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Abstract

Active learning has been extensively studied and
shown to be useful in solving real problems. The
typical setting of traditional active learning meth-
ods is querying labels from an oracle. This is only
possible if an expert exists, which may not be the
case in many real world applications. In this pa-
per, we focus on designing easier questions that
can be answered by a non-expert. These questions
poll relative information as opposed to absolute in-
formation and can be even generated from side-
information. We propose an active learning ap-
proach that queries the ordering of the importance
of an instance’s neighbors rather than its label. We
explore our approach on real datasets and make
several interesting discoveries including that query-
ing neighborhood information can be an effective
question to ask and sometimes can even yield bet-
ter performance than querying labels.

1 Introduction and Motivation

Active learning extends machine learning by allowing learn-
ing algorithms to typically query the labels from an oracle
for currently unlabeled instances. Though enormous progress
has been made in the active learning field in recent years, tra-
ditional active learning does not cover the scenarios where
only “non-expert” advice is available. Consider the setting in
Figure 1, though an expert could answer the absolute question
of which class the query galaxy belongs to, an easier relative
question that everyone can provide their opinion on is to rank
order galaxies 2 and 3 w.r.t. the visual similarity to galaxy 1.
The purpose of this work is to explore active learning in such
context, when labels are difficult to query and obtain. We
propose that rather than ask for exact labels we query to bet-
ter understand the neighborhood structure of the instances.

Problem Setting. In this work we explore active learning
with non-expert guidance in the context of the popular label
propagation type of algorithms. In this class of algorithms
each instance is a node in a graph and has a weighted neigh-
bor set which are collectively used to propagate labels to the
unlabeled points. Popular semi-supervised label propagation
approaches include GFHF and LGC [Zhu et al., 2003a][Zhou
et al., 2003]. Therefore, the neighborhood structure (which

instances are neighbors of each other and their similarity) is
important for the performance of these algorithms since this
determines where the labels are propagated. In our formu-
lation the neighborhood structure is learnt by minimizing the
reconstruction error of writing a point as a linear combination
of its nearest neighbors. The given labels are then propagated
to the unlabeled points which are then further propagated and
so on for an infinite number of steps.

(a) Absolute: What
class is Galaxy 1?

(b) Relative: Does Galaxy 2 or 3 look more similar to 1?

Figure 1: Absolute and relative questions on Galaxy Zoo data

Proposal. Our query strategy is to, rather than querying
an instance’s label, ask a non-expert to place an ordering (or
a partial ordering) on the similarity of the neighbor set to
the instance they are neighbors of. Since our active learning
scheme is performed on a neighbor set, we focus on selecting
the most important neighbor sets which we cast as a counting
set cover problem. Using counting set cover we aim to locate
the neighborhood which is most influential in the graph. In
practice, our algorithm will iteratively select the most “infor-
mative” neighbor set for querying, and the advice from non-
experts will be enforced as constraints in the subsequent re-
learning of the neighborhood weights which are then used to
help better propagate labels with the process being repeated.
It is important to note that in our method new labels are not



added, rather the neighborhood weights are better estimated.

The primary benefit of querying neighborhood weights or
structure is that the questions are easier to answer. This is
useful as labels are expensive to query in many specialized
domains where labeling an instance requires proficient do-
main knowledge, such as annotating a galaxy image or pre-
dicting a person’s mental health condition from a brain MRI
scan, two applications we shall focus on. The focus of this
paper is the setting where comparisons between instances is
possible. We explore one such setting - images - since it cov-
ers a huge range of possible applications, but other settings
are also possible if the neighborhood structure can be pre-
sented in a meaningful way to the non-experts. The proposed
algorithm is computationally efficient and can be easily par-
allelized as discussed later. The promising empirical results
demonstrate the effectiveness of the proposed approach, and
validate our idea of querying neighborhood structure. More-
over, our results indicate that in some cases querying neigh-
borhood orderings can yield greater learning accuracy than
using the same number of queries of labels.

Contribution. Our work makes several contributions. (1)
We investigate a new form of knowledge injection, and to our
knowledge is the first paper that actively queries the neigh-
borhood structure. (2) Our method can query both labeled
and unlabeled instances. (3) The approach is scalable to
large problems since it divides the problem into a series of
small problems each of which could be easily solved using
quadratic programming. (4) We empirically show that crowd-
sourcing can be a legitimate non-expert source in our method.

2 Related Work

According to a recent survey on active learning [Settles,
2009], existing active learning algorithms can be summarized
into six categories based on the objective of the query selec-
tion. However, all of them are label focused and hence are
not directly comparable to our work.

Uncertainty sampling queries the instance about whose la-
bel the learning model is least confident [Lewis and Gale,
1994; Culotta and McCallum, 2005] while Query by com-
mittee queries the instance about whose label the commit-
tee members (classifiers) most disagree [Muslea et al., 2000;
Melville and Mooney, 2004]. The Expected model change
query focus is on the instance that would impart the great-
est change to the learning model [Settles et al., 2008]. The
Expected risk Reduction approach queries the instance which
would minimize the expected future classification risk [Roy
and Mccallum, 2001; Guo and Greiner, 2007; Kapoor et al.,
2007] whilst the Variance Reduction query strategy chooses
the instance which would minimize the output variance such
that the future generalization error can be minimized [Zhang
and Oles, 2000]. Finally Density-weighted method queries
the instance which is not only uncertain but also representa-
tive of the underlying distribution of data [Settles and Craven,
2008]. However, these approaches only focus on one aspect
of active learning – the query strategy, and the other aspect of
active learning – the design of questions – is not addressed.

A new direction in active learning is batch mode active
learning [Hoi et al., 2006; Chattopadhyay et al., 2012] which

asks the oracle a set of labels instead of a single label at a
time. Although this is a more efficient querying method, it
still requires the human experts to provide labels of a batch
of instances and does not make the question itself mode ef-
ficient or easier. A novel direction proposed by Rashidi and
Cook [2011] is a method that aggregates multiple instances
into a generic active learning query based on rule induction,
and has been empirically demonstrated to perform more ef-
fectively and efficiently than querying labels. However, since
it is a rule-based learning algorithm, its usefulness is limited
to the cases that the data is represented in a low dimensional
space and every feature has to be interpretable. Additionally,
though a generic question, it is still an absolute question as
it requires human experts to have even stronger background
knowledge than just querying labels. In contrast, we focused
on designing a relative active learning query which could be
answered by people without domain knowledge. Tamuz et al.
[2011] explores using triplet-based relative-similarity queries
to improve the learning of kernel, but the PSD requirement
of kernel limits the neighborhood relations to be symmetric.
Wauthier et al. [2012] presents an active spectral clustering
algorithm that queries pairwise similarity, our work differs
from this not only in learning setting (semi-supervised versus
unsupervised) but also we do not require the users to provide
a real-valued pairwise similarity, as they do, rather just some
orderings between the instances in the neighborhood set.

3 Active Learning from Neighbor Ordering

Figure 2: The cycle of the propose ALNO approach.

Figure 2 shows the major components and work flow of our
proposed approach which we call active learning from neigh-
bor ordering (ALNO). In the first step, the learning algorithm
takes the data, learns the graph weights, and propagates the
known labels to fill in missing labels. Then the most “in-
formative” neighbor set is identified by solving a weighted
counting set cover problem. In the next step of the learning
cycle, the non-expert source (who could be a human or some
other information source) is asked to place an ordering (or a
partial ordering) on the identified neighbor set based on its
similarity to the instances they are neighbors of. This neigh-
borhood ordering information will later be encoded as con-
straints on the graph weights for the next iteration of learning.

Notations. Formally, the problem that we are trying to
address is described as follows. Given a set of n instances
X = {x1, x2, · · · , xn}, we define an one-against-all classifi-
cation problem on a set of m possible labels. Let Y ∈ R

n×m

denote the prior (incomplete) label matrix, where yij = 1 if
instance xi is labeled as class j, and yij = 0 otherwise. Let



Nxi
denote neighbor set which consists of the nearest neigh-

bors of xi. Note that the size of the neighbor set may differ
amongst instances. Then the graph weight matrix W is learnt
with an entry wij indicating the “similarity” of instance xj

(as a neighbor of xi) to instance xi. Note that we do not
require the notion of similarity defined in W to be symmet-
ric, i.e., wij 6= wji is allowed. This paper will often refer
to row and column vectors of matrices, for instance, i-th row
and j-th column vectors of W are denoted as Wi• and W•j ,
respectively. In practice, our proposed approach iterates be-
tween the learning step – predicting the missing labels in Y
using a classifying function F , and the querying step – se-
lecting informative neighbor sets and asking non-experts for
the orderings. The major difference of our approach from
traditional active learning methods is that instead of query-
ing labels, we ask for an easier relative question – neighbor-
hood ordering. We adopt the linear neighborhood propaga-
tion (LNP) algorithm proposed in [Wang and Zhang, 2006],
which learns the graph weights W by solving the reconstruc-
tion error as a quadratic program (QP). We shall in the next
subsection briefly review the LNP method.

3.1 Background - LNP

Learning of weights. As introduced by Roweis and Saul
[2000], the reconstruction error is defined as:

Q(W ) =
n∑

i=1

‖xi −
∑

j∈Ni

wijxj‖
2 (1)

The reconstruction weight W is typically solved as a con-
strained least square problem or a linear system of equations,
however, Wang and Zhang [2006] have shown that it also can
be solved as a QP. The advantage of using a QP formula-
tion is that additional constraints (such as neighborhood or-
dering) can be added in, and thereby enables more flexibility
to the formulation. Let Ci denote the local covariance ma-
trix of instance xi (the term “local” refers to the fact that
the instance is used as the mean in the calculation of co-
variance), formally the definition of Ci can be expressed as
Ci = (1xi − Nxi

)(1xi −Nxi
)T , where 1 denotes a column

vector consisting of ones. Using the local covariance matrix,
the reconstruction error problem can be formulated as a series
of small QP problems (one for each instance) since each row
in W is independent of every other:

min
Wi•

Wi•C
iWT

i• (2)

s.t. Wi•1 = 1;

wij > 0.

Label inference. Once we have learnt the matrix W we
can use it to propagate labels from the labeled points to the
unlabeled points. Since each row of the weight matrix W
sums to one, W can be readily used as a transition matrix
and perform a random walk on the graph to infer the missing
labels. In each propagation iteration, the state (i.e. predicted
label) of each data instance “absorbs” a portion (µ) of the
label information from its neighborhood, and retains a portion
(1− µ) of its initial label information. Therefore, the state at
time t+1 can be calculated using the previous state at time t.

F t+1 = µWF t + (1− µ)Y (3)

Such a process will eventually converge to the following
steady-state probability.

F∞ = (1 − µ)(I − µW )−1Y (4)

3.2 Encoding Neighborhood Structure

As we exploit the acquired neighborhood orderings informa-
tion, the first question we need to address would be how to
enforce such ordering information into the learning process.
The QP formulation of the reconstruction error minimization
allows the encoding of the neighbor orderings as a set of con-
straints on the weights W . Here we take a simplified example
to show how to enforce an ordering of two neighbors of an in-
stance: Assume an instance xi has two neighbors xa and xb,
if instance xa is more similar to xi than xb to xi, we can con-
clude that the weight of xa used to reconstruct xi is greater
than that of xb, i.e. wia > wib. This ordering can be encoded
using the constraint as shown below.

Wi•(J
a − J

b) > 0 (5)

where J
i is a single-entry column vector whose i-th entry

is one and all other entries are zeros. We can exploit tran-
sitivity to encode a complete ordering on a set of neigh-
bors using multiple constraints. For example, if we require
wia > wib > wic this can be enforced using a pair of con-
straints, i.e., Wi•(J

a − J
b) > 0 and Wi•(J

b − J
c) > 0.

3.3 Query Selection as Counting Set Cover

We begin this section with the overview of the intuition be-
hind the proposed approach and then providing full details
for reproducibility of results. Our work deviates from exist-
ing active learning by querying not an instance’s label, rather
querying the neighborhood structure. Hence, our query strat-
egy aims to choose neighbor sets which if queried will have
the most impact in terms of better propagating the given la-
bels on the graph. Since each neighbor set naturally forms a
subset of the n instances, we propose using counting set cover
to estimate the importance of neighborhood sets. Benefits
of using such a method include (i) neighbor sets that are es-
sential to construct the graph are naturally captured via solv-
ing a set cover problem, and (ii) different weighting schemes
used in the counting emphasize different notions of impor-
tance thus enriches the flexibility of active learning.

Recall a set cover problem consists of two parts: (1) A uni-
verse which in our case is the instance set X ; (2) A set of
subsets of X which in our case is the n neighbor sets, i.e.,
N = {Nx1

,Nx2
, · · · ,Nxn

}. We say a subset S (S ⊂ N )
is a cover of the universe X if every element in X appears
at least once in S, i.e., ∪ Si = X . A cover S that has mini-
mum cardinality is called a minimum set cover. The set cover
problem, which aims to identify such a minimum cover, can
be formulated as an integer program.

min
∑n

i=1
Zi (6)

s.t.
∑n

j=1
αijZj ≥ 1, ∀ xi ∈ X

Zi ∈ {0, 1}

where Zi is set to be 1 iff the neighbor set Nxi
is part of a

minimum set cover S, and αij = 1 if xi ∈ Nxj
and αij = 0



Figure 3: An example query in Galaxy Zoo data: (partially) order the neighbors based on their visual similarities to the query Galaxy.

otherwise. Set cover is a well studied NP-hard problem. In
our experiments we use an approximation algorithm, which
involves a linear program relaxation of the original integer
program (replacing the last constraint in Eq.(6) by Zi ≥ 0)
and then performing a randomized rounding. This provides a
2 logn approximation with a probability of (1− 1

n
) [Vazirani,

2001]. Such a method can produce multiple “close to mini-
mum” set covers S∗, hence we can count the number of solu-
tions that each neighborhood Nxi

participates in to estimate
its querying importance γ(Nxi

). Formally, the importance
counting is performed using:

γ(Nxi
) =

∑

S∈S∗

δ(Nxi
,S)e(Nxi

) (7)

where S∗ denotes the collection of multiple minimal set cov-
ers; δ(Nxi

,S) is an indicator that takes value 1 if Nxi
is part

of a minimum set cover S, and takes value 0 otherwise. Here
e(Nxi

) is the weight of Nxi
used in the counting, which can

be interpreted as our preference for querying the neighbor-
hood ordering of Nxi

. In this paper we consider the following
two weighting schemes:

• Uniform: A baseline weighting scheme that assigns a
uniform weight to all neighborhoods, i.e., e(Nxi

) = 1
for ∀ Nxi

∈ N , which implies we assume all neighbor
sets are equally likely to be selected.

• Connectivity: A node connectivity based weighting
scheme that assigns higher weights to the neighbor sets
that are located in “dense” areas of the graph W , i.e.
e(Nxi

) =
∑n

j=1
Wji. This implies we prefer to query

neighbor sets that are highly connected to other nodes
both within and outside the neighborhood since they are
more influential in label propagation.

After the most informative neighborhood set is selected, a
non-expert will be asked to order the neighbors with respect
to the similarity to the instance they are the neighborhood set
of. It is possible that sometimes that a non-expert may not be
able to confidently provide a complete ordering on neighbors,
in this case only a partial ordering is acquired and this still
helps the learning of graph weights. An example query in
Galaxy Zoo data is shown in Figure 3. Though non-experts
may not label the query Galaxy, they can provide an ordering
of its neighbors based on their visual similarity to the query
Galaxy. We can then see that our approach can benefit from
people’s visual perception being able to better organize the
neighborhood than can be calculated from the data.

3.4 Implementation

In order to reduce the human efforts of ordering a neighbor
set as well as to avoid excessive label propagation, the num-
ber of neighbors of each instance needs to be limited. In our
implementation, we discard the neighbors whose weights in
Wi• are under a certain threshold (0.01 in our experiment).
The QP described in Eq.(2) and the LP relaxation of Eq.(6)
are standard problems, thereby can be solved using any QP or
LP solvers. In our experiments we use the built-in QP and LP
solvers of Matlab. Our method can be easily scaled in a num-
ber of ways. Firstly, one may employ kd-trees [Panigrahy,
2008] or locality sensitive hashing [Gionis et al., 1999] to ef-
ficiently construct the neighbor sets N . Secondly, the learn-
ing of graph weights defined in Eq.(2) could be parallelized,
since the weights for reconstructing each instance are solved
independently of others. Thirdly, the label propagation de-
fined in Eq.(3) also can be parallelized since matrix multipli-
cation can be parallelized. Finally, to accelerate the selection
of neighbor sets, one may use more efficient counting algo-
rithms such as compressed-IC [Gionis et al., 2012].

4 Empirical Evaluation

In this section we attempt to understand the strengths and rel-
ative performance of our approach ALNO. In particular we
wish to answer how well our method compares to:

1. Random+Label: A baseline approach of random in-
stance selection for querying labels.

2. Active Harmonic Function: A state-of-the-art
active label propagation algorithm [Zhu et al., 2003b,a].
Its query strategy is expected risk minimization.

The surprising answer is that ALNO performs comparably as
typical active learning despite not adding more labels, instead
just improving neighborhood structure. Given this, an inter-
esting question is, “Is the good performance due to the query
selection strategy or the neighborhood ordering technique?”.
To investigate this we explore the following scenarios:

3. Active+Label: Our active query strategy with con-
nectivity weighting scheme (Section 3.3) but querying
labels rather than neighborhood structure (ask for the la-
bel of xi rather than ordering of Nxi

).

4. Random+Neighbor: A random query selection but
using our approach of querying neighborhood structure.

We compare these six methods, including the two ver-
sions of ALNO (two weighting schemes as shown in Section
3.3), on real datasets. In the first application Galaxy Zoo the
queries are answered by crowd-sourcing whilst in the second



Alzheimers Prediction the queries are answered by side infor-
mation (the patient’s personal information). The parameters
used in these algorithms (σ in Active Harmonic Function and
µ in ALNO) are optimized using cross-validation. To reduce
the number of neighbors, for ALNO we discard the neigh-
bors with a weight less than 0.01. As the question queried
in our model is the neighbor ordering rather than label, the-
oretically, it is possible (unlikely in practice) that the order-
ings provided by non-experts do not change the graph weights
thus the learning model gains no useful information. To eval-
uate this, we define a measure called hit-rate, which refers
to the fraction of times that the provided neighbor orderings
changed the graph weights. The hit-rate implies the amount
of successful knowledge injection of querying neighborhood
structure. Specifically, a low hit-rate implies querying the
neighbor structure did not introduce much new information
to the learning model, while a 100% hit-rate indicates that
every ordering queried did change the learning model.

4.1 Application 1 – Galaxy Zoo

Dataset and Experiment Settings. In the Galaxy Zoo 1
project Lintott et al. [2011], volunteers are asked to annotate
approximately 900, 000 galaxies into several categories, such
as spiral, elliptical, uncertain. This is a very difficult task for
people without an astronomy background and there is consid-
erable noise throughout the data not only due to the limited
resolution or errors of telescope, but also due to the labeling
task itself. However, it would be much easier if we ask for
the ordering of neighbors of a galaxy image, and most people
can answer this kind of question correctly without knowing
astronomy. In the experiment, we work on a subset of the
Galaxy Zoo data, which consists of the first 3, 000 images of
Galaxy Zoo 1 data release. The raw images were crawled
from the Sloan Digital Sky Survey, and then preprocessed us-
ing a 2-D discrete cosine transform (DCT). After a zigzag
scan on the transformed images, we take the top 100 DCT
coefficients to represent each original image. To allow repro-
ducibility, the neighbor orderings are generated using the vot-
ing information provided in the data (real crowd-sourced val-
ues from non-expert volunteers). As the voting reveals peo-
ple’s visual perception of the galaxies, we believe it is a good
analogy to the orderings that will be provided by human.

Results and Discussion. In each trial, we randomly se-
lect half of the galaxy images as the training set, and the
rest were used for testing. The experiments are repeated for
30 times, and the mean error rates are reported in Figure 4.
We see that both the random methods Random+Label

and Random+Neighbor are not helpful and even de-
structive to the learning accuracy. This confirms the mo-
tivation and necessity of active learning since asking ran-
domly selected questions may not effectively improve the
learning performance. Among the four active query meth-
ods, the best accuracy is achieved by Active Harmonic

Function and Active+Label, which means that query-
ing labels is preferable than querying neighborhood struc-
ture for this data set. However, it can be seen that our
ALNO-Connectivity model achieves comparable learn-
ing accuracy with the two models without adding more la-
bels, which confirms that our motivation that asking the
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Figure 4: Error rate on Galaxy Zoo data

easier question (neighbor ordering) can also efficiently im-
prove the learning performance. For the two weighting
schemes of ALNO, connectivity significantly outperforms uni-
form as the graph structure is factored into the selection of
queries. Furthermore, the hit-rate of both the ALNO varia-
tions are 100% which is higher than the 80.33% hit-rate of
Random+Neighbor. Since the randomly selected neighbor
sets are not noticeably helpful when relearning W, the use-
fulness of our neighborhood selection strategy is validated.

4.2 Application 2 – Prediction of Alzheimer’s

(a) White matter (b) Gray matter

Figure 5: Example slice of structural MRI scan

Dataset and Experiment Settings. Structural MRI scans
were acquired from real clinic cases of 632 patients, which
is a new dataset and will be made publicly available. There
are two types of MRI scans that were collected: (1) FLAIR:
Fluid attenuated inversion recovery is a pulse sequence used
in MRI, which carries the white matter hyper-intensity of a
brain; (2) GRAY: T1-weighted MRI images which only re-
veals structural integrity of the gray matter of a brain. In
the raw scans, each voxel has a value from 0 to 1, where 1
indicates that the structural integrity of the neuron cell bod-
ies at that location is perfect, while 0 implies either there are
no neuron cell bodies or they are not working. An exam-
ple of the two types of scans is shown in Figure 5. The raw
scans are preprocessed (including normalization, denoising
and alignment) and then restructured to 3D matrices with a
size of 134×102×134. The learning problem is to determine
if a person is normal, mildly cognitively impaired (MCI), or
has dementia based on his or her brain structural MRI scan.
Experienced clinicians or doctors may answer this question



correctly, but for most people it is impossible to judge a per-
son’s mental health condition using MRI scans. However, by
careful visual comparison of the similarities and differences
between these scans, many people could provide at least a
partially correct neighbor ordering. To allow reproducibility,
the role of the non-expert is played here by side information,
where only an approximately correct neighborhood ordering
is generated using the patient’s personal information, includ-
ing age, gender, race, and education. The collected personal
information is a weaker predictor of the mental health condi-
tion, and therefore this composes a fair comparison, as neigh-
borhood ordering is also a weak predictor of the label.
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Figure 6: Performance comparison on structural MRI scans

Results and Discussion. The experiment is repeated for
30 times. In each trial we randomly select 50% of the MRI
scans for the training, and perform testing on the remain-
ing scans. The mean error rates are reported in Figure 6,
where Figure 6(a) shows the result on FLAIR MRI scans
and Figure 6(b) shows the result on GRAY scans. We see
that the performance of the two random querying methods
is very weak as they do not improve the learning accuracy
and sometimes are even destructive. From the results we can

observe that the connectivity is definitely a better weighting
for our ALNO approach. It also can be seen that in this
application there are two methods using our query strategy,
ALNO-connectivity and Active+Label, outperform
Active Harmonic Function, which demonstrates the
effectiveness of our counting set cover strategy. Surprisingly,
the performance of ALNO-connectivity is not just com-
parable to the label querying methods, but sometime even
performs better. A plausible explanation is that MRI scans
are complicated objects and lie in very high dimensional
space, and therefore for a learning model it is difficult to un-
derstand the objects and construct the correct neighborhood
structure directly from the features. Hence, in this appli-
cation providing a few labels may not improve the learn-
ing model much, but providing a few key neighbor order-
ings could enhance the graph structure significantly and bet-
ter propagate those labels already given. This illustrates the
benefits of neighborhood structure querying, and implies that
our ALNO model is more suitable to the learning problems in-
volving complicated objects or high dimensional data. More-
over, for FLAIR scans the hit-rate of our query strategy is
100%, while Random+Neighbor only reaches a hit-rate of
72.67%; for GRAY scans the hit-rate of ours is 100%, while
random querying being only 83.33%. We see that though,
similar to our ALNO model, Random+Neighbor also mod-
ifies the learning model by changing the graph weights, those
changes are not helpful to the learning performance. This im-
plies that random querying may not help the learning, and
demonstrates the demand for the proposed query strategy.

5 Conclusion

In this paper we present an alternative to label focused active
learning and describe an approach that queries the neighbor-
hood ordering of an instance. The proposed relative queries
take the form of, “Is instance i more similar to instance j than
instance k?” and can be easily answered by non-experts or
even generated using side information. Our ALNO approach
is easy to implement and higher efficiency can be obtained
using parallelization. The promising experimental results
demonstrate the usefulness of our approach as the neighbor-
hood structure querying can achieve comparable and in some
cases even better learning performance than label querying.
It is important to note that the experiments were designed so
that not only were the questions designed for non-experts, but
the answers were provided by non-experts, e.g., in Galaxy
Zoo experiment the answers were given by crowd-sourcing
and for our MRI data from basic socio-demographic data.
This is significant since it illustrates that non-expert advice
cannot only be encoded but is useful when available.
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