger circular domains are put in spotty area
of eigenvalues, considering proximity of adjacent eigenvalues. 3) The boundary of
domain are kept away from eigenvalues, because eigenvalues outside a given circle
have an effect on solutions inside a given circle [14, 19].

However, if we have no information for the target problem, we set circles un-
related to the actual distribution of eigenvalues. If many eigenvalues are involved
in a circle such as Figure 2(b), the accuracy of the solution would be sacrificed.
On the other hand, if the radius of circles is smaller such as Figure 2(c), the num-
ber of eigenvalues in a circle might be less and accuracy of the solutions can be
high. However, the number of circles could become larger and the whole calculation
amount might also become significantly more expensive.

Considering these features, we present the approach to determine circular do-
mains for the CIRR method. Each eigenvalue obtained by the AS method tends to
be less accurate itself, but the distribution of them, sparse or dense, appears to be
similar to that of the exact values. We propose a method that sets circular domains
for the CIRR method, estimating a distribution of eigenvalues from the result of the
AS method.

3.3. Estimation of circular domains for the CIRR method

Fig. 3. Estimate the existing probability of eigenvalues and determine the circular do-
mains.

Let θj be the jth eigenvalue calculated by the AS method. Suppose θj have
been ordered so that θ1 < θ2 < · · · < θp, where p is the number of eigenvalues
calculated by the AS method. The maximum (or minimum) number of eigenvalues
involved in a circle is denoted by Nmax (or Nmin). Considering the error of the AS
method, the interval that CIRR circles will be located is denoted by [θ1 − ε, θp + ε],
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where ε is a small number, and this initial interval is denoted by I . The kth divided
interval is denoted by Ik. The eigenvalues involved in the interval Ik are denoted
by {θ(k)

1 , θ
(k)
2 , . . . , θ

(k)
pk }. Nk denotes the number of eigenvalues involved in the kth

interval. The range of Ik is denoted by [Θ(k)
start, Θ

(k)
end].

We propose an approach for dividing intervals using a following Gauss function,

(7)
Gk(t) =

Nk∑
j=1

exp


−


 w

|Θ(k)

end − Θ(k)

start|
(
t − θ

(k)
j

)


2
,

Θ(k)
start ≤ t < Θ(k)

end,

where w denotes weight. This function implies the existing probability of eigen-
values at t in the interval Ik. We divide the interval Ik at the cutting point t

(k)
cut,

where

t
(k)
cut = {t|minGk(t)} .

It means that we may divide the interval Ik at the sparsest point of eigenvalues
distribution in Ik . The algorithm is shown in Figure 4. We can set the Nmax and
Nmin empirically from the required accuracy of the CIRR method.

Algorithm: Estimation method for circular domains of CIRR
1. Set Nmax, Nmin and weight w.
2. Repeat dividing an interval using Gauss function to be defined in (7) until all

intervals involves eigenvalues less than Nmax.
3. Repeat applying the following process to Ik in ascending order of Nk. If Nk <

Nmin, Ik′ denotes the interval which satisfies min(|θ(k−1)
pk−1 − θ

(k)
1 |, |θ(k+1)

1 −
θ
(k)
pk |), and another interval is denoted by Ik′′ . If Nk′ +Nk ≤ Nmax, merge Ik

and Ik′ . If Nk′+Nk > Nmax, apply this process to Ik′′ . If Nk′′+Nk > Nmax,
the interval Ik is determined. If the interval Ik involves θ1 (or θp), this process
is applied to only Ik+1 (or Ik−1).

Figure 4: Algorithm of estimation method for circular domains of CIRR.

4. NUMERICAL EXPERIMENTS

We present three numerical experiments in this section to illustrate the effective-
ness of the combination of the AS method and the CIRR method. We also point out
the issue of the AS method and propose the solution in second experiment. The test
problem is a generalized eigenvalue problem Ax = λBx, which appears in com-
putation of molecular orbital(MO). The eigenvector computed in MO calculation
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shows a molecular orbital, and the corresponding eigenvalue shows the energy level
of this orbital. In MO calculation, analysis of two MOs around the frontier orbital is
important to analyze the mechanism of various chemical reactions. These MOs are
called Highest Occupied MO(HOMO) and Lowest Unoccupied MO(LUMO). We
estimate the eigenvalue distribution using the AS method and calculate hundreds of
eigenpairs around HOMO-LUMO by block CIRR method.

The all AS processes were performed on four AMD Opteron Processor 848 (2.2
GHz) with 16 GB of RAM. The external software packages were: LAPACK[4],
METIS[5], and GotoBLAS. We compiled all the codes using GNU C Ver. 4.1.2
with -O3 optimization flag.

Fig. 5. The sparsity pattern of the matrix in Example 4.1.

Example 4.1. We execute the the proposed method to obtain the eigen-
pairs around HOMO-LUMO. The test matrices are derived from computation of
the molecular orbitals of Epidermal Growth Factor Receptor (EGFR). The size of
matrices is n = 26, 461. The number of nonzero elements of matrix C(= |A|+ |B|)
is 14, 175, 935. The eigenvalue of HOMO is λHOMO = 0.087436432526632, and
the eigenvalue of LUMO is λLUMO = 0.098158257155242. Figure 5(a) shows the
sparsity patterns of matrix C, Figure (b) shows the sparsity patterns of matrix C

after ND ordering.
At first, we profiled a distrubution of eigenvalues around HOMO-LUMO using

the AS method. The conditions of the AS method were as follows. Eigenpairs of
each diagonal submatrix were computed by LAPACK routine DSYGVD. The size
of subspace for Rayleigh-Ritz projection was 5%. This subspace was provided by
the selected eigenvectors which corresponding eigenvalues were close to HOMO-
LUMO.

In Figure 5, the upper bars denote the eigenvalues calculated by CIRR with very
small circles, and we assume that this distribution is accurate. The lower bars in
Figure 5 denote eigenvalues calculated by the AS method. The parameter Nmax,
Nmin and w in Figure 4 were Nmax = 48, Nmin = 24 and w = 30. Ten circles,
shown in Figure 5, for the CIRR method were put around HOMO-LUMO using
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the proposed method shown in Figure 4. This figure shows that the eigenvalue
distribution computed by the AS method was similar to the actual distribution, and
the eigenvalue distribution would have reflected in determination of the circular
domain, smaller circles were put in dense area of eigenvalue distribution, larger
circles were put in sparse area. Table 1 shows the number of eigenvalues in each
circle shown in Figure 5. This table shows that circular domains which determined
by the method shown in 5 included the close number of eigenvalues to the actual
number.

Fig. 6. Circles for the CIRR method in Example 4.1. (Upper bars: Eigenvalues calcu-
lated by CIRR with small circles, Lower bars: Eigenvalues calculated by AS).

Table 1. The number of eigenvalues in each domain shown in Figure 6

Domain 1 2 3 4 5 6 7 8 9 10 Total
CIRR 48 36 46 55 24 43 37 13 31 41 375
AS 41 32 46 46 26 45 38 13 42 42 371

We have shown that the AS method could profile the eigenvalue distribution,
however, it tends to take long time to complete the AS method if we apply the AS
method to the generalized eigenvalue problem arising from MO computation. The
matrices which appear in MO calculation tend to have many nonzero elements, and
in this case, it takes long time to complete AS process because the large submatrices
appear after the ND ordering. We use the AS method to obtain the rough eigenvalue
distribution, not to obtain the highly accurate solution. Hence, we apply “Cutoff”
to the target problem in order to reduce the number of nonzero elements and to
execute the AS method faster. Cutoff is the method to obtain the matrix Mc from
the matrix M , which is defined as follows using small positive value δ,

Mc = {m̃i,j} , m̃i,j =

{
mi,j |mi,j| > δ, for i �= j,

0 otherwise.
(8)

In the next numerical example, we applied Cutoff to the matrices used in Ex-
ample 4.1 in order to obtain the sparser matrices and to execute AS faster.
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Example 4.2. We apply “Cutoff” to the target problem in order to reduce the
nonzero elements and to execute the AS method faster. The test matrices are same
as Example 4.1.

At first, we applied Cutoff to the original problem and obtained matrix Ac and
Bc. Next, approximate eigenvalues of (Ac, Bc) were computed by AS method. The
relation between the number of nonzero elements and computational time of AS in
each Cutoff value δ is shown in Table 2. It took 233.87 seconds to complete AS
with original problem (δ = 0), which is the slowest example, while it took 39.14
seconds with δ = 5.0 × 10−3, which is the fastest example. δ = 0 means that
the eigenvalues were calculated by the AS method without Cutoff. The eigenvalue
distributions calculated by the AS method in several Cutoff values are shown in
Figure ??. In this figure, top bars show the distribution of eigenvalues calculated by
the AS method without Cutoff, and lower bars show the distributions of eigenvalues
calculated by the AS method with several Cutoff value δ. From the result of this
numerical experiment, if Cutoff is applied with suitable δ, AS would be significantly
faster without the heavy influence to eigenvalue distribution.

Table 2. Relation between the number of nonzero element and computational time
of AS in several Cutoff values

Cutoff value δ The number of nonzero elements Computational time of AS
0 14,175,935 233.87

5.0×10−7 9,794,715 177.46
1.0×10−6 8,235,523 158.08
5.0×10−6 5,426,771 118.28
1.0×10−5 4,553,065 107.75
5.0×10−5 3,112,715 78.15
1.0×10−4 2,661,275 68.76
5.0×10−4 1,872,181 52.96
1.0×10−3 1,613,039 49.49
5.0×10−3 1,111,515 39.14

Example 4.3. We execute the block CIRR method with domains determined
in Example 4.1.

We executed the block CIRR method using these circular domains. The param-
eters of the block CIRR were as follows. The block size L was 16. The number
of nodes per circle N was 24. The size of Rayleigh-Ritz subspace M was 16.
The preconditioned COCG method [15] was used for iterative linear solver. The
stopping criterion of liner systems for the relative residual was 1.0 × 10−12. The
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preconditioner was constructed by applying a complete factorization for an approx-
imate coefficient matrix which was obtained from drop-thresholding of the original
matrix [20]. The drop-thresholding parameter was 1.0 × 10−4. The complete fac-
torization was performed by sparse direct solver, the PARDISO library [16]. Intel
C and Fortran compiler 9.1 were used to compile the codes of the block CIRR
with Intel Math Kernel Library. Computation was performed in double-precision
arithmetic.

Fig. 7. Relation between the Cutoff value and the eigenvalue distribution calculated by
the AS method.

Fig. 8. Residual norm ‖Axj − λjBxj‖2 in Example 4.1.

In Figure 8, bullet • shows the residual ‖Axj − λjBxj‖2 for each approximate
eigenpair calculated by the block CIRR method. It took 3524.00 seconds to find
375 eigenpairs in given 10 circular domains, 401.48 seconds to finish the slowest
domain, 318.17 seconds to finish the fastest domain.

These eigenvalues and corresponding eigenvectors were accurate from practical
viewpoint, however, several eigenpairs involved in the second domain from the
right were less accurate than others. It was caused by the fact that this domain was
relatively larger than others, hence vector sk suffered from the quadrature error. In
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Figure 9, bullet • shows the residual for each approximate eigenpair calculated by
the block CIRR method in case of N = 24, and square � shows the residual in case
of N = 48. From this result, we find that if we could set the appropriate number
of nodes for numerical integration, the solutions are improved.

Fig. 9. Residual norm ‖Axj − λjBxj‖2 of each eigenpair included in the second do-
main from the right. N is the number of nodes for numerical integration in block
CIRR process.

5. CONCLUDING REMARKS

We proposed an efficient combination of the AS method and the CIRR method
to obtain accurate solution of the generalized eigenvalue problem. From the results
of numerical experiments, an automated determination of circular domains for the
CIRR method with AS is valuable to obtain accurate solutions. We also showed the
effectivity of Cutoff to estimate the rough eigenvalue distribution faster.

The development of a criterion to estimate appropriate circles is a part of our
future works. The determination of the appropriate parameters for block CIRR
method using the profiling result of eigenvalue distribution is one of the future
works. Both the analysis of perturbation from Cutoff and the determination of the
suitable Cutoff value δ will be reported elsewhere.
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