Clustering with Constraints

Sugato Basu

SRI Intl. (AI Center) Email: basu@ai.sri.com

Ian Davidson

SUNY – Albany (Dept. of Computer Science) Email: davidson@cs.albany.edu

Acknowledgements

- Contribution of slides
 - Tomer Hertz
 - Sepandar Kamvar
 - Brian Kulis
- Insightful discussions
 - S.S. Ravi
 - Kiri Wagstaff
- Apologies
 - If we do not get around to covering your work or if you have work on constraints and clustering and we didn't include it in the bibliography (drop us an email).

© Basu and Davidson 2005

Clustering with Constraints

Notation

- S: set of training data
- s_i : i^{th} point in the training set
- L: cluster labels on S
- l_i : cluster label of s_i
- C_j : centroid of j^{th} cluster
- *ML* : set of must-link constraints
- *CL* : set of cannot-link constraints
- CC_i : a connected component (sub-graph)
- *TC* : the transitive closure

© Basu and Davidson 2005

Clustering with Constraints

3

Outline

• Introduction	[Ian]
 Uses of constraints 	[Sugato]
 Real-world examples 	[Sugato]
• Benefits of constraints	[Ian]
• Feasibility and complexity	[Ian]

• Algorithms for constrained clustering

Enforcing constraints [Ian]
Hierarchical [Ian]
Learning distances [Sugato]
Initializing and pre-processing [Sugato]
Graph-based [Sugato]

© Basu and Davidson 2005

Clustering with Constraints

Outline

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering

• Enforcing constraints [Ian]

· Hierarchical [Ian] · Learning distances [Sugato]

· Initializing and pre-processing [Sugato]

· Graph-based [Sugato]

© Basu and Davidson 2005

Clustering with Constraints

5

A Motivating Example in Non-Hierarchical Clustering

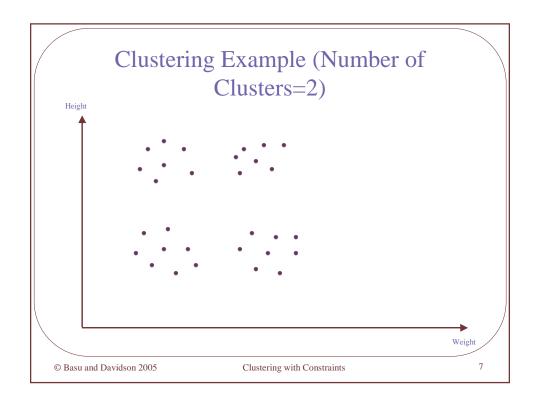
- Given a set of instances S
- Find the "best" set partition

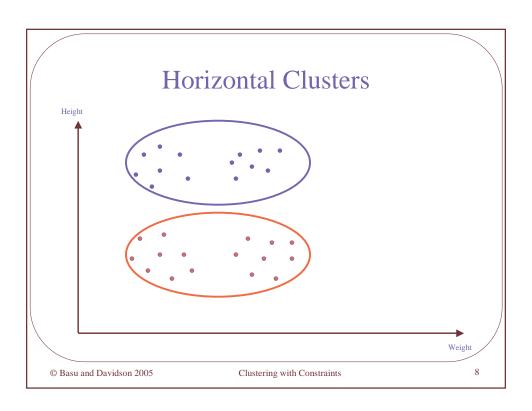
$$S = \{S_1 \cup S_2 \cup \dots S_k\}$$

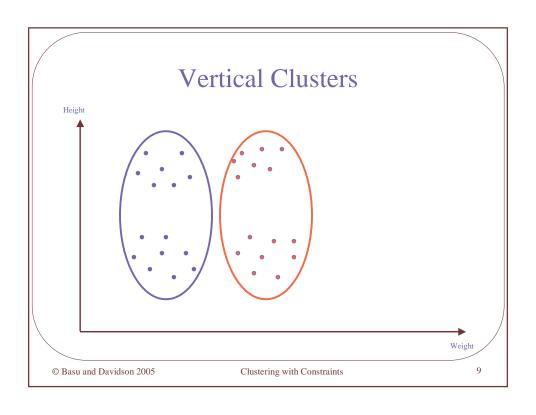
- Multitude of algorithms that define "best" differently
 - K-Means
 - Mixture Models
 - Self Organized Maps
- Aim is to find the **underlying** structure/patterns/groups in the data.

© Basu and Davidson 2005

Clustering with Constraints







K-Means Clustering

- Standard iterative partitional clustering algorithm
- Finds *k* representative centroids in the dataset
 - Locally minimizes the sum of distance (e.g., squared Euclidean distance) between the data points and their corresponding cluster centroids

$$\sum\nolimits_{s_i \in S} D(s_i, C_{li})$$

A Simplified Form of this Problem is intractable [Garey et al.'82]

 $\ensuremath{\mathbb{O}}$ Basu and Davidson 2005

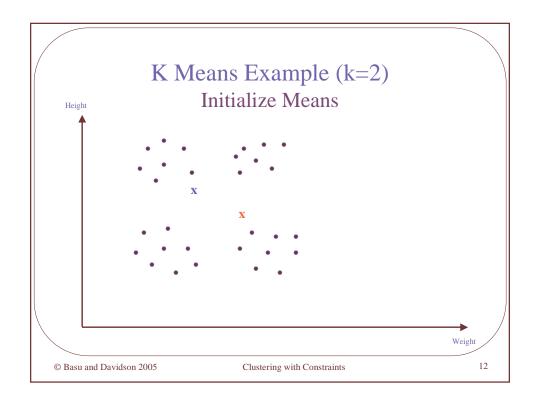
Clustering with Constraints

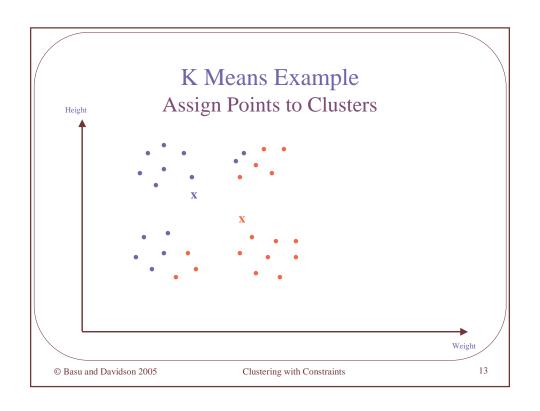
K-Means Algorithm

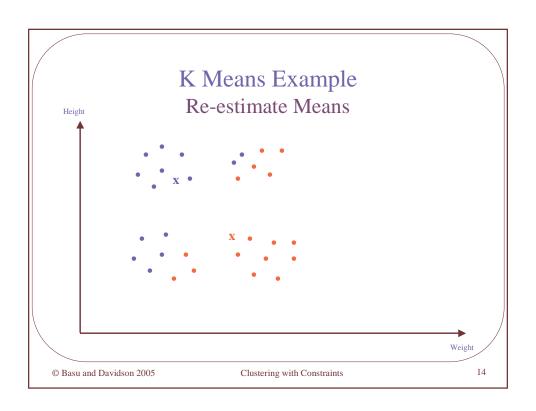
- 1. Randomly assign each instance to a cluster
- 2. Calculate the centroids for each cluster
- 3. For each instance
 - Calculate the distance to each cluster center
 - Assign the instance to the closest cluster
- 4. Goto 2 until distortion is small

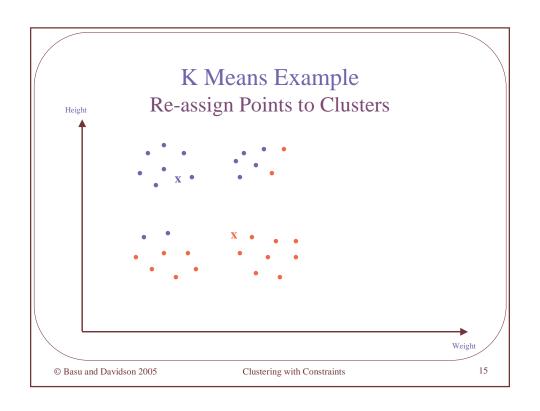
© Basu and Davidson 2005

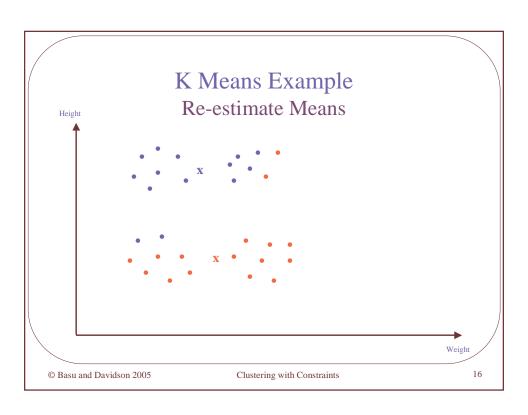
Clustering with Constraints

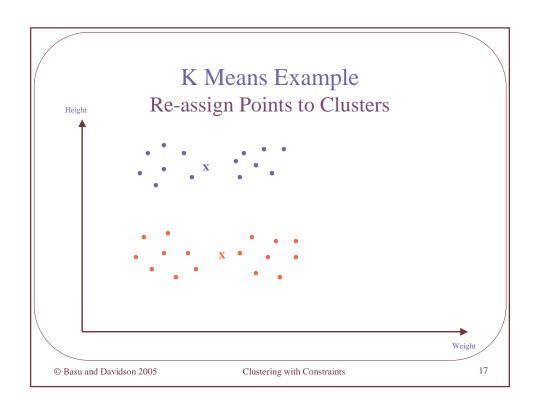


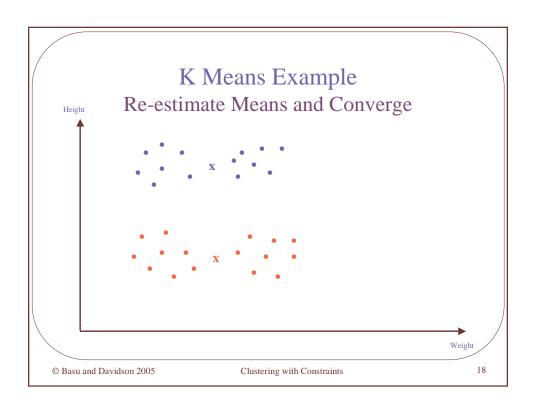


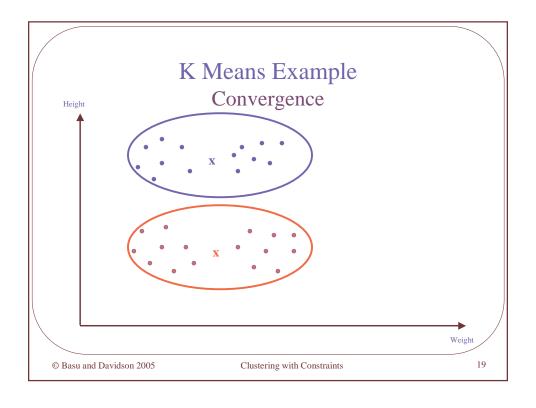












A Few Issues With K-Means Has Spawned Lots of Research

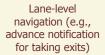
- Algorithm is typically restarted many times from random starting centroids
 - Due to sensitivity to initial centroids
 - i.e. Intelligently setting initial centroids [Bradley & Fayyad 2000]
- Convergence time of algorithm can be slow
 - Use KD-Trees to accelerate algorithms [Pelleg and Moore 1999]
- Clustering achieved may minimize VQE but has little practical value
- Which distance function should I use?
 - L1, L2, Mahalanobis etc.
- Constraints can help address these problems and more ...

© Basu and Davidson 2005

Clustering with Constraints

Automatic Lane Finding from GPS traces

[Wagstaff et al. '01]



Lane-keeping suggestions (e.g., lane departure warning)

Constraints inferred from trace-contiguity (ML) & max-separation (CL)

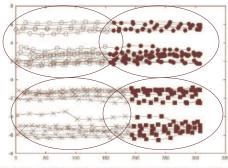
© Basu and Davidson 2005

Clustering with Constraints

21

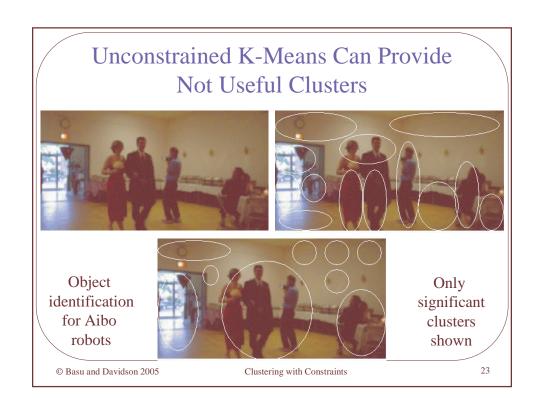
Mining GPS Traces (Schroedl et' al)

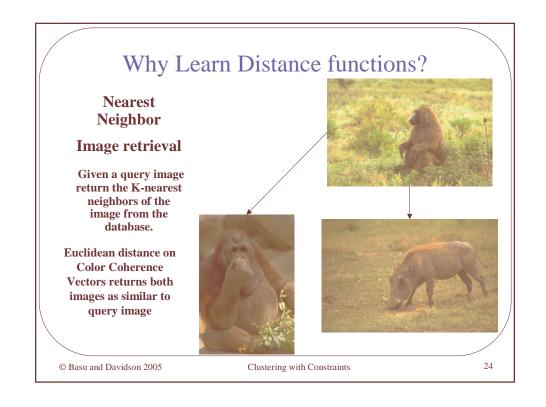
- Instances are represented by the x, y location on the road. We also know when a car changes lane, but not what lane to.
- True clusters are very elongated and horizontally aligned with the lane central lines
- Regular k-means performs poorly on this problem instead finding spherical clusters.



© Basu and Davidson 2005

Clustering with Constraints





Basic Instance Level Constraints

- Historically, instance level constraints motivated by the availability of labeled data
 - i.e., Much unlabeled data and a little labeled data available generally as constraints, e.g., in web page clustering
- This knowledge can be encapsulated using instance level constraints [Wagstaff et al. '01]
 - Must-Link Constraints
 - A pair of points s_i and s_i ($i \neq j$) must be assigned to the same cluster.
 - Cannot-Link Constraints
 - A pair of points s_i and s_i ($i \neq j$) can not be assigned to the same cluster.

© Basu and Davidson 2005

Clustering with Constraints

25

Properties of Instance Level Constraints

- Transitivity of Must-link Constraints
 - ML(a,b) and $ML(b,c) \rightarrow ML(a,c)$
 - Let X and Y be sets of ML constraints
 - ML(X) and ML(Y), $a \in X$, $a \in Y$, $\rightarrow ML(X \cup Y)$
- The Entailment of Cannot link Constraints
 - ML(a,b), ML(c,d) and $CL(a,c) \rightarrow CL(a,d)$, CL(b,c), CL(b,d)
 - Let CC₁ ... CC_r be the groups of must-linked instances (i.e.. The connected components)
 - $-CL(a \in CC_i, b \in CC_j) \rightarrow CL(x,y), \forall x \in CC_i, \forall y \in CC_j$

© Basu and Davidson 2005

Clustering with Constraints

Complex Cluster Level Constraints

- δ-Constraint (Minimum Separation)
 - For any two clusters S_i , $S_i \forall i,j$
 - For any two instances $s_p \in S_i$, $s_q \in S_i \forall p,q$
 - $-D(s_{p_i}s_q) \ge \delta$
- ε -Constraint
 - For any cluster $S_i / S_i / > 1$
 - $\ \forall p, \, s_p {\in} \, S_i, \, \exists s_q {\in} \, S_i \colon \varepsilon {\geq} \, D(s_p, s_q), \, s_p {<} {>} \, s_q$

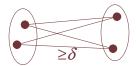
© Basu and Davidson 2005

Clustering with Constraints

27

Converting Cluster Level to Instance Level Constraints

• Delta constraints?



For every point x, must-link all points y such that $D(x,y) < \delta$, i.e. conjunction of ML constraints

- Epsilon constraints?
 - For every point x, must link to at least one point y such that $D(x,y) \le \varepsilon$, i.e. disjunction of ML constraints

• Will generate many instance level constraints

© Basu and Davidson 2005

Clustering with Constraints

Other Constraint Types We Won't Have Time To Cover

- Balanced Clusters
 - Scalable model-based balanced clustering [Zhong et al. '03]
 - Frequency sensitive competitive learning [Galanopoulos et al. '96]
- Negative background information
 - Find another clustering that is quite different from a given set of clusterings [Gondek et al. '04]
- Clustering only with constraints
 - Use constraints to cluster the data, no underlying distance function
 - Correlation Clustering: [Bansal et al.'02]
 - Clustering with Qualitative Information: [Charikar et al. '03]

© Basu and Davidson 2005

Clustering with Constraints

29

Outline

• Introduction	[Ian]
• Uses of constraints	[Sugato]
Real-world examples	[Sugato]
 Benefits of constraints 	[Ian]
 Feasibility and complexity 	[Ian]
Algorithms for constrained clustering	
	ET 1

Enforcing constraints [Ian]
 Hierarchical [Ian]
 Learning distances [Sugato]
 Initializing and pre-processing [Sugato]
 Graph-based [Sugato]

© Basu and Davidson 2005

Clustering with Constraints

Big Picture

- Clustering with constraints:
 - Partition unlabeled data into groups called clusters
 - + use constraints to aid and bias clustering
- Goal:

Examples in same cluster similar, separate clusters different + constraints are maximally respected

© Basu and Davidson 2005

Clustering with Constraints

31

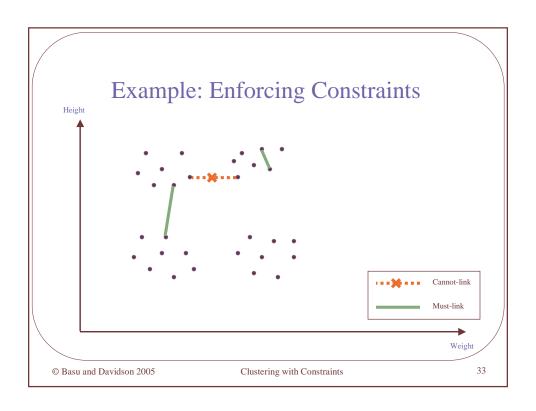
Enforcing Constraints

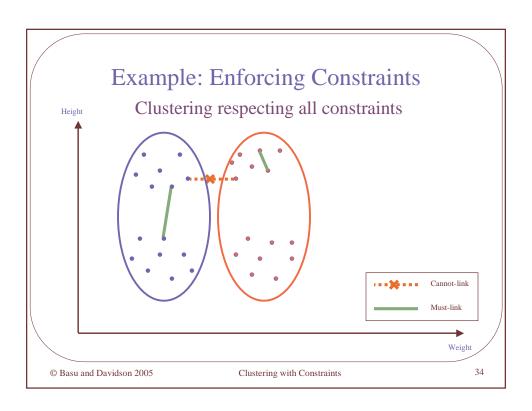
- Clustering objective modified to enforce constraints
 - Strict enforcement: find "best" feasible clustering respecting all constraints
 - Partial enforcement: find "best" clustering maximally respecting constraints
- Uses standard distance functions for clustering

[Demiriz et al.'99, Wagstaff et al.'01, Segal et al.'03, Davidson et al.'05, Lange et al.'05]

© Basu and Davidson 2005

Clustering with Constraints





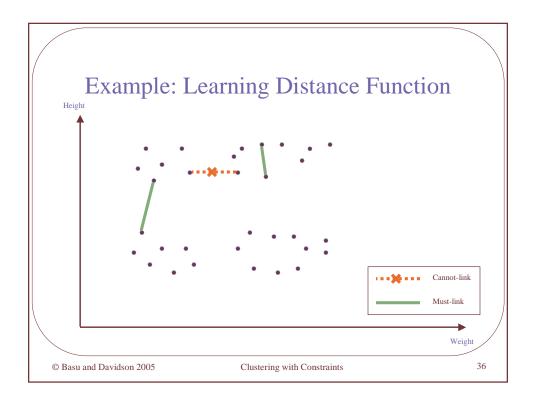
Learning Distance Function

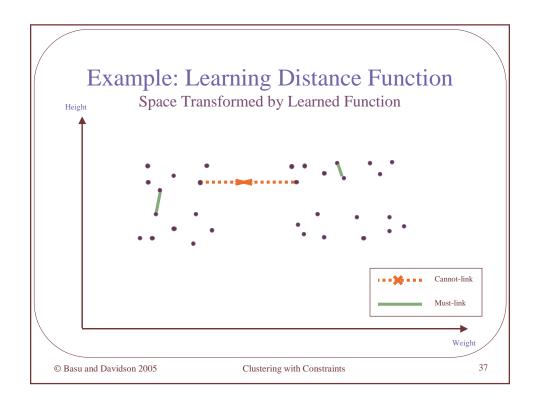
- Constraints used to learn clustering distance function
 - $ML(a,b) \rightarrow a$ and b and surrounding points should be "close"
 - $CL(a,b) \rightarrow a$ and b and surrounding points should be "far apart"
- Standard clustering algorithm applied with learned distance function

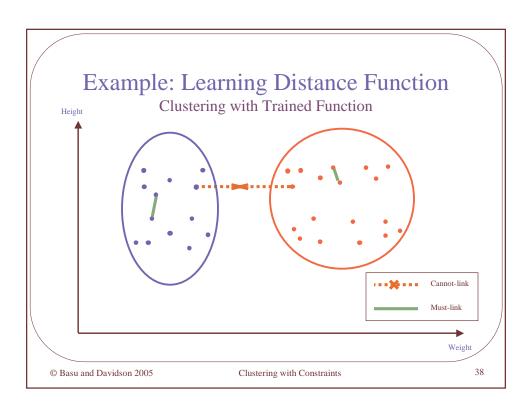
[Klein et al.'02, Cohn et al.'03, Xing et al.'03, Bar Hillel et al.'03, Bilenko et al.'03, Kamvar et al.'03, Hertz et al.'04, De Bie et al.'04]

© Basu and Davidson 2005

Clustering with Constraints







Enforce Constraints + Learn Distance

- Integrated framework [Basu et al.'04]
 - Respect constraints during cluster assignment
 - Modify distance function during parameter re-estimation
- Advantage of integration
 - Distance function can change the space to decrease constraint violations made by cluster assignment
 - Uses both constraints and unlabeled data for learning distance function

© Basu and Davidson 2005

Clustering with Constraints

39

Outline

•	Introduction	[Ian]
•	Uses of constraints	[Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

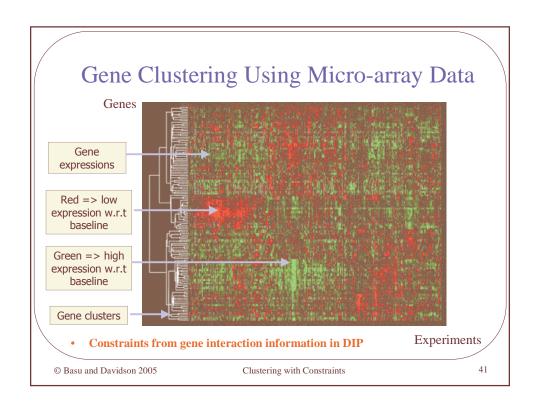
• Feasibility and complexity [Ian]

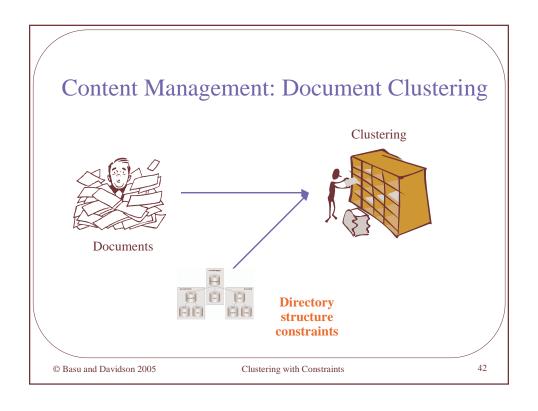
• Algorithms for constrained clustering

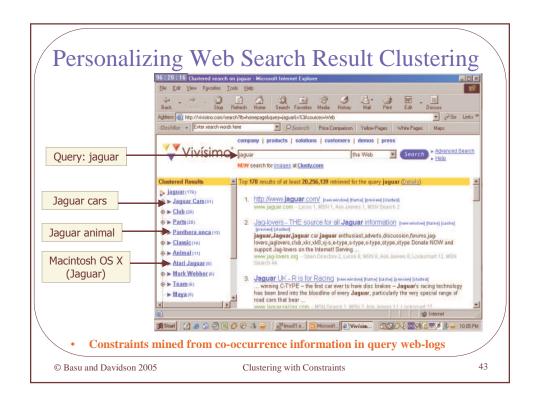
Enforcing constraints [Ian]
 Hierarchical [Ian]
 Learning distances [Sugato]
 Initializing and pre-processing [Sugato]
 Graph-based [Sugato]

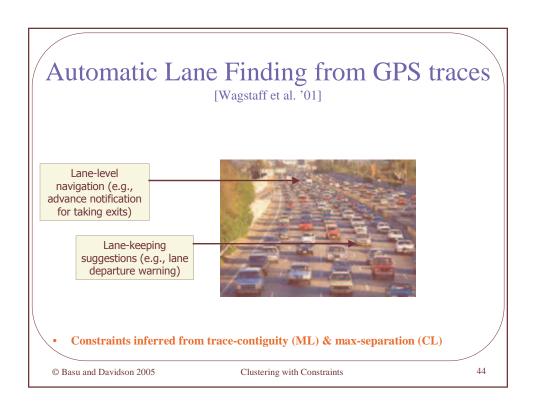
© Basu and Davidson 2005

Clustering with Constraints









Outline

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering

• Enforcing constraints [Ian]

• Hierarchical [Ian]

• Learning distances [Sugato]

• Initializing and pre-processing [Sugato]

• Graph-based [Sugato]

© Basu and Davidson 2005

Clustering with Constraints

45

Summary of Benefits

- Non-hierarchical Clustering
 - Find clusters where standard distance functions could not
 - Find solutions with given properties
 - Improve convergence time of algorithms
- Hierarchical Clustering
 - Improved quality of dendrogram
 - Use triangle inequality to speed up agglomerative algorithms
- Graphs
 - Clustering using constraints
 - Clustering graphs with real valued edges while respecting auxiliary constraint graph

© Basu and Davidson 2005

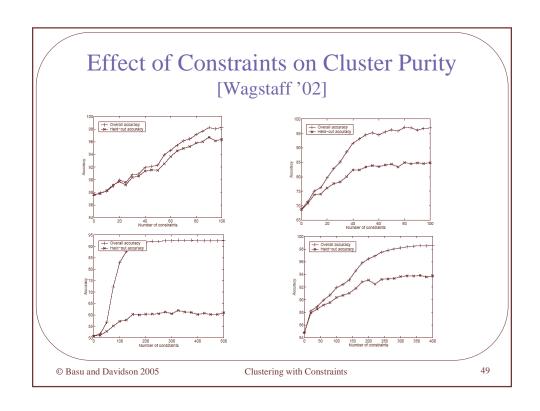
Clustering with Constraints

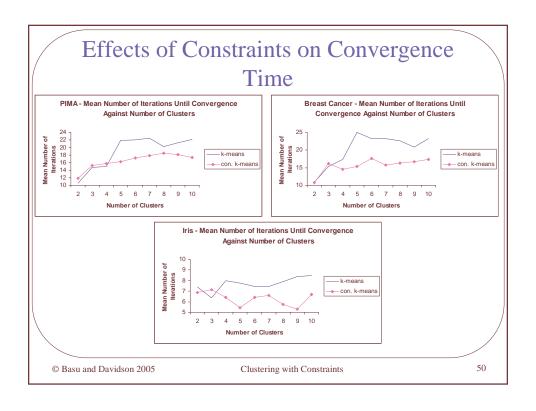
The Effects of Constraints on Clustering Solutions

- Constraints divide the set of all plausible solutions into two sets: feasible and infeasible: $S = S_F \cup S_I$
- Constraints effectively reduce the search space to $\boldsymbol{S}_{\boldsymbol{F}}$
- S_F all have a common property
- So its not unexpected that we find solutions with a desired property and find them quickly.

© Basu and Davidson 2005

Clustering with Constraints





Outline

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering

• Enforcing constraints [Ian]

• Hierarchical [Ian]

• Learning distances [Sugato]

• Initializing and pre-processing [Sugato]

• Graph-based [Sugato]

© Basu and Davidson 2005

Clustering with Constraints

51

The Feasibility Problem

- We've seen that constraints are useful ...
- But is there a catch?
- We are now trying to find a clustering under all sorts of constraints

Feasibility Problem

Given a set of data points S, a set of ML and CL constraints, a lower (K_L) and upper bound (K_u) on the number of clusters,

is there **at least one** single set partition of *S* into *k* blocks, $K_U \ge k \ge K_L$ such that no constraints are violated?

i.e. CL(a,b), CL(b,c), CL(a,c), k=2?

© Basu and Davidson 2005

Clustering with Constraints

Investigating the Feasibility Problem and Consequences?

- For a constraint type or combination:
 - P :construct a polynomial time algorithm
 - NP-complete : reduce from known NP-complete problem
- If the feasibility problem is in P then we can:
 - Use the algorithms to check if a single feasible solution exists before we even apply K-Means
 - Add feasibility checking as a step in K-Means.
- If feasibility problem is NP-complete then:
 - If we try to find a feasible solution at each iteration of K-Means, could take a long time as problem is intractable.

© Basu and Davidson 2005

Clustering with Constraints

53

Summary of Feasibility Complexity Results

Constraint	Complexity
Must-Link	P
Cannot-Link	NP-Complete
δ -constraint	P
ϵ -constraint	P
Must-Link and δ	P
Must-Link and ϵ	NP-complete
δ and ϵ	P

Table 1: Results for Feasibility Problems

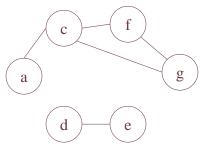
© Basu and Davidson 2005

Clustering with Constraints

Cannot Link Example

Instances a thru z

Constraints: CL(a,c), CL(d,e), CL(f,g), CL(c,g), CL(c,f)



Graph K-coloring problem

Graph K-coloring problem is intractable for all values of K≥3

See [Davidson and Ravi '05] for polynomial reduction from graph K-coloring problem.

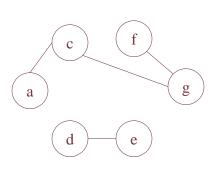
© Basu and Davidson 2005

Clustering with Constraints

55

Must Link Example

Instances a ...z ML(a,c), ML(d,e), ML(f,g), ML(c,g)



 $M1=\{a,c,f,g\}$ $M2=\{d,e\}$

Let r be the size of the transitive closure (i.e. r=2 above), the number of connected components

Infeasible if k > (n-|TC|)-r> 26-6 - 2

i.e., can't have too many clusters

© Basu and Davidson 2005

Clustering with Constraints

New Results

- Feasibility Problem for Disjunctions of ML and CL constraints are intractable
- But Feasibility Problem for Choice sets of ML and CL constraints are easy.
 - $\ \text{ML}(\textbf{x}, \textbf{y}_1) \cup \text{ML}(\textbf{x}, \textbf{y}_2) \ldots \cup \text{ML}(\textbf{x}, \textbf{y}_n)$
 - i.e. x must-be linked with one of the y's.

© Basu and Davidson 2005

Clustering with Constraints

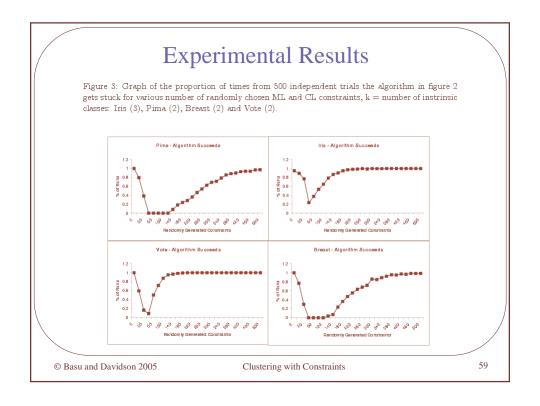
57

Is The Feasibility Problem Really a Problem

- Wait! You said clustering under cannot link constraints was intractable.
- Worst case results say that there is one at least one "hard" problem instance so pessimistically we say the entire problem is hard.
- But when and how often does feasibility become a problem.
- Set k = # extrinsic clusters
- Randomly generated constraints by choosing two instances
- Run COP-k-means

© Basu and Davidson 2005

Clustering with Constraints



Outline	
• Introduction	[Ian]
 Uses of constraints 	[Sugato]
Real-world examples	[Sugato]
 Benefits of constraints 	[Ian]
 Feasibility and complexity 	[Ian]
 Algorithms for constrained clustering 	
Enforcing constraints	[Ian]
Hierarchical	[Ian]
 Learning distances 	[Sugato]
 Initializing and pre-processing 	[Sugato]
Graph-based	[Sugato]
© Basu and Davidson 2005 Clustering with Constraints	60

Enforcing Constraints

- Constraints are strong background information that should be satisfied.
- Two options
 - Satisfy all constraints, but we will run into infeasibility problems
 - Satisfy as many constraints as possible, but working out largest subset of constraints is also intractable (largest-color problem)

© Basu and Davidson 2005

Clustering with Constraints

61

COP-k-Means – Nearest-"Feasible"-Centroid Idea

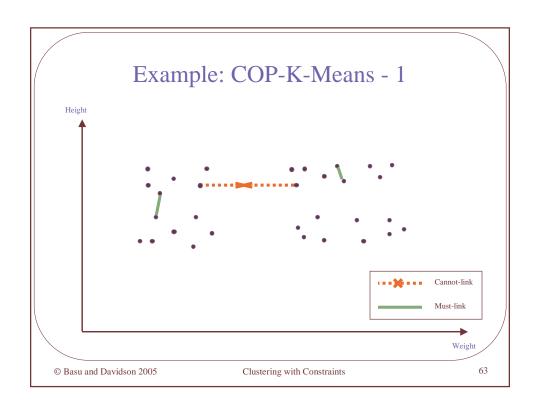
 $\textbf{Input:} \ S_{u}; \ \ \textbf{unlabeled data,} \ S_{l}; \ \ \textbf{labeled data,} \ k; \ \ \textbf{the number of clusters to find,} \ q; \ \ \textbf{number of constraints to generate.}$

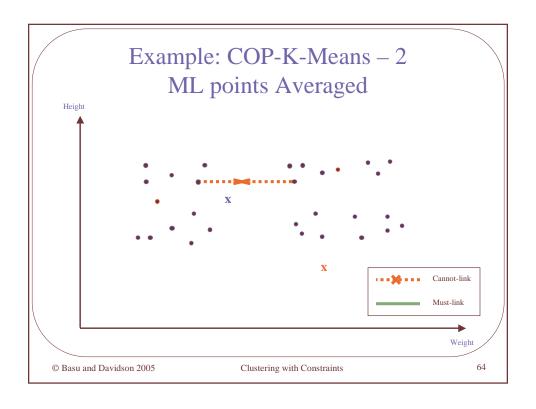
Output: A set partition of $S=S_u\cup S_l$ into k clusters so that all the constraints in $C=ML\cup CL$ are satisfied.

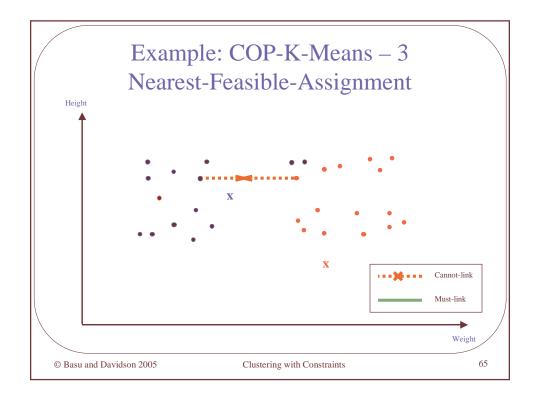
- 1. $ML = \emptyset$, $CL = \emptyset$
- 2. loop q times do
 - (a) Randomly choose two distinct points x and y from S_l .
 - (b) if (Label(x) = Label(y)) $ML = ML \cup \{x,y\}$ else $CL = CL \cup \{x,y\}$
- 3. Compute the transitive closure from ML to obtain the connected components $CC_1,...,CC_r$
- 4. For each i, $1 \le i \le r$, replace data points in CC_i with the average of the points in CC_i .
- 5. Randomly generate cluster centroids C_1, \ldots, C_k .
- 6. loop until convergence do
 - (a) for i = 1 to |S| do
 - (a.1) Assign s_i to closest feasible cluster.
 - (b) Recalculate C_1, \ldots, C_k

© Basu and Davidson 2005

Clustering with Constraints





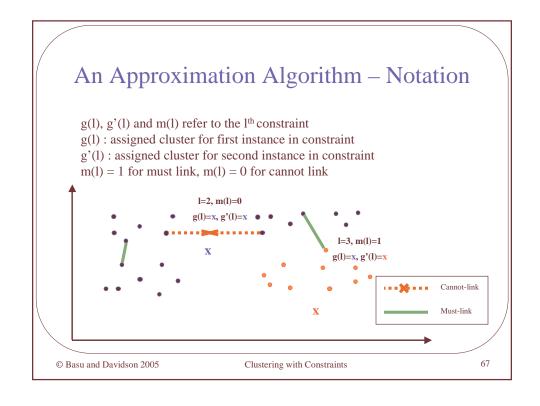


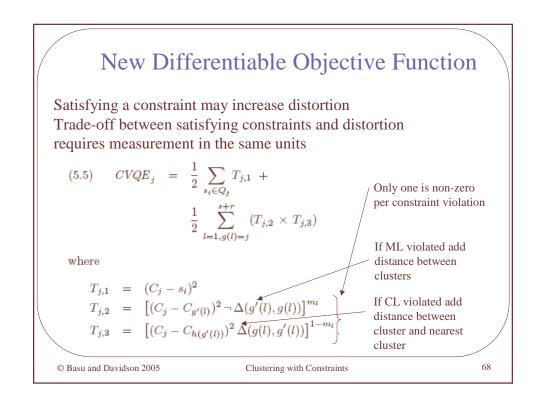
Trying To Minimize VQE and Satisfy As Many Constraints As Possible

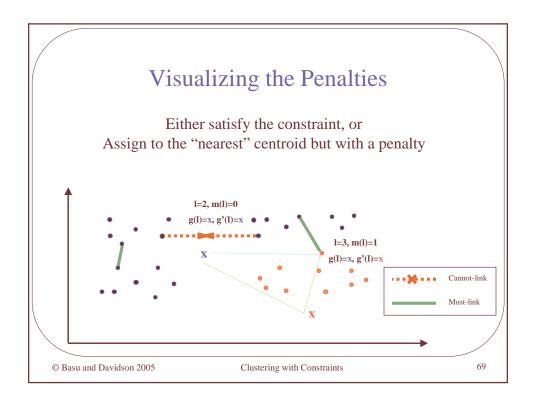
- Can't rely on expecting that I can satisfy all constraints at each iteration.
- Change aim of K-Means from:
 - Find a solution satisfying all the constraints and minimizing VQE
 - Find a solution satisfying most of the constraints (penalized if a constraint is violated) and minimizing VQE
- Two tricks
 - Need to express penalty term in same units as VQE/distortion
 - Need to rederive K-Means (as a gradient descent algorithm) from first principles.

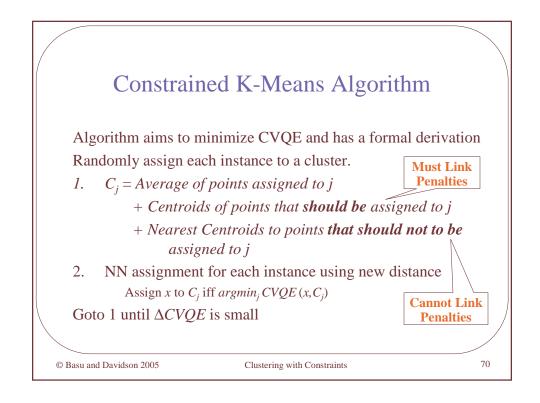
© Basu and Davidson 2005

Clustering with Constraints









Approximation Algorithm Experiments

- Binary class problems.
 - Use small amount of labeled data to generate ML between similar labeled instances and CL between different label instances
- As Wagstaff, Klein and Basu found cluster purity increases for k=2.
- For $k \ge 2$
 - The algorithm converged in fewer iterations than regular unconstrained k-means
 - On average vector quantization error was less than unconstrained kmeans
 - Manages trade-off between satisfying constraints and minimizing VQE

© Basu and Davidson 2005

Clustering with Constraints

71

Outline

•	Introduction	[Ian]
•	Uses of constraints	[Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering

Enforcing constraints [Ian]Hierarchical [Ian]

• Learning distances [Sugato]

Initializing and pre-processingGraph-based[Sugato]

© Basu and Davidson 2005

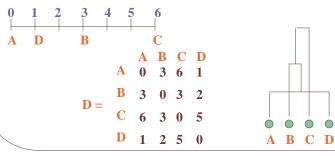
Clustering with Constraints

Hierarchical Clustering

Agglomerative Hierarchical Clustering

- 1. Initially, every instance is in its own cluster
- 2. Compute similarities between each cluster
- 3. Merge two most **similar** clusters into one.
- 4. Goto 2

Time Complexity $O(n^2)$



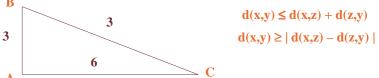
© Basu and Davidson 2005

Clustering with Constraints

73

Modify the Distance Matrix (D) To Satisfy Instance Level Constraints (KKM02) - 1

- Metric spaces. Only changing the distance matrix not the distance function.
- But we must satisfy the triangle inequality

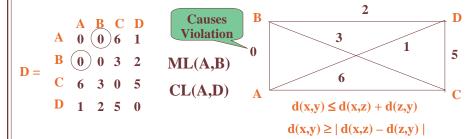


• If inequality did not hold then shortest distance between two points wouldn't be a line.

© Basu and Davidson 2005

Clustering with Constraints

Modify the Distance Matrix (D) To Satisfy Instance Level Constraints (KKM02) - 2



Algorithm

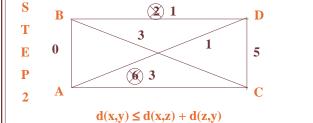
- 1): Change ML distance instance entries in D to 0
- 2): Calculate D' from D using all pairwise shortest path algorithms, takes $O(n^3)$
- 3): D'' = D' Except Change CL distance entries to be max(D)+1

© Basu and Davidson 2005

Clustering with Constraints

75

Modify the Distance Matrix (D) To Satisfy Instance Level Constraints (KKM02) - 3



 $D' = \begin{pmatrix} A & 0 & 0 & 3 & 1 \\ B & 0 & 0 & 3 & 1 \\ C & 3 & 3 & 0 & 5 \\ D & 1 & 1 & 5 & 0 \end{pmatrix}$

Algorithm

• 1): Change ML distance instance entries in D to 0

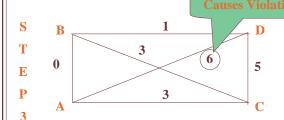
 $\mathbf{d}(\mathbf{x},\!\mathbf{y}) \ge |\mathbf{d}(\mathbf{x},\!\mathbf{z}) - \mathbf{d}(\mathbf{z},\!\mathbf{y})|$

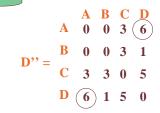
- 2): Calculate D' from D using all pairwise shortest path algorithms, takes $O(n^3)$
 - 3): D'' = D' Except Change CL distance entries to be max(D)+1

© Basu and Davidson 2005

Clustering with Constraints

Modify the Distance Matrix (D) To Satisfy Instance Level Constraints (KKM02) - 4





But Because of entailment property of CL we "maintain" the triangle inequality $\label{eq:closed} Join(A,B)$

 $\label{eq:can't Join} Can't \ Join((A,B),D) \ instead \ Join((A,B),C) \ and \ then \ stop$ Indirectly made d(B,D) and d(A,C) >> 6 and make inequality indirectly hold.

© Basu and Davidson 2005

Clustering with Constraints

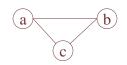
77

Feasibility, Dead-ends and Speeding Up Agglomerative Clustering

Feasibility Problem

Instance: Given a set S of points, a (symmetric) distance function $d(x,y) \ge 0 \ \forall x,y$ and a collection of C constraints. Problem: Can S be partitioned into **at least one** single subsets (clusters) so that all constraints are satisfied?

CL(a,b), CL(b,c), CL(a,c) (k=3, k=2, k=1)?



For fixed *k* equivalent to graph coloring so NP-complete

© Basu and Davidson 2005

Clustering with Constraints

Feasibility Results [11,12]

Constraint	Given k	Unspecified k
ML	P	P
CL	NP-complete	P
δ	P	P
ε	P	P
ML and ε	NP-complete	P
ML and δ	P	P
δ and ϵ	P	P
ML, CL and ε	NP-complete	NP-complete

© Basu and Davidson 2005

Clustering with Constraints

79

Feasibility under ML and CL

$$ML(s_1,s_3), ML(ML(s_2,s_3), ML(s_2,s_4), CL(s_1,s_4)$$

Compute the <u>Transitive Closure</u> on $ML=\{CC_1 ... CC_r\}$ $O(n+m_{ML})$

Construct Edges {E} between Nodes based on CL: O(m_{CL})

Infeasible: iff $\exists h, k : e_h(s_i, s_i) : s_i, s_i \in CC_k : O(m_{CL})$

© Basu and Davidson 2005

Clustering with Constraints

Feasibility under ML and ε

 $S'=\{x \in S : x \text{ does } \textbf{not } \text{ have an } \varepsilon \text{ neighbor}\}=\{s_5, s_6\}$ Each of these should be in their own cluster

 $ML(s_1,s_2), ML(s_3,s_4), ML(s_4,s_5)$

Compute the Transitive Closure on $ML = \{CC_1 ... CC_r\} : O(n+m)$

Infeasible: iff $\exists i, j : s_i \in CC_j, s_i \in S' : O(|S'/)$

© Basu and Davidson 2005

Clustering with Constraints

81

An Algorithm for ML and CL Constraints

ConstrainedAgglomerative(S,ML,CL) returns $Dendrogram_i$, $i = k_{min} ... k_{max}$

Notes: In Step 5 below, the term "mergeable clusters" is used to denote a pair of clusters whose merger does not violate any of the given CL constraints. The value of t at the end of the loop in Step 5 gives the value of k_{min} .

- 1. Construct the transitive closure of the ML constraints (see [4] for an algorithm) resulting in r connected components $M_1, M_2, ..., M_r$.

- 2. If two points $\{x,y\}$ are both a CL and ML constraint then output "No Solution" and stop.

 3. Let $S_1=S-(\bigcup_{i=1}^r M_i)$. Let $k_{\max}=r+|S_1|$.

 4. Construct an initial feasible clustering with k_{\max} clusters consisting of the r clusters M_1 , ..., M_r and a singleton cluster for each point in S_1 . Set $t = k_{max}$.
- 5. while (there exists a pair of mergeable clusters) do
 - (a) Select a pair of clusters C_l and C_m according to the specified distance criterion.
 - (b) Merge C_l into C_m and remove C_l. (The result is Dendrogram_{t−1}.) (c) t = t - 1.

endwhile

Fig. 2. Agglomerative Clustering with ML and CL Constraints

© Basu and Davidson 2005

Clustering with Constraints

Empirical Results

Data Set	Distortion		Purity	
	Unconstrained	Constrained	Unconstrained	Constrained
Iris	3.2	2.7	58%	66%
Breast	8.0	7.3	53%	59%
Digit (3 vs 8)	17.1	15.2	35%	45%
Pima	9.8	8.1	61%	68%
Census	26.3	22.3	56%	61%
Sick	17.0	15.6	50%	59%

Table 2. Average Distortion per Instance and Average Percentage Cluster Purity over Entire Dendrogram

Data Set	Unconstrained	Constrained
Iris	22,201	3,275
Breast	487,204	59,726
Digit (3 vs 8)	3,996,001	990,118
Pima	588,289	61,381
Census	2,347,305,601	563,034,601
Sick	793,881	159,801

Table 3. The Rounded Mean Number of Pair-wise Distance Calculations for an Unconstrained and Constrained Clustering using the δ constraint

© Basu and Davidson 2005

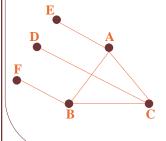
Clustering with Constraints

83

Dead-end Clusterings

Definition 3. A feasible clustering $C = \{C_1, C_2, ..., C_k\}$ of a set S is irreducible if no pair of clusters in C can be merged to obtain a feasible clustering with k-1 clusters.

A *k* cluster clustering is a dead-end if it is irreducible, even though other feasible clusterings with <*k* clusters exist



The Greedy Closest Join Algorithm:

Join (F,D) Join (FD,E)

But then get stuck

Alternative is:

Join(F,C), Join(D,A), Join(E,B)

 $\ensuremath{\mathbb{O}}$ Basu and Davidson 2005

Clustering with Constraints

Why Are Dead-Ends a Problem?

- Theorem (in technical report)
 - Let $k_{min} < k_{max}$, then if there is a feasible clustering with k_{max} clusters and a "coarsening" with k_{min} clusters there exists a feasible clustering **for every value** between k_{min} and k_{max}
- But you can't always go from a clustering with k_{max} to one with k_{min} clusters if you perform closest cluster merge.
- That is if you use traditional agglomerative algorithms your dendrogram can end prematurely.

© Basu and Davidson 2005

Clustering with Constraints

85

Dead-End Results

 For dead-end situations, you can't use agglomerative clustering algorithms, otherwise you'll prematurely terminate the dendrogram.

Constraint	Dead-end Solutions?
ML	No [PKDD05]
CL	Yes [PKDD05]
δ	No [PKDD05]
ε	No [PKDD05]

Constraint	Dead-end Solutions?
ML and ϵ	No [PKDD05]
ML and δ	No [PKDD05]
δ and ϵ	No [PKDD05]
ML, CL & ε	Yes [PKDD05]

© Basu and Davidson 2005

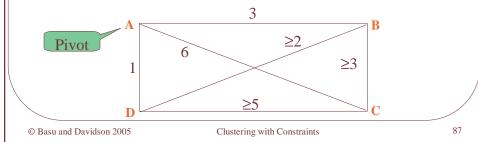
Clustering with Constraints

Speeding Up Agglomerative Clustering Using the Triangle Inequality - 1

Definition 2. (The γ Constraint For Hierarchical Clustering) Two clusters whose geometric centroids are separated by a distance greater than γ cannot be joined.

Calculate distance between a pivot and all other points Bound distances on remaining pairs of points





Speeding Up Agglomerative Clustering Using the Triangle Inequality - 2

Let
$$\gamma = 2$$

$$D = \begin{pmatrix} A & B & C & D \\ A & 0 & 3 & 6 & 1 \\ B & 3 & 0 & 3 & \ge 2 \\ C & 6 & 3 & 0 & 5 \\ D & 1 & 2 & 7 & 0 \end{pmatrix}$$

Data Set	Unconstrained	Using γ Constraint
Iris	22,201	19,830
Breast	487,204	431,321
Digit (3 vs 8)	3,996,001	3,432,021
Pima	588,289	501,323
Census	2,347,305,601	1,992,232,981
Sick	793,881	703,764

Mean number of distance calculations

Calculate: D(a,b)=1, D(a,c)=3, D(a,d)=6Save $D(b,d)\geq 5$ $D(c,d)\geq 3$ Calculate $D(b,c)\geq 2$,

© Basu and Davidson 2005

Clustering with Constraints

Algorithm

```
Intelligent Distance (\gamma, C = \{C_1, \dots, C_k\}) returns d(i, j) \forall i, j.

1. for i = 2 to n - 1 d_{1,i} = D(C_1, C_i) endloop

2. for i = 2 to n - 1

for j = i + 1 to n - 1 d_{i,j} = |d_{1,i} - d_{1,j}|

if d_{i,j} > \gamma then d_{i,j} = \gamma + 1; do not join else d_{i,j} = D(x_i, x_j) endloop

endloop

3. return d_{i,j}, \forall i, j.
```

Fig. 3. Function for Calculating Distances Using the γ Constraint and the Triangle Inequality.

- Worst case result $O(n^2)$ distance calculations
- Best case calculated bound **always** exceeds γ : O(n-1)
- Average case using the Markov inequality: save 1/2c distance calculations where $\gamma = c\rho$ and ρ is the average distance between two points

© Basu and Davidson 2005

Clustering with Constraints

89

Outline

•	Introduction	[Ian]
•	Uses of constraints	[Sugato]
•	Real-world examples	[Sugato]
•	Benefits of constraints	[Ian]
•	Feasibility and complexity	[Ian]
•	Algorithms for constrained clustering	
	Enforcing constraints	[Ian]
	Hierarchical	[Ian]
	 Learning distances 	[Sugato]
	 Initializing and pre-processing 	[Sugato]
	 Graph-based 	[Sugato]

© Basu and Davidson 2005

Clustering with Constraints

Distance Learning as Convex Optimization [Xing et al. '02]

• Learns a parameterized Mahalanobis distance

$$\begin{split} \min_{A} \sum_{(s_{i}, s_{j}) \in ML} & \|s_{i} - s_{j}\|_{A}^{2} = \min_{A} \sum_{(s_{i}, s_{j}) \in ML} (s_{i} - s_{j})^{T} A (s_{i} - s_{j}) \\ & \sum_{(s_{i}, s_{j}) \in CL} & \|s_{i} - s_{j}\|_{A} \ge 1 \\ s.t. & A \neq 0 \end{split}$$

© Basu and Davidson 2005

Clustering with Constraints

91

Alternate formulation

• Equivalent optimization problem

$$\max_{A} g(A) = \sum_{(s_{i}, s_{j}) \in CL} \|s_{i}, s_{j}\|_{A}$$

$$f(A) = \sum_{(s_{i}, s_{j}) \in ML} \|s_{i}, s_{j}\|_{A}^{2} \le 1 \longrightarrow C_{1}$$

$$s.t. \qquad A \Leftrightarrow 0 \qquad \longrightarrow C_{2}$$

© Basu and Davidson 2005

Clustering with Constraints

Optimization Algorithm

- Solve optimization problem using combination of
 - gradient ascent: to optimize the objective
 - iterated projection algorithm: to satisfy the constraints

Iterate

Iterate

$$\begin{array}{l} A := \arg\min_{A'} \{||A' - A||_F : A' \in C_1\} \\ A := \arg\min_{A'} \{||A' - A||_F : A' \in C_2\} \\ \textbf{until } A \text{ converges} \end{array}$$

$$A:=A+\alpha(\nabla_A g(A))_{\bot\nabla_A f}$$

until convergence

© Basu and Davidson 2005

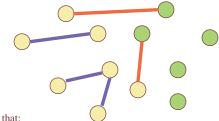
Clustering with Constraints

93

Distance Learning in Product Space

[Hertz et al. '04]

- Input:
 - Data set X in Rⁿ.
 - Equivalence constraints



• Output: function D: $X \times X \rightarrow [0,1]$ such that:

product space

- points from the same class are close to each other.
- points from different classes are very far from each other.
- Basic Observation:
 - Equivalence constraints ⇔ Binary labels in product space
 - Use boosting on product space to learn function

© Basu and Davidson 2005

Clustering with Constraints

Boosting in a nutshell

A standard ML method that attempts to boost the performance of "weak" learners

Basic idea:

- 1. Initially, weights are set equally
- 2. Iterate:
 - i. Train weak learner on weighted data
 - **ii. Increase** weights of **incorrectly** classified examples (force weak learner to focus on difficult examples)
- 3. Final hypothesis: combination of weak hypotheses

© Basu and Davidson 2005

Clustering with Constraints

95

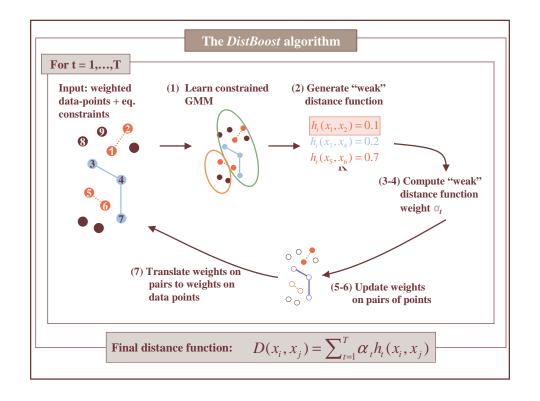
EM on Gaussian Mixture Model

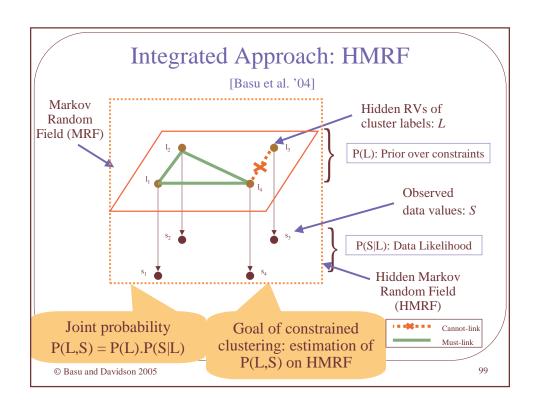
- GMM: Standard data representation that models data using a number of Gaussian sources
- The parameters of the sources are estimated using the EM algorithm:
 - E step: Calculate Expected log-likelihood of the data over all possible assignments of data-points to sources
 - M step: Differentiate the Expectation w.r.t. the **parameters**

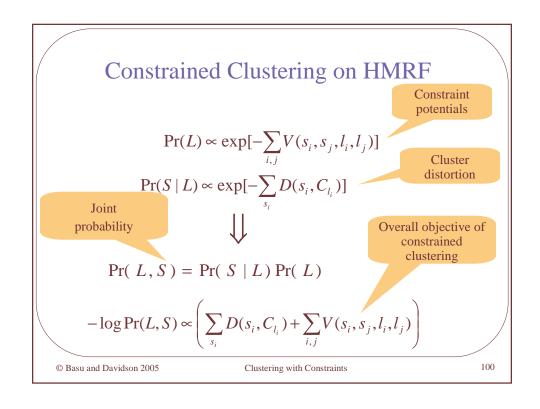
© Basu and Davidson 2005

Clustering with Constraints

The Weak Learner: Constrained EM Constrained EM algorithm: fits a mixture of Gaussians to unlabeled data given a set of equivalence constraints. Modification in case of equivalence constraints: E step: sum only over assignments which comply with the constraints © Basu and Davidson 2005 Clustering with Constraints 97







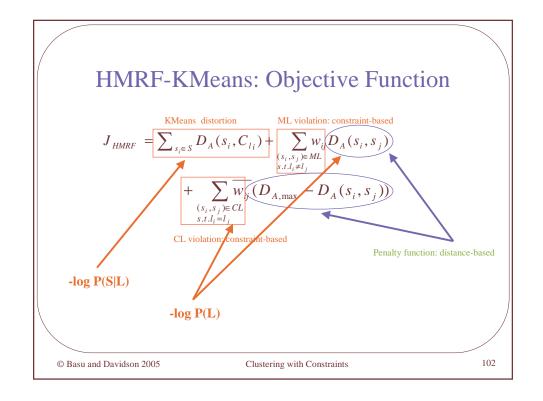
MRF potential

• Generalized Potts (Ising) potential:

$$V(s_i, s_j, l_i, l_j) = \begin{cases} w_{ij} D_A(s_i, s_j) & \text{if} \quad l_i \neq l_j, (s_i, s_j) \in ML \\ \hline w_{ij} \left[D_{A, \max} - D_A(s_i, s_j) \right] & \text{if} \quad l_i = l_j, (s_i, s_j) \in CL \\ 0 & \text{else} \end{cases}$$

© Basu and Davidson 2005

Clustering with Constraints



HMRF-KMeans: Algorithm

Initialization:

- Use neighborhoods derived from constraints to initialize clusters

Till *convergence*:

1. Point assignment:

 Assign each point s to cluster h* to minimize both distance and constraint violations

2. Mean re-estimation:

- Estimate cluster centroids C as means of each cluster
- Re-estimate parameters A of D_A to minimize constraint violations

© Basu and Davidson 2005

Clustering with Constraints

103

HMRF-KMeans: Convergence

Theorem:

HMRF-KMeans converges to a local minima of J_{HMRF} for for Bregman divergences D (e.g., KL divergence, squared Euclidean distance) or directional distances (e.g., Pearson's distance, cosine distance)

© Basu and Davidson 2005

Clustering with Constraints

Ablation/Sensitivity Experiment

• MPCK-Means: both constraints and distance learning

• MK-Means: only distance learning

• PCK-Means: only constraints

• K-Means: purely unsupervised

© Basu and Davidson 2005

Clustering with Constraints

105

Evaluation Measure

- Compare cluster partitioning to class labels on the dataset
- Mutual Information measure calculated only on test set

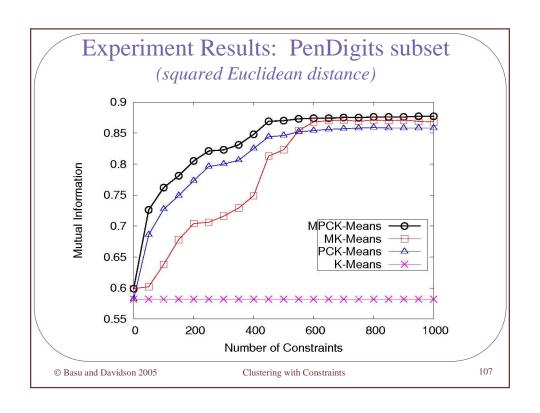
[Strehl et al. '00]

$$MI = \frac{I(C;K)}{[H(C) + H(K)]/2}$$

Cluster partitions	Underlying classes	MI value
		High
		Low

© Basu and Davidson 2005

Clustering with Constraints



Outline		١
• Introduction	[Ian]	
 Uses of constraints 	[Sugato]	
 Real-world examples 	[Sugato]	
 Benefits of constraints 	[Ian]	
 Feasibility and complexity 	[Ian]	
Algorithms for constrained clustering		
Enforcing constraints	[Ian]	
Hierarchical	[Ian]	
 Learning distances 	[Sugato]	
 Initializing and pre-processing 	[Sugato]	,
Graph-based	[Sugato]	
© Basu and Davidson 2005 Clustering with Constraints		108

Finding Informative Constraints given a quota of Queries

- Active learning for constraint acquisition [Basu et al.'04]:
 - In interactive setting, constraints obtained by queries to a user
 - Need to get **informative** constraints to get better clustering
- Two-phase active learning algorithm:
 - Explore: Use farthest-first traversal [Hochbaum et al.'85] to explore the data and find K pairwise-disjoint neighborhoods (cluster skeleton) rapidly
 - Consolidate: Consolidate basic cluster skeleton by getting more points from each cluster, within max (K-1) queries for any point

© Basu and Davidson 2005

Clustering with Constraints

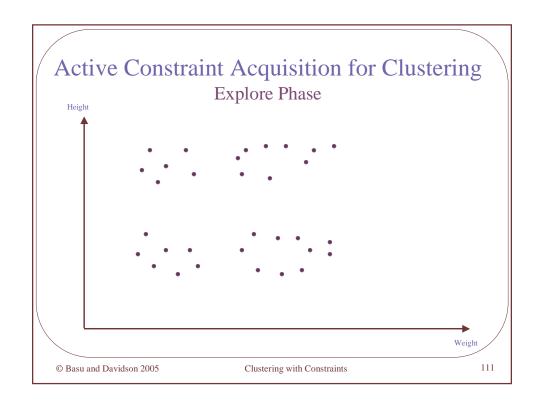
109

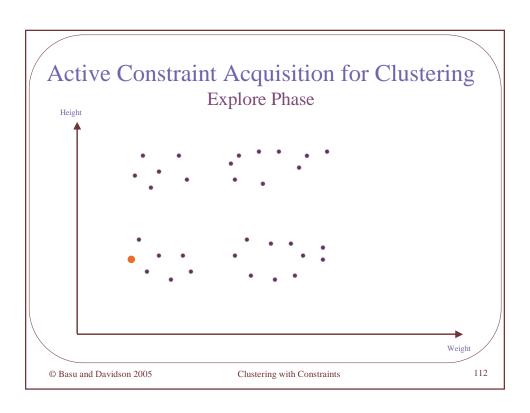
Algorithm: Explore

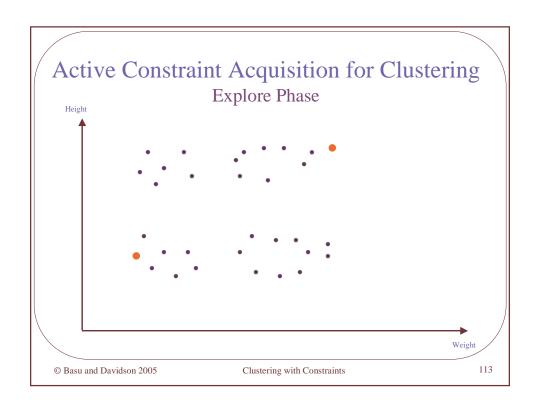
- Pick a point s at random, add it to neighborhood N_1 , $\lambda = 1$
- While queries are allowed and $(\lambda < k)$
 - Pick point s farthest from existing λ neighborhoods
 - If by querying s is cannot-linked to all existing neighborhoods, then set $\lambda = \lambda + 1$, start new neighborhood N_i with s
 - Else, add s to neighborhood with which it is must-linked

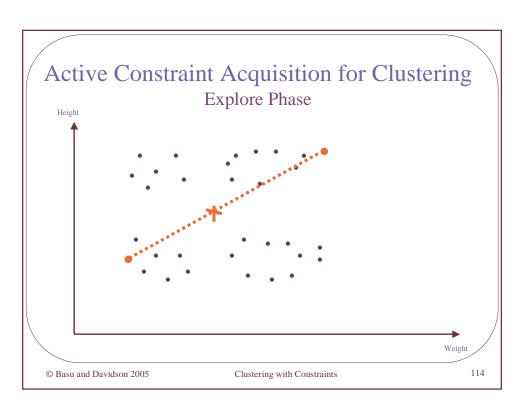
© Basu and Davidson 2005

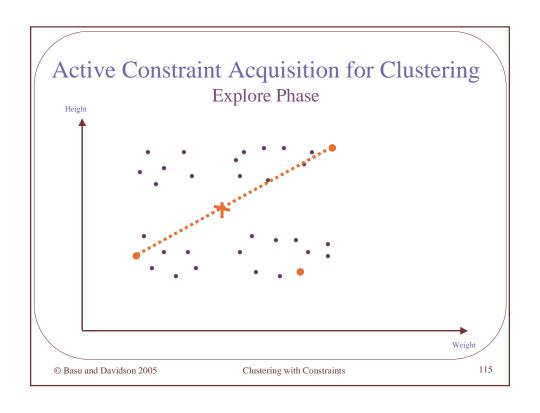
Clustering with Constraints

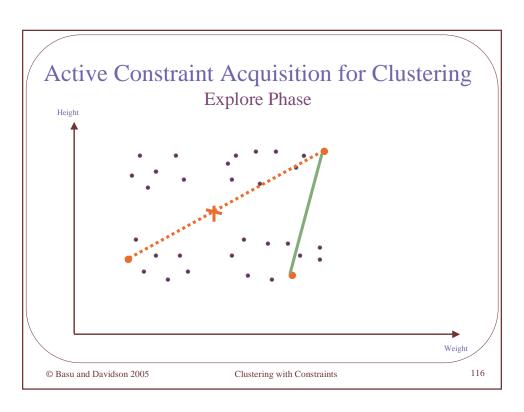


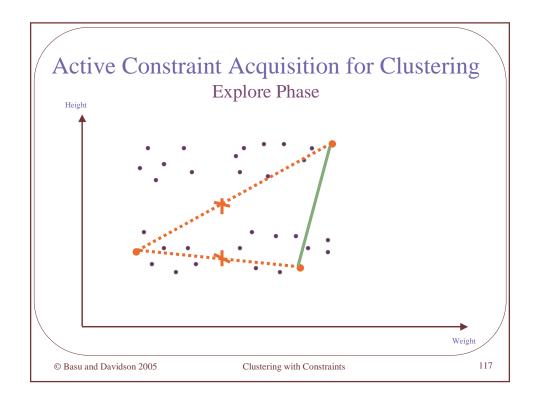










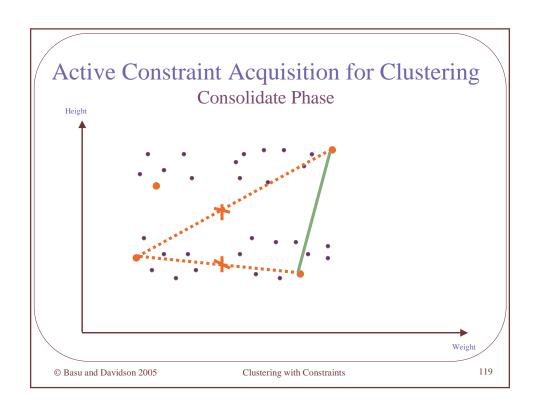


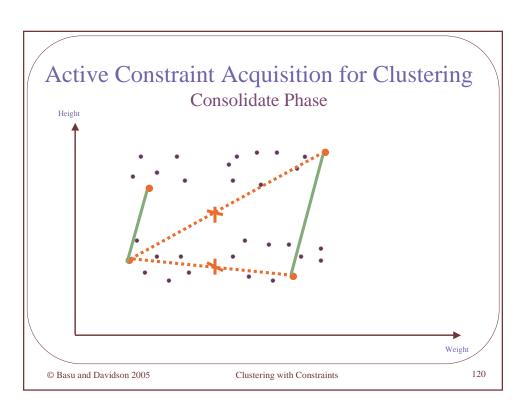
Algorithm: Consolidate

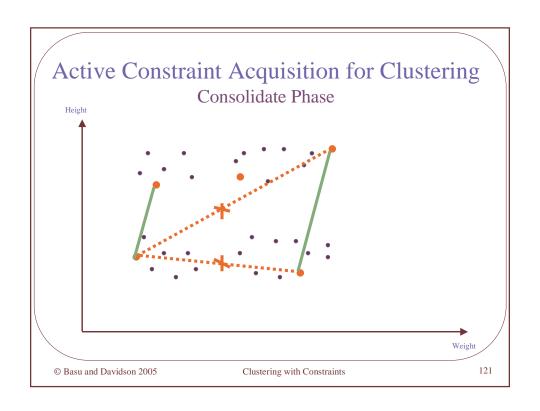
- Estimate centroids of each of the λ neighborhoods
- While queries are allowed
 - Randomly pick a point s not in the existing neighborhoods
 - Query s with each neighborhood (in sorted order of decreasing distance from s to centroids) until must-link is found
 - Add s to that neighborhood to which it is must-linked

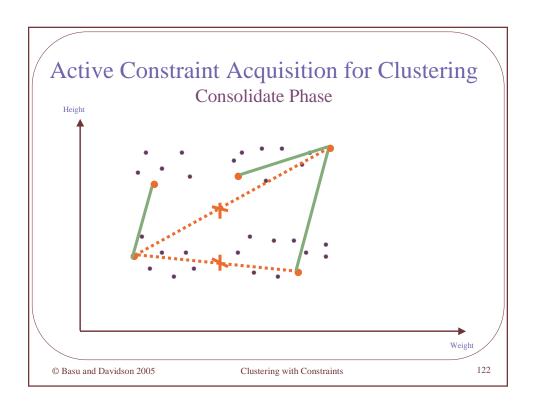
© Basu and Davidson 2005

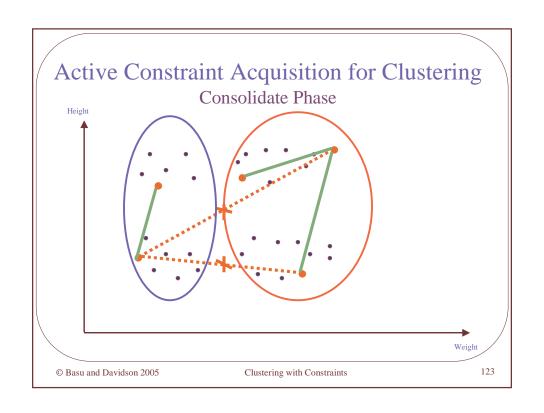
Clustering with Constraints

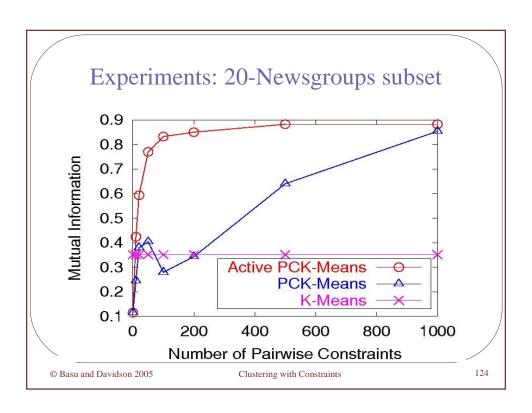












Confusion Matrices

No constraints

	Cluster1	Cluster2	Cluster3
Misc	71	12	17
Guns	25	61	14
Mideast	12	36	52

20 queries

	Cluster1	Cluster2	Cluster3
Misc	84	7	9
Guns	5	91	4
Mideast	7	7	86

© Basu and Davidson 2005

Clustering with Constraints

125

Algorithms to Seed K-Means When Feasibility Problem is in P [Davidson et al. '05]

- Each algorithm will find a feasible solution.
- You can build upon each to make them minimize the vector quantization error (or what-ever objective function your algorithm has) as well.

© Basu and Davidson 2005

Clustering with Constraints

Finding a Feasible Clustering for ML Constraints

Note: Whenever a feasible solution exists, the following algorithm outputs a collection of K_{ℓ} clusters satisfying all the must-link constraints.

- Compute the transitive closure of the constraints in C. Let this computation result in r sets of points, denoted by M₁, M₂, ..., M_r.
- Let S' = S − ∪_{i=1}^r M_i. (S' denotes the subset of points that are not involved in any must-link constraint.)
- 3. if $r \ge K_\ell$ then
 - (a) Let $A = (\bigcup_{i=K_{\ell}}^{r} M_i) \cup S'$.
 - (b) Output $M_1, ..., M_{K_{\ell}-1}, A$.

else

if $|S'| < K_{\ell} - r$ then

Output "There is no solution."

else

- (a) Let $t = K_{\ell} r$. Partition S' into t clusters A_1, \ldots, A_t arbitrarily.
- (b) Output $M_1, ..., M_r, A_1, ..., A_t$.

Figure 1: Algorithm for the ML-Feasibility Problem Clustering with Constraints

ML(a,b), ML(b,c) implies ML(a,c). Replace with ML(a,b,c)

Must link constraints are Transitive:

See paper for an algorithm r = # connected components

- S' are those points not part of ML constraints
- ➤ Too many connected components merge some: doesn't violate ML constraints
- ➤ Too many clusters to find.
- $r < K_1 <= n-r$

127

Finding a Feasible Clustering Under the δ Constraint

- 1. for each point s_i do
 - (a) Determine the set X_i ⊆ S − {s_i} of points such that for each point x_j ∈ X_i , d(s_i , x_j) < δ.
 - (b) For each point x_j ∈ X_i, create the must-link constraint {s_i, x_j}.
- Let C denote the set of all the must-link constraints created in Step 1. Use the algorithm for the MLfeasibility problem (Figure 1) with point set S, constraint set C and the values K_ℓ and K_u.

Figure 2: Algorithm for the δ -Feasibility Problem

© Basu and Davidson 2005

Clustering with Constraints

Finding a Feasible Clustering Under the & Constraint

3. if $t + r \ge K_u$

- then $\ /*$ We may have too many clusters. */
 - (a) Merge clusters X_{Ku-t}, X_{Ku-t+1}, ..., X_r into a single new cluster X_{Ku-t}.
 - (b) Output the K_u clusters $C_1, C_2, ..., C_t, X_1, X_2, ..., X_{K_u-t}$.
- else $\ /*$ We have too few clusters. */
 - (a) Let N = t + r. Construct spanning trees $T_1, T_2, ..., T_r$ corresponding to the CCs of G
 - (b) while $(N < K_{\ell})$ do
 - (i) Find a tree T_i with at least two nodes. If no such tree exists, output "No feasible solution" and stop.
 - (ii) Let v be a leaf in tree T_i. Delete v from T_i.
 - (iii) Delete the point corresponding to v from cluster X_i and form a new singleton cluster X_{N+1} containing that point.
 - (iv) N = N + 1.
 - (c) Output the K_ℓ clusters $C_1, C_2, \ldots, C_t, X_1, X_2, \ldots, X_{K_\ell-t}$.

© Basu and Davidson 2005

and stop.

1. Find the set $S_1 \subseteq S$ such that no point in S_1 has

2. Construct the auxiliary graph G(V,E) for S_2 (see Definition 3.1). Let G have r connected compo-

3. Let $N^*=t+\min\{1,r\}.$ (Note: To satisfy the ϵ -constraint, at least N^* clusters must be used.)

4. if $N^* > K_u$ then Output "No feasible solution"

5. Let C_1, C_2, \ldots, C_t denote the singleton clusters

corresponding to points in S_1 . Let $X_1, X_2, ..., X_r$ denote the clusters corresponding to the CCs of G.

an ϵ -neighbor. Let $t = |S_1|$ and $S_2 = S - S_1$.

nents (CCs) denoted by $G_1, G_2, ..., G_r$.

Clustering with Constraints

129

Outline

• Introduction [Ian]

Uses of constraints [Sugato]Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

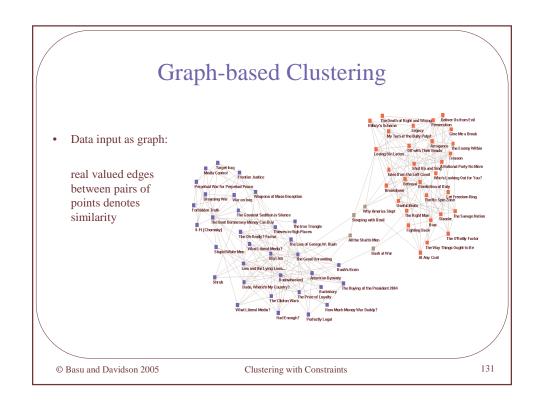
Algorithms for constrained clustering

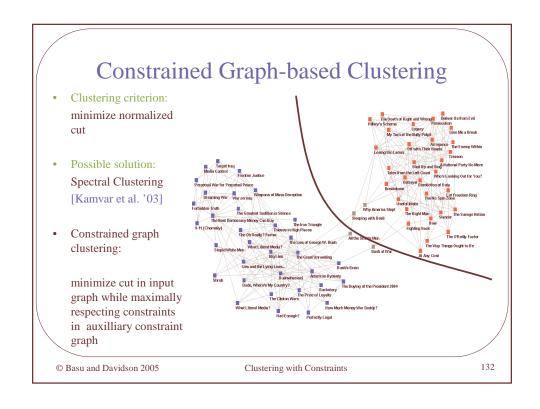
Enforcing constraints [Ian]
 Hierarchical [Ian]
 Learning distances [Sugato]
 Initializing and pre-processing [Sugato]

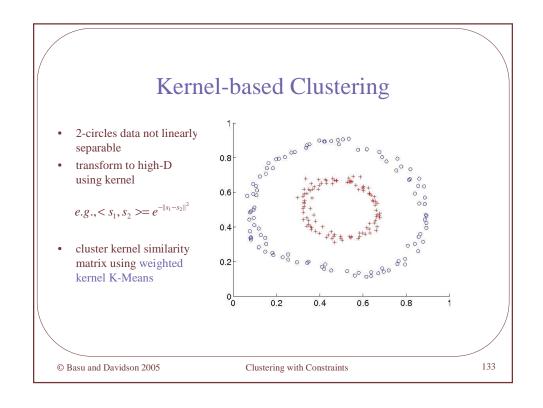
Initializing and pre-processing [Sugato]Graph-based [Sugato]

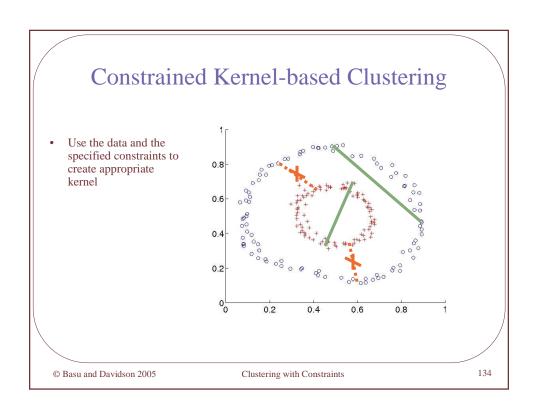
© Basu and Davidson 2005

Clustering with Constraints









SS-Kernel-KMeans [Kulis et al.'05]

- Contributions:
 - Theoretical equivalence between constrained graph clustering and weighted kernel KMeans
 - Unifies vector-based and graph-based constrained clustering using kernels
- Algorithm:
 - Forms a kernel matrix from data and constraints
 - Runs weighted kernel KMeans
- Benefits:
 - HMRF-KMeans and Spectral Clustering are special cases
 - Fast algorithm for constrained graph-based clustering
 - Kernels allow constrained clustering with non-linear cluster boundaries

© Basu and Davidson 2005

Clustering with Constraints

135

Kernel for HMRF-KMeans with squared Euclidean distance

$$\boldsymbol{J}_{\mathit{HMRF}} = \sum_{c=1}^{k} \sum_{s_i \in S_c} \parallel s_i - C_c \parallel^2 - \sum_{\substack{(s_i, s_j) \in \mathit{ML} \\ s.t.l_i = l_j}} \frac{w_{ij}}{\mid S_{l_i} \mid} + \sum_{\substack{(s_i, s_j) \in \mathit{CL} \\ s.t.l_i = l_j}} \frac{w_{ij}}{\mid S_{l_i} \mid}$$

$$K = S + W,$$
where
$$\begin{cases} S_{ij} = s_i . s_j, \\ W_{ij} = + w_{ij} \text{ if } (s_i, s_j) \in ML \\ -w_{ij} \text{ if } (s_i, s_j) \in CL \end{cases}$$

© Basu and Davidson 2005

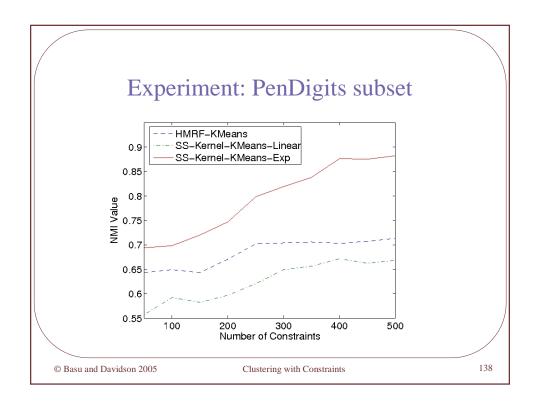
Clustering with Constraints

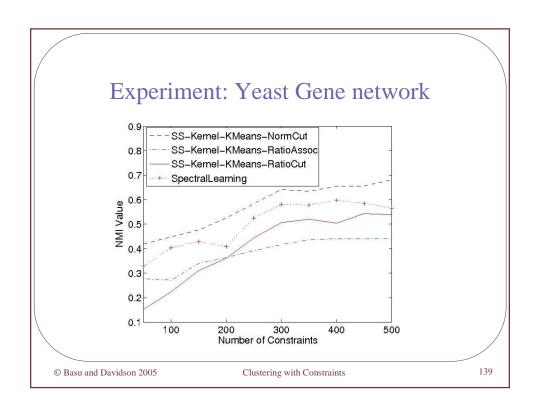
Kernel for Constrained Normalized-Cut Objective

$$\begin{split} J_{\textit{NormCut}} &= \sum_{c=1}^{k} \frac{\text{links}(V_{c}, V \setminus V_{c})}{\text{deg}(V_{c})} - \sum_{\substack{(s_{i}, s_{j}) \in ML \\ s.t.l_{i} = l_{j}}} \frac{w_{ij}}{\text{deg}(V_{l_{i}})} + \sum_{\substack{(s_{i}, s_{j}) \in CL \\ s.t.l_{i} = l_{j}}} \frac{w_{ij}}{\text{deg}(V_{l_{i}})} \\ K &= D^{-1}AD + D^{-1}WD, \\ W_{ij} &= \underset{-w_{ij}}{\text{graph affinity}} (i, j), \\ D &= \underset{-w_{ij}}{\text{diagonal degree matrix}} \\ W_{ij} &= \underset{-w_{ij}}{\overset{+}{W_{ij}}} \text{if } (s_{i}, s_{j}) \in \textit{ML} \\ W_{ij} &= CL \end{split}$$

© Basu and Davidson 2005

Clustering with Constraints





Today we talked about ... • Introduction [Ian] [Sugato] • Uses of constraints • Real-world examples [Sugato] • Benefits of constraints [Ian] Feasibility and complexity [Ian] • Algorithms for constrained clustering • Enforcing constraints [Ian] Hierarchical [Ian] • Learning distances [Sugato] · Initializing and pre-processing [Sugato] · Graph-based [Sugato] 140 © Basu and Davidson 2005 Clustering with Constraints

Thanks for Your Attention. We Hope You Learnt a Few Things

Sugato will be available until Tuesday morning Ian will be available until Monday afternoon

© Basu and Davidson 2005

Clustering with Constraints

141

References - 1

- N. Bansal, A. Blum and S. Chawla, "Correlation Clustering", 43rd Symposium on Foundations of Computer Science (FOCS 2002), pages 238-247.
- [2] S. Basu, A. Banerjee and R. J. Mooney, "Semisupervised Learning by Seeding", Proc. 19th Intl. Conf. on Machine Learning (ICML-2002), Sydney, Australia, July 2002.
- [3] S. Basu, M. Bilenko and R. J. Mooney, "A Probabilistic Framework for Semi-Supervised Clustering", Proc. 10th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD-2004), Seattle, WA, August 2004. Best Paper Award.
- [4] S. Basu, M. Bilenko and R. J. Mooney, "Active Semi-Supervision for Pairwise Constrained Clustering", Proc. 4th SIAM Intl. Conf. on Data Mining (SDM-2004).
- [5] K. Bennett, P. Bradley and A. Demiriz, "Constrained K-Means Clustering", Microsoft Research Technical Report 2000-65, May 2000.
- [6] De Bie T., Momma M., Cristianini N., "Efficiently Learning the Metric using Side-Information", in Proc. of the 14th International Conference on Algorithmic Learning Theory (ALT2003), Sapporo, Japan, Lecture Notes in Artificial Intelligence, Vol. 2842, pp. 175-189, Springer, 2003. (pdf)(bib)
- [7] A. Blum, J. Lafferty, M.R. Rwebangira, R. Reddy, "Semi-supervised Learning Using Randomized Mincuts", International Conference on Machine Learning, 2004.
- [8] M. Charikar, V. Guruswami and A. Wirth, "Clustering with Qualitative Information", Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.

© Basu and Davidson 2005

Clustering with Constraints

References - 2

- [9] H. Chang, D.Y. Yeung. Locally linear metric adaptation for semisupervised clustering. Proceedings of the Twenty-First International Conference on Machine Learning (ICML), pp.153-160, Banff, Alberta, Canada, 4-8 July 2004.
- [10] D. Cohn, R. Caruana, and A. McCallum, "Semi-supervised clustering with user feedback", Technical Report TR2003-1892, Cornell University, 2003
- [11] I. Davidson, S.S. Ravi, Clustering under Constraints: Feasibility Results and the K-Means Algorithm, SIAM Data Mining Conference 2005. Best Paper Award.
- [12] I. Davidson, S.S. Ravi, Hierarchical Clustering with Constraints: Theory and Practice, 9th European Principles and Practice of KDD, PKDD 2005.
- [13] A. S. Galanopoulos and S. C. Ahalt. Codeword distribution for frequency sensitive competitive learning with one-dimensional input data. IEEE Transactions on Neural Networks, 7(3):752-756, 1996.
- [14] j M. R. Garey and D. S. Johnson and H. S. Witsenhausen. The complexity of the generalized Lloyd-Max problem. IEEE Transactions on Information Theory, 28(2):255-256, 1982 j
- [15] David Gondek, Shivakumar Vaithyanathan, and Ashutosh Garg Clustering with Model-level Constraints, SIAM International Conference on Data Mining (SDM), 2005.
- [16] David Gondek and Thomas Hofmann Non-Redundant Data Clustering, 4th IEEE International Conference on Data Mining (ICDM), 2004. Best Paper Award
- [17] T. F. Gonzalez, "Clustering to Minimize the Maximum Intercluster Distance", Theoretical Computer Science, Vol. 38, No. 2-3, June 1985, pp. 293-306.

© Basu and Davidson 2005

Clustering with Constraints

143

References - 3

- [18] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin-based distance functions for clustering. ICML 2004.
- [19] Aharon Bar Hillel. Tomer Hertz. Noam Shental. Daphna Weinshall Learning Distance Functions using Equivalence Relations ICML 2003.
- [20] S. D. Kamvar, D. Klein, and C. Manning, "Spectral Learning," IJCAI, 2003.
- [21] D. Klein, S. D. Kamvar and C. D. Manning, "From Instance-Level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering", Proc. 19th Intl. Conf. on Machine Learning (ICMI, 2002).
- [22] B. Kulis, S. Basu, I. Dhillon, R. J. Mooney, "Semi-supervised Graph Clustering: A Kernel Approach", ICML 2005.
- [23] M. Law, Alexander Topchy, Anil K. Jain, Model-based Clustering With Probabilistic Constraints, SDM 2005.
- $[24]\,$ Z. Lu and T. Leen, Semi-supervised Learning with Penalized Probabilistic Clustering. NIPS 2005.
- [25] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall, Computing Gaussian Mixture Models with EM using Side-Information. In Proc. of workshop The Continuum from labeled to unlabeled data in machine learning and data mining, ICML 2003.
- [26] M. Schultz and T. Joachims, Learning a Distance Metric from Relative Comparisons, Proceedings of the Conference on Advance in Neural Information Processing Systems (NIPS), 2003.

© Basu and Davidson 2005

Clustering with Constraints

References - 4

- [27] Segal, E., Wang, H., and Koller, D. (2003). Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19.
- [28] A. Strehl, J. Ghosh, R. Mooney. Impact of similarity measures on webpage clustering. AAAI Workshop on AI for Webpage Search, Austin, pp. 58-64, 2000.
- [29] K. Wagstaff and C. Cardie, "Clustering with Instance- Level Constraints", Proc. 17th Intl. Conf. on Machine Learning (ICML 2000), Stanford, CA, June-July 2000, pp. 1103-1110.
- [30] K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl, "Constrained K-means Clustering with Background Knowledge", ICML 2001.
- [31] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. NIPS 15, 2003
- [32] Z. Zhang, J.T. Kwok, D.Y. Yeung. Parametric distance metric learning with label information. Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI'03), pp.1450-1452, Acapulco, Mexico, August 2003.
- [33] S. Zhong and J. Ghosh. Scalable, model-based balanced clustering. In SIAM International Conference on Data Mining (SDM-03), pp.71-82, San Francisco, CA, 2003.

© Basu and Davidson 2005

Clustering with Constraints