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ABSTRACT
The aim of data mining is to find novel and actionable insightsin
data. However, most algorithms typically just find a single (pos-
sibly non-novel/actionable) interpretation of the data even though
alternatives could exist. The problem of finding an alternative to
a given original clustering has received little attention in the liter-
ature. Current techniques (including our previous work) are unfo-
cused/unrefined in that they broadly attempt to find an alternative
clustering but do not specify which properties of the original clus-
tering should or should not be retained. In this work, we explore a
principled and flexible framework in order to find alternative clus-
terings of the data. The approach is principled since it poses a
constrained optimization problem, so its exact behavior isunder-
stood. It is flexible since the user can formally specify positive and
negative feedback based on the existing clustering, which ranges
from which clusters to keep (or not) to making a trade-off between
alternativeness and clustering quality.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

General Terms
Algorithms, Experimentation

Keywords
Clustering

1. INTRODUCTION
The purpose of data mining is to find novel and actionable pat-

terns. However, in many situations a practitioner already has knowl-
edge of what isnot actionable andnot novel and unless this is some-
how encoded, the algorithm may continue to find those patterns.
Consider the clustering of loan applications in order to identify bad
loans, but the clusters fall along racial lines. You may wishto find
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another alternative yet equally good clustering. Similarly, high di-
mensional data such as collections of images may naturally con-
tain many plausible ways of clustering based on different subsets
of pixels. Finally as previously showed, in even low dimensional
data (the pen digit data set in our earlier work [5]) multipleexpla-
nations may exist if the underlying phenomenon is complex and the
data is insufficient to justify just one explanation.

The recent innovation of finding an alternative clustering an-
swers the question: “Given a clusteringπ, does there exist another
clusteringπ′ which is different fromπ but equally good in terms
of objective function value?” Note that in this question there are
two key factors of concern: alternativeness and quality. That is, we
hope the new clustering not only interprets the data from an alter-
native perspective but also is of good quality in terms of thealgo-
rithm’s objective function. Others [9, 2, 4] as well as ourselves [5]
have tackled the problem which we term theSingular Alternative
Clustering Problem described below.

PROBLEM 1. Singular Alternative Clustering Problem. Given
an objective function f , an existing clustering π so that f(π) = x,
does there exist another clustering π′ that is different from π and
where f(π′) ≈ f(π)?

Note that theSingular Alternative Clustering Problem is a dif-
ferent problem from the one addressed in Jain, Meka and Dhillon’s
work [10]. In that paper, the authors deal with a problem of finding
two disparate (alternative) clusteringssimultaneously, while our
work deals with finding an alternative clustering given an existing
one.

There are two primary limitations in previous work on this topic.
First, existing techniques aside from our prior work [5] arealgorithm-
dependent [9, 2, 4], as we shall describe in Section 2. Second, all
the existing techniques including our own [5] do not specifywhich
properties of the original clustering should be preserved (or not) in
the new clustering. Instead, they bluntly find an alternative clus-
tering with no guidance other than the new clustering must bean
alternative to the original. However, in many circumstances we
may not wish to find a complete alternative, but perhaps a partial
alternative, and seek to precisely state which parts of the clustering
to retain and which parts not to retain.

The main contribution of this paper is to propose a general frame-
work for solving theSingular Alternative Clustering Problem where
the expected properties of the new clustering can be specified. To
find the new clustering in analgorithm-independentway, we cre-
ate a transformation matrix to transform the data set into a new
space while preserving the properties of the data set and respect-
ing the users’ feedback on the previous clustering. This allows
any clustering algorithm to be applied to the transformed data. We
will formally show that our approach is a solution to aconstrained



optimization problem. Our formulationminimizes the Kullback-
Leibler divergence between two distributions: the original data and
the transformed data, so that the data properties are not overly dis-
torted. Theconstraint on the optimization allows us to specify
which properties of the clustering should be kept. Formally, our
aim is to create an approach that:

• Is general purpose and can address theSingular Alternative
Clustering Problem for a variety of clustering algorithms;

• Can specifically identify which properties of the old cluster-
ing should (or should not) be maintained in the new cluster-
ing;

• Is efficient and easy to implement;

• Is feasible for both high (Figure 3, 4 and 5) and low dimen-
sional data sets (Table 1, 2 and 3).

Note that this work doesnot build upon our previous work [5]
apart from working on the same problem and also proposing an
algorithm-independent approach.

We begin this paper by describing the related work in Section2.
We present our framework to solve theSingular Alternative Clus-
tering Problem in Section 3. In Section 4, we show the flexibility
of our approach by discussing the variations to our problem formu-
lation. In Section 5, we illustrate experimental results onUCI data
sets which show that our approach provides genuinely (non-trivial)
alternative clusterings with good quality. The experiments on im-
age segmentation applications show that our approach can obtain
alternative meaningful image partition results. Finally,we present
the experiments where the desirable/undesirable clustersin the new
clustering can be explicitly specified, and the results showthat our
approach not only achieves alternative clusterings but also main-
tains the desirable clusters.

2. RELATED WORK
The problem of finding alternative clusterings has receivedlim-

ited attention so far. Most of the approaches to address thisproblem
are based on some specific clustering algorithm. Bae and Bailey
[2] force an alternative clustering by generating cannot-linked con-
straints from all pairs of objects which are in the same cluster inπ,
the original clustering. However, their method is tied to a hierarchi-
cal clustering algorithm. Another approach combinesk-means and
PCA to project the data into an alternative subspace [4]. This has
the limitation of not being appropriate for lower dimensional data
sets such as spatial data, as we discussed and illustrated inprevious
work [5]. A third approach [9] explored the idea of using Condi-
tional Information Bottleneck (CIB) to find an alternative cluster-
ing to a given non-novel clustering. This approach subtracts the
background knowledge of the given clustering by maximizingcon-
ditional mutual informationI(C; Y|Z) (C, Y andZ denote the clus-
ters of objects, relevant features and the background knowledge),
which is difficult to implement since it requires modeling joint dis-
tribution between the cluster labels and the relevant features. The
last approach, which is our own [5], first learns a distance metric
Dπ from the original clusteringπ and then interpretsDπ from the
geometric point of view. It then reverses the transformation of Dπ

using Moore-Penrose pseudo-inverse to get the new distancemet-
ric D′

π . Thus in the new data transformed byD′
π one will find a

different clustering other thanπ.
The area of non-hierarchical clustering with constraints can po-

tentially be used to find alternative clusterings. Considera cluster-
ing π which can non-ambiguously be represented by a large con-
junction of must-linked constraints between every two points in the

same cluster and a large conjunction of cannot-linked constraints
between every two points from different clusters. Since this repre-
sents the clusteringπ, we can guarantee thatπ is not found again
by flipping the constraints (making must-linked constraints cannot-
linked and vice-versa) and clustering to satisfy these flipped con-
straints. Consider ifπ = {(a, c), (b, d), (e, f)} shown in Fig-
ure 1 (a) then this clustering can be uniquely represented asthe
constraints must-link(a,c), must-link(b,d), must-link(e,f), cannot-
link(c,d), cannot-link(c,e) and cannot-link(d,f) (not all entailed con-
straints are provided for clarity) shown in Figure 1 (b). However,
flipping these constraints for even this simple six point data set
produces cannot-link(a,c), cannot-link(b,d), cannot-link(e,f), must-
link(c,d), must-link(c,e), must-link(d,f) shown in Figure 1 (c) for
which no clustering exists that satisfies all constraints. For sim-
ilar reasons it is not desirable to learn a distance functionfrom
the flipped constraints due to the many inconsistent constraints that
flipping could generate. Furthermore, even if a set of non-contradic-
tory constraints could be generated, then trying to find justa single
clustering to satisfy them is known to beNP-complete [7] for any
constraint type combination involving cannot-linked constraints.
Davidson and Ravi have shown that clustering under many cannot-
linked constraints is intractable for batch [6], incremental [8] and
even pruning-style algorithms [7]. This is a large hurdle since we
most certainly wish to generate must-linked constraints from points
in the same cluster but flipping them will produce the undesirable
cannot-linked constraints. Finally, approaches that can deal with
inconsistent constraints/advice in a principled manner were lim-
ited. For example, the work of Colemanet al. [3] that deals with
embedding constraints into the spectral clustering algorithm only
addresses the problem where no object is involved in more than 1
cannot-linked constraint, and only fork = 2.

As we discussed in the introduction section, the problem of find-
ing two clustering simultaneously is a different problem from our
problem setting. That problem has been formulated under theframe-
work of the EM algorithm [10]. Their two approaches, Decorrelated-
kmeans and Convolutional-EM in Jain, Meka and Dhillon’s work
are based on two separate assumptions. The first one assumes that
if the "representative" vectors (which are different from the mean
vectors and lack of intuitive interpretation) of the old clustering and
the new clustering are mutually orthogonal, then the alternativeness
of two clusterings should be guaranteed. The second approach in-
terprets each clustering as a partial representation of thedata and
models the data as a sum of mixture distributions, each mixture
corresponding to a clustering. Note that there is no transformation
of the data involved in both methods.

3. OUR APPROACH

3.1 Setting and Notation
Let X = {x1, x2, ..., xn} ⊆ R

d denote the givend-dimensional
data set which is represented by ad × n matrix. The original
clusteringπ is found inX. The transformation matrixD is ad × d
matrix whileY = {y1, y2, ..., yn} ⊆ R

d refers to the transformed
data set by transformationY = DX. The alternative clusteringπ′

is found inY . LetX andY follow the probability density functions
px(x) andpy(y).

The output of a clustering algorithm is ak-block set partition
of the data setX which is referred to as aclustering. Each block
forms a cluster, and they are referred to asC1, C2, ..., Ck. The size
of clusterCi is denoted asni. The cluster centroids are denoted as
m1, m2, ..., mk.

Please refer to Appendix B for the complete table of notations.
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(a) Clusteringπ = {(a, c), (b, d), (e, f)}
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(c) The flipped constraints

Figure 1: A simple example where ML is must-linked constraint and CL is cannot-linked constraint.

3.2 Constrained Optimization Formulation
To achieve our goal of finding an alternative clustering withgood

quality in a general purpose manner we explore a data transforma-
tion approach that converts the original dataX to Y using a dis-
tance metric represented by the transformation matrixD. Our for-
mulation allows the user to choose any appropriate clustering algo-
rithm to run onY to achieve the new alternative clustering hence
we term our approach algorithm-independent. Note that another
option is to directly use the transformation matrixD generated in
our approach along with the old dataX by using the transformation
matrix D as the distance metric in any distance based algorithm.
The first option is more useful since we do not always have a dis-
tance based algorithm, and it is used in the experimental section of
this paper.

There are two main factors in our work:

• The new data setY preserves the characteristics ofX as
much as possible so that the new clusteringπ′ found in the
new space has good quality in the original space.In all of
our experiments we report VQE, DI and JI for both π
and π′ in X;

• Conversely,π (or parts ofπ) should have a poor objective
function value inY so that it should not be found by a clus-
tering algorithm.

According to these two factors, we formulate the problem as a
constrained optimization problem, as shown in Eq.(1), where B =
DT D and‖·‖B denotes the Mahalanobis distance with this weight
matrixB.

min
B�0

DKL(py(y)||px(x))

s.t.
1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β

(1)

The objective function of the Kullback-Leibler divergenceis a
measure of the difference between two probability distributions.
WhenDKL(py(y)||px(x)) = 0, the two distributionspx(x) and
py(y) of X andY are the same. We minimize KL divergence in
Eq.(1) so that the probability density functions ofX and Y are
closely matched. This ensures that the inherent propertiesof X are
not destroyed when being transformed toY .

The constraint in Eq.(1) comes from the characteristics that we
expect the new clusteringπ′ to express. We now explain our ini-
tial and most general constraint. Variations in this constraint are
discussed in Section 4. The constraint is best explained in aprob-
abilistic framework. To simplify the problem formulation,assume

that the clusters ofπ′ follow a mixture model of multivariate Gaus-
sian distributionsf1(y), ..., fk(y) with the same covariance matrix
Σ̂ but different meanŝm1, ..., m̂k, respectively. In other words,
we assume that each cluster inπ′ follows a multivariate Gaussian
distribution with the same covariance matrix̂Σ. Let m̂1, ..., m̂k

be theprojection of the original centroids m1, ..., mk in the new
space. Note that these means are different from the centroids the
algorithm will find. LetC1, C2, ..., Ck denote thek clusters inπ
and bC1, bC2, ..., bCk denote thek new clusters inπ′. Then the prob-
ability density function ofy is

p(y) =
k

X

i=1

bni

n
fi(y) =

k
X

i=1

bni

n|Σ̂| 12 (2π)
d
2

e−
1

2
‖(y−m̂i)‖

2

Σ̂−1 (2)

wherebni is the size of clusterbCi in π′. Consequently we have
k

X

i=1

bni = n.

Suppose objectxi belongs to the clusterCj in π, which means
that Cj is its most probable cluster. In order to find a different
clustering we must transform the data so thatxi is more likely to
be assigned to a different cluster other thanCj in the new space.
Then the probability of objectyi belonging tobCj (being closest to
bmj) in the new clusteringπ′ should be small, which is written as
(0 ≤ α ≤ 1):

bnj

n|Σ̂| 12 (2π)
d
2

e−
1

2
‖(yi−m̂j )‖2

Σ̂−1 ≤ α (3)

This is equal to Eq.(4).

k
X

j=1,xi /∈Cj

bnj

n|Σ̂| 12 (2π)
d
2

e−
1

2
‖(yi−m̂j)‖2

Σ̂−1 ≥ 1 − α (4)

When there is no specific assumption of the sizes of clusters in
π′, we can assume that each cluster has the same size. Thus

bnj

n
=

1
k

for (1 ≤ j ≤ k). In the multivariate Gaussian model, we assume

that bΣ has the same variance along each dimension and dimensions
are highly independent. Then the off diagonal entries are very small
and can be ignored, andbΣ can be approximated by a multiplication
of a scaler and an identity matrixσ2I (σ > 0). Therefore Eq.(4)
becomes:

e
− 1

2σ2

k|Σ̂| 12 (2π)
d
2

k
X

j=1,xi /∈Cj

e−
1

2
‖(yi−m̂j )‖2

≥ 1 − α (5)



k
X

j=1,xi /∈Cj

e−
1

2
‖(yi−m̂j )‖2

≥ (1 − α)k|Σ̂| 12 (2π)
d
2 e

1

2σ2 (6)

Since(a1 + a2 + . . . + an)/n ≥ n
√

a1a2 . . . an whenai >
0 (1 ≤ i ≤ n), Eq.(6) must hold if Eq.(7) is true:

(k − 1) k−1

v

u

u

t

k
Y

j=1,xi /∈Cj

e−
1

2
‖(yi−m̂j)‖2 ≥

(1 − α)k|Σ̂| 12 (2π)
d
2 e

1

2σ2

(7)

Therefore, we have

k
X

j=1,xi /∈Cj

‖(yi − m̂j)‖2 ≤

− 2 ln [(
(1 − α)k|Σ̂| 12 (2π)

d
2 e

1

2σ2

k − 1
)k−1]

(8)

Let β be−2ln[( (1−α)k|Σ̂|
1

2 (2π)
d
2 e

1

2σ2

k−1
)k−1]. For everyyi, the

constraint becomes (β > 0):

1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(yi − m̂j)‖2 ≤ β (9)

SinceY = DX, m̂ = Dm andB = DT D, for x we have

1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β (10)

To derive the solution, we define an auxiliary covariance matrix
eΣ, shown in Eq.(11). We see thateΣ is a d × d matrix and can
be interpreted as the variance of the data with respect tok − 1
centroids since the centroid which each instance is assigned to inπ
is excluded.

eΣ =
1

n

n
X

i=1

k
X

j=1,xi /∈Cj

(xi − mj)(xi − mj)
T (11)

Then the solution to our constrained optimization problem de-
fined in Eq.(1) isB = eΣ−1 and sinceB = DT D we have our
transformation matrixD = eΣ− 1

2 . Details of the solution are de-
scribed in Appendix A. We see thateΣ is essentially the summation
overn (the number of instances)d × d matrices. Each of thesen
matrices is in turn a summation of further(k − 1) d × d matrices.
Each of thesen(k−1) matrices measures the variability caused by
a point for a given centroid which this point unlikely belongs to in
π′. We then see that the solution to Eq.(1) is to transform the data
so as to reduce this variability which in turns satisfies the upper
bound in the equation.

The constraint in our formulation (Eq.(1)) is exchangeablewith
different specifications of the expected properties in the new clus-
terings. We will discuss the details of variations of the problems in
Section 4.

An illustrative example. We use the following simple example
to illustrate our techniques. Figure 2 (a) shows that the data set
X is composed of four multivariate Gaussian distributions atfour
corners of a square with the same variance along each dimension.
The given clusteringπ with two horizontal clusters is shown in

Figure 2 (b). We see thateΣ

eΣ =

»

9.7419 0.1801
0.1801 36.6461

–

, D = eΣ− 1

2 =

»

0.3204 −0.0010
−0.0010 0.1652

–

indicating that there is more variability between the points along
the y-axis than thex-axis. Then the resultant transformationD
is to compress more along they-axis than thex-axis. Therefore,
whenX is transformed toY = DX, the new clusteringπ′ with
two vertical clusters as shown in Figure 2 (c) is more likely to be
found.

4. VARIATIONS OF THE PROBLEM
Our basic formulation of the constraint part of the optimization

problem in Eq.(1) essentially transforms the data but makessure
that each point is not assigned to the same cluster as before.In
this section we will discuss other variations to guide the data trans-
formation. In particular we shall explore three main variations of
general use, but there may be others of more specific use. We will
empirically verify our approach to the first and second variations of
the problem in Section 5.

The three variations allow:

1. Specifying a trade-off between the alternativeness and qual-
ity of the new clustering with respect to the original cluster-
ing.

2. Specifying which clusters in the original clustering to keep
and which clusters not to keep.

3. Finding an alternative clustering in a subspace.

Recall that the constraint in Eq.(1) takes the form

1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β.

Each of the above variations involves changing some aspect of this
basic form, as we now describe.

4.1 Specifying the Trade-off between Alterna-
tiveness and Quality

We add the parametera ≥ 1 to quantify the trade-off between
alternativeness and quality by redefining the constraint asfollows:

1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖a
B ≤ β (12)

We see that the largera is, the stronger the constraint of assigning
an object to a different cluster in the new clustering will be(see our
probabilistic interpretation of this constraint in the previous sec-
tion). Hence the optimization is focused/biased more towards al-
ternativeness. Conversely ifa is made small then the constraint is
weaker. The solution to the modified optimization problem isthen
B = eΣ− a

2 , that is,D = eΣ− a
4 .

4.2 Specifying Which Clusters to Keep and Not
to Keep

To allow this we can have multiple constraints (summations)for
different clusters. For a cluster (sayCj) we wish not to keep we
employ the same constraint as in Eq.(1) except the summationis
limited to points only inCj . For a cluster (sayCl) we wish to retain
we then have the constraint:

P

xi∈Cl
‖(xi − ml)‖2

B ≤ δ whereδ
is some small constant value. The new form of the constraint in
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(c) The new clusteringπ′ with 2 clusters
at left and right

Figure 2: An illustrative 2D example.

our problem formulation is shown in Eq.(13) where the clusters of
CY = {C1, ..., Cr}(1 ≤ r < k) are retained and the clusters of
CN = {Cr+1, ..., Ck} are not retained. Note that the first summa-
tion is related to the points in the clusters to be maintained, and the
second summation is related to the points in the clusters notto be
maintained.

X

xi∈CY

r
X

l=1,xi∈Cl

‖(xi − ml)‖2
B+

X

xi∈CN

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β

(13)

The solution to the modified optimization problem is thenB =

eΣ−1
1 , that is,D = eΣ

− 1

2

1 , whereeΣ1 is defined in Eq.(14).

eΣ1 =
1

n
(

X

xi∈CY

r
X

l=1,xi∈Cl

(xi − ml)(xi − ml)
T +

X

xi∈CN

k
X

j=1,xi /∈Cj

(xi − mj)(xi − mj)
T )

(14)

There are some cases where the partial clustering that needsto
be kept is not composed of whole clusters but some small chunklets
of objects. We can specify the information that objectsxi andxj

should be in the same cluster as a constraints(xi, xj). Suppose
CY = {c1, ..., ct} includes all the chunkletsc1, ..., ct(t > 0) that
is supposed to be retained and the objects inCN = X \ A should
change their assignment in the new clustering. We generate acon-
straint setS = {s(xi, xj), ...} which includes all the pairs of points
that should be in the same cluster. The constraint formulation is as
in Eq.(15), and the auxiliary matrixeΣ2 is redefined in Eq.(16).

X

xi∈CY

X

s(xi,xl)∈S

‖(xi − xl)‖2
B+

X

xi∈CN

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β

(15)

The solution to the modified optimization problem in Eq.(15)is

thenB = eΣ−1
2 , that is,D = eΣ

− 1

2

2 , whereeΣ2 is as in Eq.(16).

eΣ2 =
1

n
(

X

xi∈CY

X

s(xi,xl)∈S

(xi − xl)(xi − xl)
T +

X

xi∈CN

k
X

j=1,xi /∈Cj

(xi − mj)(xi − mj)
T )

(16)

4.3 Finding an Alternative Clustering in a Sub-
space

In the original formulation we transformed the data using all en-
tries/dimensions inB, but in this variation we normalize over only
a subspace inB. For example, we may find that the given clustering
π is most compact in some subset of dimensions and wish to find
an alternative clustering in the complement of this subset.This is
effectively finding an alternative clustering in the complementary
subspace thatπ is most compact in. It can be achieved by fixing
the row and column entries inB to be zero for all dimensions that
the clusteringπ is most compact in. Then it makes all the points
along each of these dimensions mapped to the dimension origin, ef-
fectively making these dimensions useless for differentiating points
into clusters.

5. EXPERIMENTAL RESULTS
We present three sets of experimental results. We will now sketch

the results and in later subsections provide full details that will al-
low their repetition. Note that the source code in MATLAB used to
reproduce these results will be made available, and we have posted
the source code atwww.constrained-clustering.org. In
all of the experiments, we use three measurements: Dunn Index
(DI), Vector Quantization Error (VQE) and Jaccard Index (JI) to
evaluate the results. The DI is a quality measure of the ratioof the
minimum distance between two clusters (when measured as theav-
erage link distance) to the maximum cluster diameter. The larger
the DI the better. We also report the VQE for clusterings as itis
the objective function thatk-means minimizes. The smaller the
VQE the better. Note that the DI is a measure of separation be-
tween clusters normalized by the cluster diameters, while the VQE
only measures cluster compactness, not their separation. The Jac-
card Index (JI) measures the similarity between two clusterings, the
smaller the JI, and the more dissimilar the two clusterings are. All
of the measurements are calculated based on the original data
X.

All of the clusterings related to the UCI data are obtained bythe
k-means algorithm, and the results are averaged over ten random



restarts of the approach(es). The experiments on image segmen-
tation uses the spectral clustering algorithm as defined by Shi and
Malik [11]. As before,π is the given clustering and the new alter-
native clustering isπ′.

5.1 UCI Data Set
Our first set of results is on standard UCI data [1] sets and com-

pares our work against others [2], including our previous work [5].
The comparison to the work of Cui et.al. [4] can be referred toin
our previous paper [5], but their approach does not work wellfor
lower dimensional data.

We show (see Table 1) that our work is comparable to similar
work with respect to quality of clustering found (when measured by
the VQE) and diversity between the original and alternativeclus-
tering (when measured using the Jaccard index). The approach of
Bae and Bailey [2] obtains better DI results but worse VQE results
than our own. This can be explained by the fact that the objective
function of their algorithm is the DI and for k-means it is theVQE.
However, our approach has the advantage of being usable witha
variety of distance based clustering algorithms, being able to pro-
vide both positive (keep a cluster) or negative (don’t keep acluster)
feedback (which will be discussed in Section 5.3) and being able
to trade-off the two parts (alternativeness and quality) ofthe con-
strained optimization problem. By modifying the exponenta we
can favor making the alternative clustering more differentthanπ
but typically of worse quality and vice-versa, as shown in Table 2.

These types of experiments are typically performed to show that
the approach finds a clustering of reasonable quality and is differ-
ent from the original clustering. However, they do not show if the
second clustering is truly an interpretable alternative tothe original
clustering. To show that, we need to focus on data sets where the
results are readily interpretable, as we do for our next two sets of
experiments.

5.2 Image Segmentation
Our second set of experimental results is for image segmentation

using spectral clustering. We focus on several Escher images which
are known to have multiple interpretations to the human eye.Con-
sider Figure 3 (a) which has two interpretations. If the eye focuses
on the black sections then there is a segmentation of the image into
black and non-black as found by spectral clustering in Figure 3 (b).
This is the dominant segmentation since the contrast between the
two clusters is great as one cluster includes the black partsand the
other cluster includes the orange and yellow parts. However, our
approach is able to discover the second and more subtle two clus-
ter segmentation in Figure 3 (c) where the orange is in one cluster
and the black and yellow are in the other. Similar results arefound
for Figure 4 (a) which contains three types of butterflies (red, green
and blue). Spectral clustering first finds fork = 2 a clustering
of the blue butterflies by themselves and the green and red butter-
flies together in Figure 4 (b). The alternative clustering found by
our approach is the red butterflies by themselves and the blueand
green butterflies together in Figure 4 (c). In Figure 5, the original
clusteringπ partitions the image based on the blocked background
and subsumes the mandolin, but the new clusteringπ′ separates the
object of the mandolin from the background.

We use the normalized spectral method of Shi and Malik [11] as
the clustering algorithm. Each object in an image is a pixel with
two kinds of information:RGB value and position. The similarity
between two pixels is the weighted sum of the Euclidean distance
between theirRGB values and position. The transformation is
only carried out in theRGB value space. In Figure 3 and 4 we see
that for the Escher images the new clusteringπ′ finds a different

texture in the images.
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(a) The original flower image
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(b) π found by the spectral clustering
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(c) π′ found by our approach givenπ

Figure 3: Escher flower example of an image with textures with
alternative interpretations, k = 2.

5.3 Specifying Which Clusters to Keep and Not
to Keep

Finally in our last set of experimental results we show how our
approach can focus on which clusters to keep and which not to
keep. The clusterCl we chose to maintain is the one with the max-
imum size/cardinality inπ which is derived from the inherent labels
in the UCI data set. Because the data setIonosphere only has two
clusters inherently it is not possible to find a much different clus-
tering while maintaining one cluster. So we only focus on three
data sets:Glass, ESL andVehicle. Let functiong(Cl, π

′) return the
largest number of points inCl which are in the same cluster inπ′.
For instance, if the data set has 6 objectsX = {x1, ..., x6}, Cl =
{x1, x2, x3}, and the clusteringπ′ partitionsX into two clusters
C1 = {x1, x2} andC2 = {x3, ..., x6}, theng(Cl, π

′) = 2. The
size of subsetCl is denoted asnl.

We define the hit rate as the percentage of objects kept in the



Table 1: Results of comparing several alternative clustering approaches for Non-Hierarchical clustering, whereπ is given andπ′ is
the new clustering found by each approach. Note DI=Dunn Index, JI=Jaccard Index, VQE = Vector Quantization Error (resul ts are
averaged over ten random restarts of each approach).

Approach Data with Labels [2] [5] This Approacha = 5
4

Measurement DI (π) VQE(π) JI DI(π′) VQE(π′) JI DI(π′) VQE(π′) JI DI(π′) VQE(π′)
Glass 0.21 911 0.26 0.83 855 0.24 0.38 505 0.29 0.43 407

Ionosphere 0.65 3086 0.54 1.21 3207 0.43 0.98 2421 0.46 0.77 2716
ESL 0.38 1374 0.28 0.62 1085 0.24 0.73 1787 0.13 0.67 1277

Vehicle 0.56 2.4*107 0.26 1.05 5.5*106 0.18 0.57 5.4*106 0.22 0.77 5.0*106

Table 2: Results of our approach parameterized witha, whereπ is given andπ′ is the new clustering found by each approach. Note
that as a increases the diversity betweenπ and π′ increases and clustering quality suffers (results are averaged over ten random
restarts of each approach).

a a = 5
4

a = 3
2

a = 2
Measurement JI DI(π′) VQE(π′) JI DI(π′) VQE(π′) JI DI(π′) VQE(π′)

Glass 0.29 0.43 407 0.28 0.32 412 0.20 0.33 822
Ionosphere 0.46 0.77 2716 0.47 0.74 2813 0.47 0.68 3126

ESL 0.13 0.67 1277 0.12 0.65 1514 0.10 0.62 2216
Vehicle 0.22 0.77 5.0*106 0.19 0.67 6.5*106 0.16 0.53 1.6*107

same cluster inπ′, as follows:

Hit Rate=
g(Cl, π

′)

nl
(17)

In Table 3, we shows that the new clusteringπ′ in three data sets
is of good quality as measured by DI and VQE. Meanwhile,π′ is
not only different toπ as compared by JI but also maintains the
cluster we want to keep as indicated by the high Hit Rates. We can
increase the Hit Rate by increasing the exponenta in Eq.(12).

6. CONCLUSION
Data mining aims to find novel and actionable patterns with most

algorithms typically returning just one such set of results. However,
in some circumstances we wish to find multiple alternative expla-
nations of the data. In this paper we study the following problem:
given a clustering, find a good quality alternative which we have
termed the singular alternative clustering problem. This allows the
domain expert who already has a not useful clustering to encode
this knowledge so that the algorithm does not find the same clus-
tering again. Multiple sequential solutions to this problem can also
be used to find many possible alternative patterns in the data.

Previous works to address this problem, including our own, were
limited in several ways. Firstly, they were (except our own [5])
algorithm-dependent; secondly, they were all (including our own
[5]) unrefined in the sense that they only allowed the domain expert
to say "find a completely alternative clustering" but did notallow
them to specify what properties of the given clustering to keep or
not keep.

In this paper we formulate a solution to this problem as a con-
strained optimization problem that minimizes the Kullback-Leibler
divergence between the probability density functions of the origi-
nal data set and a new transformed data set. This ensures thatthe
properties of the transformed data closely match those of the origi-
nal data set. The constraints specify which properties of clustering
should or should not be maintained and can be modified to multiple
variations of the problem in a principled and flexible way. Varia-
tions include finding alternative clusterings in subspacesas well
as trading off clustering quality with alternativeness to the original
clustering.

There are several advantages to our approach. It is general pur-
pose since it can be used with many clustering algorithms based
on a distance function, such ask-means and agglomerative algo-
rithms. The transformation of the data is specified in closed-form
and is easy to implement. Our approach can specify which parts
of the clustering are desirable and which are not. Furthermore, the
tradeoff between alternativeness and quality can be controlled by
the parametera in Eq.(12).

To validate our approach we performed a set of experiments on
the low dimensional UCI data set (see Table 1) to compare our ap-
proach against the techniques of others [2] and our previouswork
[5]. As discussed and shown in our earlier work, the approachof
Cui et.al. [4] is not designed for lower dimensional data andhence
does not perform well. It is important to note that all of the clus-
tering quality measurements we present are calculated based on the
original dataX. That is, even though we transformX to an
alternative space we measure the alternative clusterings’prop-
erties in the original space.We illustrated that our approach not
only achieves clusterings of comparable quality but also finds a di-
verse set of clusterings. We were able to focus on alternativeness
or quality by adjusting the parametera (see Table 2). Our approach
can also find different interpretable clusterings in image segmen-
tation applications (see Figures 3, 4 and 5). Finally, we presented
the experiments where the desirable and undesirable clusters in the
new clustering can be explicitly specified, and the results showed
that our approach can find alternative clusterings while maintaining
the expected clusters (See Table 3). Our future work will include
kernelizing the current approach to find alternative clusterings by a
non-linear transformation of the data.
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APPENDIX

A. SOLUTION TO EQ.(1)
Here we derive the solution to the optimization problem in Eq.(1):

D = eΣ− 1

2 .
Since Y is transformed fromX by the transformationY = DX,

we can find the connection between two density functionspx(x)

andpy(y): py(y) = px(x)
|D|

, where|D| is the Jacobian determinant
of transformation matrixD. Then we can rewrite the objective
function in Eq.(1) as follows:

DKL(py(y)||px(x)) =

Z

y

py(y) log
py(y)

px(x)
d(y)

=

Z

x

px(x)

|D| log
1

|D| d(Dx)

=

Z

x

px(x) log
1

|D| d(x)

(18)

To minimizeDKL(py(y)||px(x)) is to maximizelog |D|.
Therefore, Eq.(1) is equal to Eq.(19).

max
D�0

log |D| s.t.
1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β (19)

SinceB is a positive definite matrix whereB = DT D, and it
can be rewritten as follows:

max
B�0

log |B| s.t.
1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B ≤ β (20)

Use the method of Lagrange multiplier,

log |B| − γ(
1

n

n
X

i=1

k
X

j=1,xi /∈Cj

‖(xi − mj)‖2
B − β)

= log |B| − γ(
1

n

n
X

i=1

k
X

j=1,xi /∈Cj

(xi − mj)
T B(xi − mj) − β)

= log |B| − γ(
1

n
(tr(B

n
X

i=1

k
X

j=1,xi /∈Cj

(xi − mj)(xi − mj)
T )) − β)

= log |B| − γ

n
(tr(BeΣ) − β)

(21)

Take the derivative ofB to get Eq.(22) and let it be 0. The scaler
γ
n

does not impact the transformation and can be removed. Then

we get the solutionB = eΣ−1 i.e. D = eΣ− 1

2 .

tr(B−1) − γ

n
tr(eΣ) (22)

B. LIST OF NOTATIONS
The following notations are used in this paper.

Notation Description
X The givend-dimensional data set (X ⊆

R
d)

xi Theith object inX
n Number of objects inX
k Number of clusters
π The given clustering found inX
Y The transformed data set by transforma-

tion Y = DX (Y ⊆ R
d)

yi Theith object inY
π′ The new clustering found inY
px(x) Probability density function ofX
py(y) Probability density function ofY
D The transformation matrix
B B = DT D
Ci Theith cluster inπ
ni Size ofCi

mi Centroid ofCi

bCi Theith cluster inπ′

bni Size of bCi

bmi Projection ofmi in Y
I Identity matrix
|| · ||B Mahalanobis distance with weight ma-

trix B
fi(y) Multivariate Gaussian distribution

which bCi follows
bΣ Covariance matrix offi(y), (1 ≤ i ≤

k)
DKL (py||px) Kullback-Leibler divergence between

two distributionspyandpx

eΣ Auxiliary matrix to deriveD defined in
Eq.(11)

a Parameter to specify the trade-off be-
tween alternativeness and quality in
Eq.(12)

CY The set of clusters to be retained in Sec-
tion 4

CN The set of clusters not to be retained in
Section 4

s(xi, xj) The constraint thatxi andxj must be in
the same cluster

S S = {s(xi, xj), ...} includes all the
specified constraints in Section 4

eΣ1 Auxiliary matrix to deriveD defined in
Eq.(14)

eΣ2 Auxiliary matrix to deriveD defined in
Eq.(16)

M � 0 Matrix M is positive semidefinite


