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ABSTRACT
With the development of statistical machine translation, we
have ready-to-use tools that can translate documents in one
language into many different languages. These translations
provides different yet correlated views of the same set of doc-
uments. This gives rise to a natural question: can we use the
extra information to achieve a better clustering of the docu-
ments? Some recent work on multiview clustering provided
positive answers to this question. In this work, we propose
an alternative approach to address this problem using the
constrained clustering framework. Unlike traditional Must-
Link and Cannot-Link constraints, the constraints generated
by machine translation are dense yet noisy. We show how
to incorporate this type of constraints by presenting two
algorithms, one parametric and one non-parametric. Our
algorithms are easy to implement, efficient, and can consis-
tently improve the clustering of real-world data, namely the
Reuters RCV1/RCV2 Multilingual Dataset. In contrast to
the existing multiview clustering techniques, our technique
does not rely on the compatibility and conditional indepen-
dence assumptions, nor does it involve subtle parameter tun-
ing.

1. INTRODUCTION

1.1 Motivation
Automated Machine Translation (MT) [14] allows docu-

ments written in one language to be translated into other
languages at very low cost. The field has made great strides
recently and many online tools, such as Google Translate,
have been made available. This gives rise to a natural ques-
tion: can machine translation help us to achieve better clus-

tering of documents?

This problem has been recently explored from the multi-
view learning perspective [2,12,13] and positive results have
been reported. In the multiview learning framework, each
original document and its translation are treated as two
views of the same data object. Multiview learning makes
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the assumption that the two views are compatible and con-
ditionally independent [5], thus combining them will lead
to a better classification or clustering. However, in real-
ity there is no principled way to check the validity of these
assumptions. Another limitation of the existing multiview
clustering techniques is that their performance is sensitive to
parameter tuning, which relies heavily on the prior knowl-
edge on the relative quality of each particular view.

An alternative approach to incorporating machine transla-
tion into document clustering we shall explore is constrained
clustering [3]. The basic idea of constrained clustering is to
convert side information into Must-Link and Cannot-Link
pairwise constraints; then the constraints are enforced on
the original dataset to help improving the clustering. Tra-
ditionally, the constraints are assumed to be accurate but
sparse: “accurate” means that they come from domain ex-
perts or ground truth, thus they are definite and correct;
“sparse” means only a small amount of constraints are in-
corporated given acquiring them in practice is costly.

However, the constraints generated from machine trans-
lation are dense but noisy: “dense” means that we have
access to large amounts of constraints with no cost or very
low cost; “noisy” means that the constraints are noisy and
may not necessarily reflect the ground truth clustering. As a
result, existing constrained clustering algorithms cannot be
directly applied to our problem. A new algorithm is needed
to properly incorporate this type of constraints so that it
can 1) fully exploit the useful information in the massive
constraint set; 2) ignore constraints that are inaccurate and
excessive; and 3) not be easily over-constrained as most con-
strained clustering algorithms are [7].

1.2 Our Contribution
We show how to incorporate massive amounts of noisy

side information into spectral clustering and demonstrate
that this approach outperforms multiview techniques for MT
aided document clustering. We choose a spectral formula-
tion for two reasons: 1) spectral clustering has been proven
effective on high-dimensional data, such as text [4], and 2)
by converting the two views into two graphs with the same
set of nodes we can knowledge transfer between two het-
erogeneous feature spaces (languages) in a principled man-
ner. Our objective function extends earlier work by Wang
and Davidson [18]. Their work was limited to clusterings
for K = 2 and used a sparse constraint matrix generated
from domain experts or ground truth labeling. In our prob-
lem setting, the constraint matrix is generated from another
graph. As a result, the constraint matrix we use is guar-



anteed to be positive semi-definite (PSD). This difference
enables us to extend the formulation in [18] from 2-way par-
tition to K-way partition, and to propose a parametric as
well as a non-parametric solution. As compared to existing
work in MT aided document clustering, our algorithm has
several unique benefits:

• As compared to the multiview techniques, the effec-
tiveness of our algorithm does not rely on the compat-
ibility or the conditional independence assumptions.

• It is easy to implement, efficient, and produces deter-
ministic output.

• It does not require prior knowledge on the dataset, nor
does it involve complicated parameter tuning.

Our contributions to the field is to propose a spectral
clustering formulation that can handle dense but noisy con-
straints and we show:

1. Our method is able to improve the clustering on the
Reuters RCV1/RCV2 Multilingual Dataset. The im-
provement is consistent and significant (99% confidence
level, see Figure 2 and 3).

2. Our approach outperforms many existing multiview
spectral clustering techniques (see Figure 2 and 3).

3. Our approach yields improvements in the vast major-
ity of trials with randomly sampled documents (see
Figure 4). This is pragmatically very important given
most practitioners only have one dataset (sample) to
work with and average performance gain is not suffi-
cient.

4. Our algorithm can be extended to other applications
and datasets where the side information is dense and
not always accurate.

The remainder of the paper is organized as follows: In Sec-
tion 2 we provide some background knowledge on spectral
clustering and the constrained spectral clustering formula-
tion proposed by [18]; we present our algorithm in Section 3;
we test our algorithm on real data in Section 4, with com-
parison to existing techniques; related work is discussed in
Section 5; we conclude the paper in Section 6 and discuss
future directions.

2. PRELIMINARIES
To make this paper self-contained, we provide some back-

ground knowledge and also introduce notations that will be
used throughout the rest of the paper (also summarized in
Table 1).

2.1 Spectral Clustering
We first introduce the formulation and notation for spec-

tral clustering. Readers who are familiar with the topic can
skip to Section 2.2.
Given a graph G with N nodes, A is the affinity matrix of
G. A is symmetric and nonnegative. D is the degree matrix
of G:

Dij =

{

∑N
k=1 Aik if i = j

0 if i 6= j
.

Table 1: Table of notations
Notation Meaning
G An undirected (weighted) graph
A The affinity matrix
D The degree matrix
I The identity matrix
L̄ The normalized graph Laplacian
Q̄ The normalized constraint matrix
K The number of clusters
N The number of nodes
v, V The relaxed cluster indicator vector(s)

L = D−A is the graph Laplacian of G, and L̄ = D−1/2LD−1/2

is called the normalized graph Laplacian [17].
The objective function for the normalized min-cut prob-

lem is:

argmin
v∈RN

vT
L̄v,

s.t. vTv = 1, v ⊥ D
1/21.

(1)

Shi and Malik [15] showed that the optimal solution to Eq.(1)
is the second smallest eigenvector of L̄.

For K-way partition, the objective becomes

argmin
V ∈RN×K

tr(V T
L̄V ),

s.t. V
T
V = I.

(2)

tr is the matrix trace. The optimal solution to Eq.(2) is
the top-K smallest eigenvectors of L̄, and the clustering as-
signment is derived from applying K-means to the rows of
V [17].

2.2 Constrained Spectral Clustering
Next we briefly summarize the constrained spectral clus-

tering formulation proposed in [18].
Let Q ∈ R

N×N be a relaxed constraint matrix. Q is sym-
metric and

Qij











> 0 i and j belong to the same cluster

< 0 i and j belong to different clusters

0 unknown

.

Given a cut v, the objective is to minimize its cost on L̄

and to lower bound its satisfaction on Q with a parameter
α. Specifically:

argmin
v∈RN

vT
L̄v,

s.t. vT
Q̄v ≥ α,

vTv = 1, v ⊥L̄ D
1/21.

(3)

Eq.(3) can be solved by introduce Karush-Kuhn-Tucker con-
ditions [?]. The solution is among the eigenvectors of the
following the generalized eigenvalue problem:

L̄v = λ(Q̄− αI)v.

After removing all negative eigenvectors (which fail to satisfy
the lower bound α), the one that minimizes vT L̄v is the
solution.

This formulation has several limitations: 1) it is for 2-way
clustering instead of K-way; 2) setting the cut-off threshold



Algorithm 1: The parametric version of our algorithm
(csp-p)

Input: L̄, Q̄, α, K;
Output: u;

1 Solve the generalized eigenvalue problem L̄v = λQ̄v;

2 Let V = {vi}
N
i=1 be the set of all generalized

eigenvectors;
3 for i = 1 to N do
4 if vT

i Q̄vi < α then
5 Remove vi from V;
6 end

7 end
8 V ← [ ];
9 for i = 1 to K do

10 v∗ = argmin
v∈V vT L̄v;

11 Remove v∗ from V;
12 V ← [V,v∗];

13 end
14 return u← Kmeans(V,K);

Algorithm 2: The non-parametric version of our algo-
rithm (csp-n)

Input: L̄, Q̄, K;
Output: u;

1 Solve the generalized eigenvalue problem L̄v = λQ̄v;

2 Let V = {vi}
N
i=1 be the set of all generalized

eigenvectors;
3 V ← [ ];
4 for i = 1 to K do

5 v∗ = argmin
v∈V

v
T L̄v

v
T Q̄v

;

6 Remove v∗ from V;
7 V ← [V,v∗];

8 end
9 return u← Kmeans(V,K);

α requires prior knowledge; and 3) it is unclear if it can
handle huge amounts of constraints. In Section 3, we will
adapt this formulation to our problem and address these
limitations.

3. OUR ALGORITHM
In this section, we present our constrained spectral clus-

tering algorithm for document clustering using automated
machine translation. The objective function we use is de-
rived from Eq.(3). Unlike earlier work, since Q is obtained
from a distance metric, it is guaranteed to be positive semi-
definite (PSD). We first show how to construct the graph
Laplacian and the constraint matrix in the document clus-
tering setting; then we extend Eq.(3) from 2-way parti-
tion to K-way partition (Eq.(4)); we further develop a non-
parametric version of the formulation (Eq.6); efficient so-
lutions are provided for both objectives (Algorithm 1 and
2).

3.1 Graph and Constraint Construction
Given a set of N documents, after standard tf-idf indexing

and normalization, they can be represented by a set of d-
dimensional vectors: {xi ∈ R

d : ‖xi‖ = 1, i = 1, . . . , N}.

Let X = [x1, . . . ,xN ], then

A = X
T
X

is an N ×N cosine similarity matrix and A is positive semi-
definite.

In our problem setting, given a set of documents and their
translation, we can construct two similarity matrices: A(1)

and A(2). We use A(1) as the affinity matrix of the graph,
which is equivalent to A in the constrained spectral clus-
tering formulation. We use A(2) as the constraint matrix,
which is equivalent to Q in the constrained spectral cluster-
ing formulation. The interpretation of A(2) is: the greater

A
(2)
ij is, the more likely document i and j are considered to

belong to the same cluster.
Let D(i) be the degree matrix of A(i), i = 1, 2. We have:

L̄ , I − (D(1))−1/2
A

(1)(D(1))−1/2
,

Q̄ , (D(2))−1/2
A

(2)(D(2))−1/2
.

Note that as long as A(1) and A(2) are guaranteed to
be PSD, other similarity functions and preprocessing tech-
niques can be freely used. For example, instead of cosine
similarity, we can use a Gaussian kernel. We can also apply
various dimensionality reduction techniques to improve the
quality of the raw data.

3.2 Objective Function
Given L̄ and Q̄, we first present a parametric formulation

for constrained spectral clustering. It is a natural extension
of Eq.(3) from 2-way to K-way partition.

argmin
vi∈RN |K

i=1

K
∑

i=1

vT
i L̄vi,

s.t. vT
i Q̄vi ≥ α, ∀i,

vT
i vi = 1, ∀i,

vi ⊥L̄ vj , ∀i 6= j.

(4)

α is the only parameter in this objective. It serves as a cut-
off threshold. Any cut v that fails to satisfy (in the relaxed
sense) at least α constraints in Q̄ will be rejected. For the
remaining cuts, which are called feasible cuts [18], the top-K
ones with the lowest cost on L̄ will be chosen. To guarantee
the existence of at least K feasible cuts to choose from, when
setting the value of α, we require:

α ∈ [0, λK(Q̄)], (5)

where λK(Q̄) is the K-th largest eigenvalue of Q̄. Note that
since Q̄ is PSD in our problem setting, if α is set to 0, any
v ∈ R

N is a feasible cut.
Given that Eq.(5) is satisfied, raising the threshold α will

reduce the range of the feasible cuts that we can choose from.
As a result, the final partition will be more biased towards
the constraint matrix Q̄. Similarly, lowering the threshold α

will give the algorithm more freedom to choose cuts that are
favored by the graph L̄. Therefore, in practice, the choice
of α is determined by our preference between L̄ and Q̄. If
we have confidence that Q̄ is more accurate, then we should
set α to a larger value; and vice versa.

Next we present an alternative objective which is non-
parametric. To get rid of the cut-off threshold α, we consider



the following cost-satisfaction ratio for any cut v:

f(v) ,
vT L̄v

vT Q̄v
.

Since Q̄ is now guaranteed to be PSD, we have

f(v) ∈ [0,∞), ∀v ∈ R
N
.

The goal of constrained spectral clustering is to maximize
vT Q̄v and minimize vT L̄v, which is equivalent to minimize
f(v). Therefore f(v) becomes a unified measure for the
quality of the cut v: smaller f(v) means better cut.
Formally, the non-parametric version of our objective is:

argmin
vi∈RN |K

i=1

K
∑

i=1

vT
i L̄vi

vT
i Q̄vi

,

s.t. vT
i vi = 1, ∀i,

vi ⊥L̄ vj , ∀i 6= j.

(6)

3.3 Efficient Solutions
We first show how to solve the non-parametric objective

in Eq.(6). Consider the generalized eigenvalue problem:

L̄v = λQ̄v. (7)

Since both L̄ and Q̄ are Hermitian and PSD, we will have
N real generalized eigenvectors [?], and they are the critical
points for the generalized Rayleigh quotient [9]

vT L̄v

vT Q̄v
. (8)

Consequently, the solution to Eq.(6) is the top-K gener-
alized eigenvectors from Eq.(7) that minimize the Rayleigh
quotient in Eq.(8). The full algorithm is presented in Algo-
rithm 2.
On the other hand, the solution to Eq.(4) is similar to that

in [18]. We first solve the generalized eigenvalue problem

L̄v = λ(Q̄− αI)v,

and the non-negative eigenvectors are the feasible cuts. For
efficiency consideration, in our implementation, we simply
solve Eq.(7), and choose eigenvectors associated with eigen-
values that are no smaller than α. This allows us to only
solve the eigenvalue problem once, and reuse the eigenvec-
tors for multiple α values. The algorithm for the parametric
objective in Eq.(4) is summarized in Algorithm 1.

3.4 An Illustrative Example
In Figure 1 we illustrate how our approach can improve

the clustering on a single view. The dataset used are 1200
documents on 6 topics originally written in English and their
translation into French. We plot the top-6 eigenvectors (each
color corresponds to one eigenvector). The y-axis is the en-
tries values of the eigenvectors. Due to the sparsity of the
feature space, for spectral clustering on either single view,
we can observe a couple of “spikes” among the top eigenvec-
tors, which are trivial cuts that separate a small number of
documents from the rest. Including these trivial cuts will
inevitably harm the quality of the final partition. In con-
trast, when we combined two views together using our ap-
proach, the two views rejected the trivial cuts proposed by
each other, and reached agreement on 6 eigenvectors that

are much more informative. As a result, the quality of the
final partition is substantially improved.

Note that Figure 1 is just one among many cases where
our approach could help improve the clustering. It could be
still effective even when there are no trivial cuts involved.

3.5 Remarks

3.5.1 Algorithm Complexity
The runtime for both algorithms are dominated by that

of solving the eigenvalue problem in Eq.(7). Therefore, the
complexity of our algorithm is on par with spectral cluster-
ing in big-O notation, which is O(KN2) for dense matrices
and O(KM) for sparse matrices, M be the number of non-
zeros entries.

3.5.2 Direction of Knowledge Transfer
The process of enforcing the constraint matrix Q̄ to the

graph L̄ can be viewed as the transfer of knowledge. From
Eq.(4) we can see that the transfer is asymmetric. Therefore,
given the original view and the translated view, we need
to decide which view should be used to construct Q̄ and
which view should be used to construct L̄. The role of the
constraint matrix Q̄ is to select N ′ feasible cuts from the
N generalized eigenvectors (N ′ ≪ N); the role of the graph
Laplacian is to select K min-cuts from the N ′ feasible cuts.
Therefore, Q̄ plays a more critical role than L̄ does. If the
quality of Q̄ is very poor, it will rule out eigenvectors that
lead to good cuts; and once those cuts are ruled out, L̄ will
not be able to recover them. On the other hand, if the
quality of Q̄ is very high, it will select a set of good feasible
cuts for L̄ to choose from.

Consequently, in practice we should use the better view to
construct the constraint matrix. Although such prior knowl-
edge is not always available, according to our observation
on real data, the original view usually has better quality.
Therefore in our experiments, Q̄ is always constructed from
the original documents and L̄ is always constructed from the
translation.

4. EMPIRICAL STUDY
In this section, we empirically study the performance of

our algorithm on real-world data and compare it to existing
techniques. We aim to answer the following questions:

1. Effectiveness: Is our algorithm able to improve the
clustering quality by using machine translation?

2. Consistency: Is the performance gain of our algo-
rithm consistent over a range of diverse data samples?

3. Comparison: Does our algorithm outperform exist-
ing techniques?

4.1 Methodology

4.1.1 Dataset
We used the Reuters RCV1/RCV2 Multilingual dataset1

introduced by [2]. This dataset has been used by previous
work [2, 11, 13] to evaluate the performance of multiview
spectral clustering algorithm. The dataset contains docu-
ments originally written in five different languages, namely

1http://multilingreuters.iit.nrc.ca/
ReutersMultiLingualMultiView.htm
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Figure 1: An illustrative example to show how our algorithm can utilize the extra view to achieve better
clustering. In each plot we show the top-6 eigenvectors from spectral clustering. The “spikes” in (a) and
(b) are trivial cuts suggested by the two views individuals, which could cause a bad final partition. After
combining the two views using our approach, these trivial cuts are ruled out in (c), which in turn leads to a
better partition.

Table 2: Statistics of the dataset
Language #docs #words
English 18,758 21,531
French 26,648 24,839
German 29,953 34,279
Spanish 12,342 11,547
Italian 24,039 15,506

Topics #docs Percentage
C15 18,816 16.84

CCAT 21,426 19.17
E21 13,701 12.26

ECAT 19,198 17.18
GCAT 19,178 17.16
M11 19,421 17.39

English (EN), French (FR), German (GR), Spanish (SP) and
Italian (IT). Each document, originally written in one lan-
guage, was translated to the other four languages using the
Portage system [16]. The documents are categorized into
six different topics. The statistics of the dataset is summa-
rized in Table 2. More detail can be found on the dataset
homepage.
The dataset is provided in the form of tf-idf vectors. We

did not apply additional preprocessing to the data. No di-
mensionality reduction technique was applied. We used co-
sine similarity to construct the graphs.

4.1.2 Evaluation metrics
We used two commonly used metrics to measure the qual-

ity of clustering, namely Adjusted Rand Index (ARI) [10]
and Normalized Mutual Information (NMI). Both of them
indicate the similarity between a given clustering and the
ground truth partition: higher value means better cluster-
ing; 1 means perfect match.

4.1.3 Algorithm Implementations
We implemented both the parametric (csp-p) and the

non-parametric (csp-n) version of our algorithm2. For the

2The MATLAB code we used will be made available upon
publication.

parametric version, we always set

α← λ2K(Q̄),

where λ2K(Q̄) is the 2K-th largest eigenvalue of Q̄. In other
words, we provide 2K feasible cuts and L̄ will choose the
top-K with the lowest costs.

We also implemented in MATLAB five baseline algorithms
to compare with:

• orig: Spectral clustering based on the original view
only.

• trans: Spectral clustering based on the translated view
only.

• kersum: The kernel summation algorithm for multi-
view spectral clustering, which performs spectral clus-
tering on the weighted sum of the two views’ kernels.
Previous study [6] showed that this approach works
very well in practice, even in comparison to much more
sophisticated multiview learning techniques. We used
equal weights in our experiments.

• mrw: The mixing random walk algorithm proposed in
[19], which finds the stationary distribution of a mixing
random walk in both graphs. We used equal weights
for the two views in our experiments.

• co-reg: The co-regularization multiview spectral clus-
tering algorithm proposed in [13]. We implemented
the centroid based version and used the centroids to
compute final clustering. This algorithm has one pa-
rameter, which is the weight for the regularizer. We
set it to 0.01 in our experiments, as suggested in the
original paper.

4.1.4 Task Description
We first pick a language pair, say EN-FR, which means

documents that are originally written in English along with
their French translation. To maximize the diversity between
the data samples we use, in each trial we randomly sample
1200 documents, which is less than 10% of all available docu-
ments. We have 100 trials for each language pair. We apply
our algorithm and the baseline algorithms to the sample and



partition it into K = 6 clusters. We measure the resultant
clusterings using both ARI and NMI. Since the last step of
spectral clustering involves the K-means algorithm, in each
trial, we repeat K-means algorithm 100 times with 100 ran-
dom seeds and report the average performance.
For all language pairs, we report the average performance

(Figure 2), aggregated results over 100 trials (Figure 3), and
the performance of each individual trial (Figure 4).

4.2 Results and Analysis
Since we have 5 different languages, there are 20 possible

original-translation language combinations. We show our re-
sults on 8 pairs, namely English to French (EN-FR), German
(EN-GR), Italian (EN-IT), Spanish (EN-SP), and German
to English (GR-EN), French (GR-FR), Italian (GR-IT), and
Spanish (GR-SP). The conclusions we draw from these 8
pairs also hold for the other 12 pairs.
First we give an overview of the results in terms of aver-

age performance. In Figure 2, we report the average ARI
of 7 different algorithms on 8 different language pairs. Our
approach (csp-p) shows consistent and significant (99% con-
fidence level) improvement over the clustering on the orig-
inal view only (orig) for all language pairs. Also, for all
language pairs, csp-p has the highest average ARI.
More detailed results are reported in Figure 3, with box-

plots for all 7 algorithms and 8 language pairs, in terms of
ARI and NMI, respectively. Besides of showing the advan-
tage of our approach (csp-p), as we have seen in Figure 2,
Figure 3 illustrates the diversity of the data samples we used
in different trials. Some data samples were easier to clus-
ter and others more difficult. This demonstrates that the
effectiveness of our approach is not limited to a certain data
distribution or a certain language.
Note that the performance of our non-parametric approach

(csp-n) is not as good as the parametric one (csp-p). This
is expected because csp-n uses zero prior knowledge. On the
other hand, as shown in Figure 2, csp-n managed to outper-
form orig on all 8 language pairs, as well as the multiview
competitors on several language pairs. This result is non-
trivial considering the approach is completely parameter-
free.
To further demonstrate the consistency and reliability of

our approach over different random samples, in Figure 4, we
show the trial by trial breakdown of the performance gain of
our approach (csp-p and csp-n) over the clustering on the
original view only (orig), as measured by ARI. We can see
that for 800 random trials over 8 different language pairs, our
algorithm achieved positive gain in most cases, and it rarely
caused large performance loss. This means our approach is
reliable in practice. Practitioners can apply our approach
to a dataset, with peace of mind that it is very likely that
our algorithm will improve the result, and it is very unlikely
that our algorithm will lead to a great performance loss.

5. RELATED WORK
Recent work in the multiview learning literature stud-

ied the potential of using automated machine translation
to improve both document classification [1, 2] and cluster-
ing [11–13]. Given a set of documents, their translations
in another language is modeled as a second view. These
multiple views are considered as partial observations of the
same set of data objects. When properly combined, these
views will complement each other and improve the resultant

classification or clustering. Several multiview learning algo-
rithms have been proposed and tested on the same Reuters
RCV1/RCV2 Multilingual Dataset [2] as we used in this pa-
per. Empirical results confirmed the helpfulness of machine
translation. Note that the effectiveness of multiview learn-
ing is based on the assumption that the views are compatible
and conditionally independent [5]. There is no practical way
to validate either assumption for a specific sample.

In this work, we adopted an alternative approach, namely
constrained clustering [3]. In contrast to the multiview for-
mulation, constrained clustering does not make assumption
about the underlying distribution of the data. Traditional
constrained clustering algorithm cannot be directly applied
to our problem because they can only deal with sparse and
accurate constraints. If the number of constraints increases,
or incorrect constraints are introduced, the clustering al-
gorithm will be over-constrained [7]. It is also difficult to
choose a small set of helpful constraints [8].

Wang and Davidson [18] proposed a spectral formulation
for constrained clustering, which suits our problem setting
well because it can incorporate soft constraints. Instead of
enforcing each and every constraint given, they use a user-
specified parameter to lower bound the number of satisfied
constraints. As a result, noisy and incorrect constraints
can be ignored by the final clustering. The difference be-
tween our work and theirs is that they considered sparse
constraints generated from ground truth or domain experts,
whereas our constraints are dense, generated from a distance
metric. Furthermore, the constraint matrix we use is always
PSD. As a result, we are able to extend their objective to
K-way partition, and develop a new non-parametric solution
to the problem.

Note that the focus of this work is to show that 1) ma-
chine translation is indeed helpful for document clustering
and 2) how to use machine translation to improve document
clustering. We assume that the translations of documents
are readily available. Technical detail of statistical machine
translation [14] is not considered, although it is expected
that better translation will lead to greater performance gain.

6. CONCLUSION AND FUTURE WORK
Automated machine translation offers the ability to sup-

plement existing document representations with additional
information. Previous work has explored using this addi-
tional information in a multiview clustering setting with
some success. In this work, we take an alternative approach
of encoding the additional information as constraints. This
is a challenging problem since existing constrained cluster-
ing algorithms expect a small number of constraints gener-
ated from the ground truth or domain experts, whereas MT
produces dense and potentially inaccurate information. We
proposed two algorithms that can be viewed as an exten-
sion of spectral clustering to encode many noisy constraints
without being over-constrained and with the ability to ignore
constraints. We showed with real data that our approach is
effective (it improves the clustering by just using the origi-
nal documents, see Figure 2), consistent (since it can ignore
poor side information, see Figure 3 and 4), and outperforms
other comparable techniques (see Figure 2).

It is important to remember that existing work on multi-
view clustering [12] showed that the performance gain from
using more than two views is marginal. Our future work
will revisit this question by clustering using constraints gen-



orig trans kersum mrw co-reg csp-p csp-n

GR-EN 0.276 0.261 0.303 0.296 0.303 0.314 0.289
GR-FR 0.277 0.250 0.284 0.279 0.274 0.303 0.281
GR-IT 0.279 0.301 0.294 0.286 0.303 0.304 0.287
GR-SP 0.274 0.224 0.280 0.273 0.271 0.293 0.276
EN-FR 0.168 0.163 0.195 0.172 0.174 0.203 0.194
EN-GR 0.171 0.149 0.192 0.172 0.167 0.197 0.192
EN-IT 0.168 0.170 0.178 0.161 0.183 0.184 0.179
EN-SP 0.169 0.163 0.180 0.164 0.182 0.182 0.175

Figure 2: A summary of the average ARI on 8 language pairs. Our approach (csp-p) consistently and
significantly outperforms the clustering on the original view (orig) at 99% confidence level. It also outperforms
its competitors (significantly in most cases). Detailed results are reported in Figure 3.
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orig trans kersum mrw co−reg csp−p csp−n
0.15

0.2

0.25

0.3

0.35

0.4

A
dj

us
te

d 
R

an
d 

In
de

x

Aggregated Results over 100 Random Trials (GR−SP)

orig trans kersum mrw co−reg csp−p csp−n

0.25

0.3

0.35

0.4

0.45

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Aggregated Results over 100 Random Trials (GR−SP)

(d) GR-SP
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(e) EN-FR
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(f) EN-GR
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(g) EN-IT
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(h) EN-SP

Figure 3: The box plot for 8 language pairs, 100 random trials each. Results are evaluated in terms of
both ARI and NMI. Our technique (csp-p) consistently and significantly improves over the clustering on the
original view (orig), and outperforms the competitors.
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(g) EN-IT

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

0.15

P
er

fo
rm

an
ce

 G
ai

n 
(A

R
I)

Trial by Trial Breakdown (EN−SP, csp−p)

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

0.15

P
er

fo
rm

an
ce

 G
ai

n 
(A

R
I)

Trial by Trial Breakdown (EN−SP, csp−n)

(h) EN-SP

Figure 4: The trial by trial breakdown of the performance gain (w.r.t. orig) of our technique (csp-p and
csp-n) on all 8 language pairs. Our technique not only achieved positive performance gain in average, but
also in most of the individual trials.



erated from multiple translated views. Also, in this work
we showed that adding constraints from translations does
not hurt the clustering (since our approach ignores harm-
ful constraints). However, an important problem we hope
to address is determining a priori how much the transla-
tion will improve the clustering. This will help address the
problem: “Which language should we translate into?”
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