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ABSTRACT

The aim of data mining is to find novel and actionable insights
data. However, most algorithms typically just find a singled-
sibly non-novel/actionable) interpretation of the datarethough
alternatives could exist. The problem of finding an alteéweato
a given original clustering has received little attentiarthe liter-
ature. Current techniques (including our previous work) @mfo-
cused/unrefined in that they broadly attempt to find an atere
clustering but do not specify which properties of the oraiclus-
tering should or should not be retained. In this work, we esph
principled and flexible framework in order to find alternatislus-
terings of the data. The approach is principled since it pase
constrained optimization problem, so its exact behaviamider-
stood. It is flexible since the user can formally specify pesiand
negative feedback based on the existing clustering, whioles
from which clusters to keep (or not) to making a trade-offamsn
alternativeness and clustering quality.
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1. INTRODUCTION

The purpose of data mining is to find novel and actionable pat-

terns. However, in many situations a practitioner alreadykmowl-
edge of what isiot actionable andot novel and unless this is some-
how encoded, the algorithm may continue to find those pattern
Consider the clustering of loan applications in order tatifg bad
loans, but the clusters fall along racial lines. You may wikind
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another alternative yet equally good clustering. Similarigh di-
mensional data such as collections of images may naturatly ¢
tain many plausible ways of clustering based on differebssts
of pixels. Finally as previously showed, in even low dimensil
data (the pen digit data set in our earlier work [5]) multiplela-
nations may exist if the underlying phenomenon is complektha
data is insufficient to justify just one explanation.

The recent innovation of finding an alternative clusterimg a
swers the question: “Given a clusteringdoes there exist another
clusteringz’ which is different froms but equally good in terms
of objective function value?” Note that in this questionrthare
two key factors of concern: alternativeness and qualitatT$) we
hope the new clustering not only interprets the data fromlin-a
native perspective but also is of good quality in terms ofdlym-
rithm’s objective function. Others [9, 2, 4] as well as olvss [5]
have tackled the problem which we term tBegular Alternative
Clustering Problem described below.

PrROBLEM 1. Singular Alternative Clustering Problem. Given
an objective function f, an existing clustering 7 so that f () = z,
does there exist another clustering « that is different from = and
where f(r') = f(m)?

Note that theSngular Alternative Clustering Problem is a dif-
ferent problem from the one addressed in Jain, Meka anddpfsl|
work [10]. In that paper, the authors deal with a problem dfifig
two disparate (alternative) clusteringenultaneously, while our
work deals with finding an alternative clustering given aisgng
one.

There are two primary limitations in previous work on thipito
First, existing techniques aside from our prior work [5] algorithm-
dependent [9, 2, 4], as we shall describe in Section 2. Seedind
the existing techniques including our own [5] do not speuwifiich
properties of the original clustering should be presergea6t) in
the new clustering. Instead, they bluntly find an alterratiius-
tering with no guidance other than the new clustering mustrbe
alternative to the original. However, in many circumstanoe
may not wish to find a complete alternative, but perhaps agbart
alternative, and seek to precisely state which parts oflthetering
to retain and which parts not to retain.

The main contribution of this paper is to propose a geneaah&-
work for solving theSngular Alternative Clustering Problemwhere
the expected properties of the new clustering can be spicifie
find the new clustering in aalgorithm-independentway, we cre-
ate a transformation matrix to transform the data set int@wa n
space while preserving the properties of the data set apeces
ing the users’ feedback on the previous clustering. Thioaal
any clustering algorithm to be applied to the transformed.dé/e
will formally show that our approach is a solution te@nstrained



optimization problem. Our formulatiominimizes the Kullback-
Leibler divergence between two distributions: the orijoeta and
the transformed data, so that the data properties are ndy @is-
torted. Theconstraint on the optimization allows us to specify
which properties of the clustering should be kept. Formaillyr
aim is to create an approach that:

e Is general purpose and can addressSingular Alternative
Clustering Problem for a variety of clustering algorithms;

e Can specifically identify which properties of the old cluste
ing should (or should not) be maintained in the new cluster-

ing;
e [s efficient and easy to implement;

e |s feasible for both high (Figure 3, 4 and 5) and low dimen-
sional data sets (Table 1, 2 and 3).

Note that this work doesot build upon our previous work [5]

same cluster and a large conjunction of cannot-linked caimss
between every two points from different clusters. Since thpre-
sents the clustering, we can guarantee thatis not found again
by flipping the constraints (making must-linked constraicdénnot-
linked and vice-versa) and clustering to satisfy these dlippon-
straints. Consider ifr = {(a,c¢), (b,d), (e, f)} shown in Fig-
ure 1 (a) then this clustering can be uniquely representatieas
constraints must-link(a,c), must-link(b,d), must-liakj, cannot-
link(c,d), cannot-link(c,e) and cannot-link(d,f) (notehtailed con-
straints are provided for clarity) shown in Figure 1 (b). Hwer,
flipping these constraints for even this simple six pointadset
produces cannot-link(a,c), cannot-link(b,d), cannok{e,f), must-
link(c,d), must-link(c,e), must-link(d,f) shown in Figurl (c) for
which no clustering exists that satisfies all constrainter $tm-
ilar reasons it is not desirable to learn a distance functiom
the flipped constraints due to the many inconsistent cangirdnat
flipping could generate. Furthermore, even if a set of namtrealic-
tory constraints could be generated, then trying to findgusingle

apart from working on the same problem and also proposing an clustering to satisfy them is known to b#P-complete [7] for any

algorithm-independent approach.

We begin this paper by describing the related work in Se@ion
We present our framework to solve tBangular Alternative Clus-
tering Problem in Section 3. In Section 4, we show the flexibility
of our approach by discussing the variations to our problemi-
lation. In Section 5, we illustrate experimental resultd 2l data
sets which show that our approach provides genuinely (rigiad)
alternative clusterings with good quality. The experinseon im-
age segmentation applications show that our approach d¢amob
alternative meaningful image partition results. Finall present
the experiments where the desirable/undesirable clustdrs new
clustering can be explicitly specified, and the results stiat our
approach not only achieves alternative clusterings but @ain-
tains the desirable clusters.

2. RELATED WORK

The problem of finding alternative clusterings has recelirae
ited attention so far. Most of the approaches to addresgtbidem
are based on some specific clustering algorithm. Bae ane\Balil
[2] force an alternative clustering by generating caninddd con-
straints from all pairs of objects which are in the same eluist,
the original clustering. However, their method is tied tdexdrchi-
cal clustering algorithm. Another approach combihareans and
PCA to project the data into an alternative subspace [4]s Tihs
the limitation of not being appropriate for lower dimensabdata
sets such as spatial data, as we discussed and illustrgieglious
work [5]. A third approach [9] explored the idea of using Cbnd
tional Information Bottleneck (CIB) to find an alternativeister-
ing to a given non-novel clustering. This approach subdsréoe
background knowledge of the given clustering by maximiziog-
ditional mutual informatiorf (C; Y|Z) (C, Y andZ denote the clus-
ters of objects, relevant features and the background letnye),
which is difficult to implement since it requires modelingnjodis-
tribution between the cluster labels and the relevant featuThe
last approach, which is our own [5], first learns a distancérime
D, from the original clusteringr and then interpret®,. from the
geometric point of view. It then reverses the transfornmatbD
using Moore-Penrose pseudo-inverse to get the new distaate
ric D... Thus in the new data transformed BY, one will find a
different clustering other than.

The area of non-hierarchical clustering with constrairats po-
tentially be used to find alternative clusterings. Consaleluster-

constraint type combination involving cannot-linked doamts.
Davidson and Ravi have shown that clustering under manyatann
linked constraints is intractable for batch [6], increnzri8] and
even pruning-style algorithms [7]. This is a large hurdiecsi we
most certainly wish to generate must-linked constrairusfpoints
in the same cluster but flipping them will produce the unddsde
cannot-linked constraints. Finally, approaches that el dith
inconsistent constraints/advice in a principled mannerewien-
ited. For example, the work of Colemahal. [3] that deals with
embedding constraints into the spectral clustering algorionly
addresses the problem where no object is involved in more tha
cannot-linked constraint, and only for= 2.

As we discussed in the introduction section, the problemnaf-fi
ing two clustering simultaneously is a different problernfr our
problem setting. That problem has been formulated unddraiee-
work of the EM algorithm [10]. Their two approaches, Dectated-
kmeans and Convolutional-EM in Jain, Meka and Dhillon’s kvor
are based on two separate assumptions. The first one ashanhes t
if the "representative” vectors (which are different frane tmean
vectors and lack of intuitive interpretation) of the oldstiering and
the new clustering are mutually orthogonal, then the adtiraness
of two clusterings should be guaranteed. The second agpinac
terprets each clustering as a partial representation ofidkee and
models the data as a sum of mixture distributions, each maxtu
corresponding to a clustering. Note that there is no transiton
of the data involved in both methods.

3. OUR APPROACH

3.1 Setting and Notation

LetX = {z1,xa, ..., z,} C R denote the gived-dimensional
data set which is represented bylax n matrix. The original
clusteringr is found inX . The transformation matrik) isad x d
matrix whileY = {y1,2, ...,yn} C R refers to the transformed
data set by transformatidri = DX. The alternative clustering’
is found inY". Let X andY follow the probability density functions
p=(z) andpy (y).

The output of a clustering algorithm iskablock set partition
of the data seX which is referred to as dustering. Each block
forms a cluster, and they are referred tagsCs, ..., Cx. The size
of clusterC; is denoted as&;. The cluster centroids are denoted as

ing = which can non-ambiguously be represented by a large con- m1, ma, ..., mk.

junction of must-linked constraints between every two {®in the

Please refer to Appendix B for the complete table of notation
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Figure 1: A simple example where ML is must-linked constrairt and CL is cannot-linked constraint.

3.2 Constrained Optimization Formulation

To achieve our goal of finding an alternative clustering \gidlod
quality in a general purpose manner we explore a data tnanafo
tion approach that converts the original défato Y using a dis-
tance metric represented by the transformation mdi>Our for-
mulation allows the user to choose any appropriate clugjetigo-
rithm to run onY to achieve the new alternative clustering hence
we term our approach algorithm-independent. Note thathamot
option is to directly use the transformation matfixgenerated in
our approach along with the old da¥aby using the transformation
matrix D as the distance metric in any distance based algorithm.
The first option is more useful since we do not always have a dis
tance based algorithm, and it is used in the experimentéibseaf
this paper.

There are two main factors in our work:

e The new data seY” preserves the characteristics &f as
much as possible so that the new clusterifidound in the
new space has good quality in the original spalceall of
our experiments we report VQE, DI and JI for both =
and 7’ in X;

e Conversely,r (or parts ofr) should have a poor objective
function value inY” so that it should not be found by a clus-
tering algorithm.

According to these two factors, we formulate the problem as a
constrained optimization problem, as shown in Eq.(1), elig=
DT D and||- ||z denotes the Mahalanobis distance with this weight
matrix B.

gg% D1 (py(y)|pa())
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The objective function of the Kullback-Leibler divergenisea
measure of the difference between two probability distidns.
WhenDg 1 (py(y)||p=(x)) = 0, the two distribution®.(z) and
py(y) of X andY are the same. We minimize KL divergence in
Eq.(1) so that the probability density functions &f andY are
closely matched. This ensures that the inherent propatiasare
not destroyed when being transformedrio

The constraint in Eq.(1) comes from the characteristict wea
expect the new clustering’ to express. We now explain our ini-
tial and most general constraint. Variations in this caistrare
discussed in Section 4. The constraint is best explaineciola:
abilistic framework. To simplify the problem formulatioassume

that the clusters of’ follow a mixture model of multivariate Gaus-
sian distributionsf1 (y), ..., fx (y) with the same covariance matrix
3 but different meanshy, ..., 7, respectively. In other words,
we assume that each clustersihfollows a multivariate Gaussian
distribution with the same covariance matdx Let 71, ..., i
be theprojection of the original centroids my, ..., m in the new
space. Note that these means are different from the cesttioéd
algorithm will find. LetC4, Ca, ..., Ck denote the: clusters inm
anch'l, 52, e Cr denote the: new clusters in’. Then the prob-
ability density function ofy is

N
— g ly=m)llE 1

@)

e

wheren; is the size of cluste’; in ©’. Consequently we have

k

i=1

Suppose object; belongs to the clustet’; in 7, which means
that C; is its most probable cluster. In order to find a different
clustering we must transform the data so thais more likely to
be assigned to a different cluster other ti@nin the new space.
Then the probability of objeaj; belonging to@ (being closest to
m;) in the new clusteringr’ should be small, which is written as
0<a<):

nj

— . e*%ll(yi*mg‘)“%fl <a 3)
n|X|2 (2mr)2
This is equal to Eq.(4).
k ~
i e 2 lwimDIE > 1 g (4)

S0 2
i=tagc, M2 (2m)2

When there is no specific assumption of the sizes of clusters i
7/, we can assume that each cluster has the same size.%rhus
%for (1 <3 < k). Inthe multivariate Gaussian model, we assume
thatS has the same variance along each dimension and dimensions
are highly independent. Then the off diagonal entries anesmall
and can be ignored, arXican be approximated by a multiplication

of a scaler and an identity matrb¢I (o > 0). Therefore Eq.(4)
becomes:

k

>

j=1,z;¢C;

1
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j=1,z;¢C;

Since(ay + a2 + ... 4+ an)/n > aiaz...an, Whena; >
0 (1 <14 < mn), Eq.(6) must hold if Eq.(7) is true:

e lm=m)I® 5 (1 _ st emienT  (6)

k

(k—1) %2 H e*%\\(yi*m;‘)lp >
J=1,2;2C, (7)
(1 - a)k[S|2(2m) 2 e50?
Therefore, we have

k
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Let 3 be —21n[((1’“)k‘i‘fﬁ")%eﬁ )¥=1]. For everyy;, the
constraint becomeg3(> 0):

n k
CSOS M- m)P <8

i=1j=1,2;¢C;

©)
SinceY = DX, m = Dm andB = DT D, for x we have

[[(z: —my)lls < B (10)

1 n k
DS
i=1 j:l,ziQCj

To derive the solution, we define an auxiliary covariancerixat
3, shown in Eq.(11). We see thatis ad x d matrix and can
be interpreted as the variance of the data with respeét to1

centroids since the centroid which each instance is assignie
is excluded.

1y

S> T (@i—my) (@i —my)"

i=1 j=1,z, QCj
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Then the solution to our constrained optimization problesn d
fined in Eq.(1) isB = £~ ! and sinceB = DT D we have our
transformation matrisD = 2. Details of the solution are de-
scribed in Appendix A. We see thatis essentially the summation
overn (the number of instanced) x d matrices. Each of these
matrices is in turn a summation of furth@r — 1) d x d matrices.
Each of thesex(k — 1) matrices measures the variability caused by
a point for a given centroid which this point unlikely belanim in
7’. We then see that the solution to Eq.(1) is to transform tha da
so as to reduce this variability which in turns satisfies thpeau
bound in the equation.

The constraint in our formulation (Eq.(1)) is exchangeatitn
different specifications of the expected properties in the nlus-
terings. We will discuss the details of variations of thelgpeons in
Section 4.

An illustrative example. We use the following simple example
to illustrate our techniques. Figure 2 (a) shows that the dat
X is composed of four multivariate Gaussian distributionfoat
corners of a square with the same variance along each diamensi
The given clusteringr with two horizontal clusters is shown in

Figure 2 (b). We see that

s _ [9.71419 0.1801] D=%h_ { 0.3204

—0.0010

—0.0010

x= 0.1801 36.6461 0.1652

indicating that there is more variability between the piatong
the y-axis than ther-axis. Then the resultant transformatidn
is to compress more along theaxis than ther-axis. Therefore,
when X is transformed t& = DX, the new clusteringr’ with

two vertical clusters as shown in Figure 2 (c) is more likalybe
found.

4. VARIATIONS OF THE PROBLEM

Our basic formulation of the constraint part of the optintiza
problem in Eqg.(1) essentially transforms the data but makes
that each point is not assigned to the same cluster as before.
this section we will discuss other variations to guide the@adians-
formation. In particular we shall explore three main vaoias of
general use, but there may be others of more specific use. We wi
empirically verify our approach to the first and second \téoies of
the problem in Section 5.

The three variations allow:

1. Specifying a trade-off between the alternativeness aiad q
ity of the new clustering with respect to the original cluste

ing.

2. Specifying which clusters in the original clustering &efk
and which clusters not to keep.

3. Finding an alternative clustering in a subspace.

Recall that the constraint in Eq.(1) takes the form

n k
S M- mal <5

i=1 j:l,ziicj
Each of the above variations involves changing some aspéuiso
basic form, as we now describe.

4.1 Specifying the Trade-off between Alterna-
tiveness and Quality

We add the parameter > 1 to quantify the trade-off between
alternativeness and quality by redefining the constraiflémvs:

n k
SN M- mals <8

=1 j=1,2;¢C};

12)

We see that the largeris, the stronger the constraint of assigning
an object to a different cluster in the new clustering wil(bee our
probabilistic interpretation of this constraint in the yioais sec-
tion). Hence the optimization is focused/biased more tdwal-
ternativeness. Converselydfis made small then the constraint is
weaker. The solution to the modified optimization problerthin
B=X"% thatis,D = > %.

4.2 Specifying Which Clusters to Keep and Not
to Keep

To allow this we can have multiple constraints (summatidos)
different clusters. For a cluster (s&¥) we wish not to keep we
employ the same constraint as in Eq.(1) except the summition
limited to points only inC;. For a cluster (sag;) we wish to retain
we then have the constrain: ., [|(zi — mi)||% < § wheres
is some small constant value. The new form of the constraint i
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Figure 2: An illustrative 2D example.

our problem formulation is shown in Eq.(13) where the clistd
Cy = {C1,...,Cr}(1 < r < k) are retained and the clusters of
Cn = {Cr41, ..., Cy} are not retained. Note that the first summa-
tion is related to the points in the clusters to be maintagiaed the
second summation is related to the points in the clustersoniog
maintained.

> > @ —m)la+

z,€Cy l=1,2;,€C)
k
S0 @wi-my)lE <8

z;€CnN j:l,wieécj

(13)

The solution to the modified optimization problem is then=
~ ~_1 ~
Y71, thatis,D = X, ?, whereX; is defined in Eq.(14).

¥ :%( Z Z (xi —mu)(zi — ml)T"'

z; ECy l=1,z;€C;

Y (@i—my) (i —my)Th)

z,€CN j=1,2;¢C}

(14)

There are some cases where the partial clustering that needs
be kept is not composed of whole clusters but some small ¢btenk
of objects. We can specify the information that objecisndz;
should be in the same cluster as a constra{nt, z;). Suppose
Cy ={ci, ..., ¢t } includes all the chunklets,, ..., ¢ (¢ > 0) that
is supposed to be retained and the objecSin= X \ A should
change their assignment in the new clustering. We generaia-a
straintsetS = {s(z;, z;), ...} which includes all the pairs of points
that should be in the same cluster. The constraint fornaras as
in Eq.(15), and the auxiliary matriX., is redefined in Eq.(16).

(2 — x0) | B+

>, X2

z,€Cy s(x;,x)ES

(15)

.
S @-mlh <8

z,€CN j=1,2,¢C;

The solution to the modified optimization problem in Eq.(i5)

~ ~_ 1 ~
thenB = 22’1, thatis,D = X, 2, whereX is as in Eq.(16).

22:%( % @-a)@-a) T+

z;ECy s(z;,x])ES

(16)
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z,€CN j=1,2;,¢C};

4.3 Finding an Alternative Clustering in a Sub-
space

In the original formulation we transformed the data usingat
tries/dimensions i3, but in this variation we normalize over only
a subspace iB. For example, we may find that the given clustering
m is most compact in some subset of dimensions and wish to find
an alternative clustering in the complement of this sub$éts is
effectively finding an alternative clustering in the compéntary
subspace that is most compact in. It can be achieved by fixing
the row and column entries iB to be zero for all dimensions that
the clusteringr is most compact in. Then it makes all the points
along each of these dimensions mapped to the dimensiom peigi
fectively making these dimensions useless for differdintggpoints
into clusters.

5. EXPERIMENTAL RESULTS

We present three sets of experimental results. We will natcek
the results and in later subsections provide full detais will al-
low their repetition. Note that the source code in MATLAB dge
reproduce these results will be made available, and we hasteg
the source code atwwv. constrai ned- cl ustering.org.In
all of the experiments, we use three measurements: Dunix Inde
(DI), Vector Quantization Error (VQE) and Jaccard Indey (dl
evaluate the results. The Dl is a quality measure of the odtibe
minimum distance between two clusters (when measured asthe
erage link distance) to the maximum cluster diameter. Thgeta
the DI the better. We also report the VQE for clusterings as it
the objective function thak-means minimizes. The smaller the
VQE the better. Note that the DI is a measure of separation be-
tween clusters normalized by the cluster diameters, whdeViQE
only measures cluster compactness, not their separatios.Jdc-
card Index (JI) measures the similarity between two clirggsr the
smaller the JI, and the more dissimilar the two clusterimgs All
of the measurements are calculated based on the original dat
X.

All of the clusterings related to the UCI data are obtainedhey
k-means algorithm, and the results are averaged over teomand



restarts of the approach(es). The experiments on imageesegm
tation uses the spectral clustering algorithm as definedhbaikd
Malik [11]. As before,r is the given clustering and the new alter-
native clustering isr’.

5.1 UCI Data Set

Our first set of results is on standard UCI data [1] sets and-com
pares our work against others [2], including our previousky{b].
The comparison to the work of Cui et.al. [4] can be referrethto
our previous paper [5], but their approach does not work veell
lower dimensional data.

We show (see Table 1) that our work is comparable to similar
work with respect to quality of clustering found (when measiby
the VQE) and diversity between the original and alternatives-
tering (when measured using the Jaccard index). The agpiafac
Bae and Bailey [2] obtains better DI results but worse VQEiltes
than our own. This can be explained by the fact that the adlgect
function of their algorithm is the DI and for k-means it is 1QE.
However, our approach has the advantage of being usableawith
variety of distance based clustering algorithms, being &blpro-
vide both positive (keep a cluster) or negative (don’t keefuster)
feedback (which will be discussed in Section 5.3) and belrlg a
to trade-off the two parts (alternativeness and qualitythefcon-
strained optimization problem. By modifying the exponenie
can favor making the alternative clustering more differdan 7
but typically of worse quality and vice-versa, as shown iblg2.

These types of experiments are typically performed to shai t
the approach finds a clustering of reasonable quality aniffes-d
ent from the original clustering. However, they do not shothe
second clustering is truly an interpretable alternativinéooriginal
clustering. To show that, we need to focus on data sets where t
results are readily interpretable, as we do for our next tete ef
experiments.

5.2 Image Segmentation

Our second set of experimental results is for image segitiemta
using spectral clustering. We focus on several Escher immabech
are known to have multiple interpretations to the human €ym-
sider Figure 3 (a) which has two interpretations. If the ey@ibes
on the black sections then there is a segmentation of theciimag
black and non-black as found by spectral clustering in Egufb).
This is the dominant segmentation since the contrast bettee
two clusters is great as one cluster includes the black padghe
other cluster includes the orange and yellow parts. Howeer
approach is able to discover the second and more subtle twe cl
ter segmentation in Figure 3 (c) where the orange is in ongteau
and the black and yellow are in the other. Similar resultfeuead
for Figure 4 (a) which contains three types of butterflied (green
and blue). Spectral clustering first finds fbr= 2 a clustering
of the blue butterflies by themselves and the green and redrbut
flies together in Figure 4 (b). The alternative clusteringri by
our approach is the red butterflies by themselves and theaolde
green butterflies together in Figure 4 (c). In Figure 5, thgioal
clusteringr partitions the image based on the blocked background
and subsumes the mandolin, but the new clustetirggparates the
object of the mandolin from the background.

We use the normalized spectral method of Shi and Malik [11] as
the clustering algorithm. Each object in an image is a pixighw
two kinds of information:RG B value and position. The similarity
between two pixels is the weighted sum of the Euclidean nigta
between theirRG B values and position. The transformation is
only carried out in theRG B value space. In Figure 3 and 4 we see
that for the Escher images the new clusteririgfinds a different

texture in the images.

(c) =’ found by our approach given

Figure 3: Escher flower example of an image with textures with
alternative interpretations, k = 2.

5.3 Specifying Which Clusters to Keep and Not
to Keep

Finally in our last set of experimental results we show how ou
approach can focus on which clusters to keep and which not to
keep. The clustef; we chose to maintain is the one with the max-
imum size/cardinality inr which is derived from the inherent labels
in the UCI data set. Because the datalsabsphere only has two
clusters inherently it is not possible to find a much différelns-
tering while maintaining one cluster. So we only focus ore¢hr
data setsGlass, ESL andVehicle. Let functiong(C;, 7") return the
largest number of points i@, which are in the same cluster iti.

For instance, if the data set has 6 objekts= {z1, ..., z6}, C; =

{z1,72,z3}, and the clustering”’ partitions X into two clusters
C1 = {$17£C2} anng = {563, ...,1’6}, theng(C’l,w’) = 2. The
size of subsef’; is denoted as;.

We define the hit rate as the percentage of objects kept in the



Table 1: Results of comparing several alternative clusterig approaches for Non-Hierarchical clustering, wherer is given andz’ is
the new clustering found by each approach. Note DI=Dunn Inde, JI=Jaccard Index, VQE = Vector Quantization Error (resul ts are
averaged over ten random restarts of each approach).

Approach Data with Labels [2] [5] This Approachu = %
Measurement | DI () VOQE() | JI DI(x) VQE@) | J DI(x) VQE{) | JI DI(x) VOE([)
Glass 0.21 911 0.26 0.83 855 0.24 0.38 505 0.29 043 407
lonosphere | 0.65 3086 | 0.54 1.21 3207 | 0.43 0.98 2421 | 0.46  0.77 2716
ESL 0.38 1374 | 0.28 0.62 1085 | 0.24 0.73 1787 | 0.13 0.67 1277
Vehicle 0.56 2.4107 | 0.26 1.05 5.5t0° | 0.18 0.57 5.410° | 0.22 0.77 5.0t0°

Table 2: Results of our approach parameterized witha, where 7 is given and~’ is the new clustering found by each approach. Note
that as a increases the diversity betweenr and 7’ increases and clustering quality suffers (results are aveiged over ten random
restarts of each approach).

a a= % a= % a=2
Measurement| JI  DI(x’) VQE(’) | JI  DI(x') VQEE) | JI DI(x") VQE(")
Glass 029 043 407 | 0.28 0.32 412 [ 020 0.33 822
lonosphere | 0.46  0.77 2716 | 0.47 0.74 2813 | 0.47 0.68 3126
ESL 0.13 0.67 1277 | 0.12 0.65 1514 | 0.10 0.62 2216
Vehicle 022 0.77 5.010° | 0.19 0.67 6.510° | 0.16 0.53 1.6107

same cluster im’, as follows: There are several advantages to our approach. It is general p
, pose since it can be used with many clustering algorithmedas
Hit Rate — 9(Ci, 1) (17) on a distance function, such &smeans and agglomerative algo-

n rithms. The transformation of the data is specified in clefeech

and is easy to implement. Our approach can specify whicts part
of the clustering are desirable and which are not. Furtheznibe
tradeoff between alternativeness and quality can be dtedrby

the parameted in Eq.(12).

To validate our approach we performed a set of experiments on
the low dimensional UCI data set (see Table 1) to compareur a
proach against the techniques of others [2] and our previark
6. CONCLUSION [5]. As discussed and shown in our earlier work, the apprazch
Cui et.al. [4] is not designed for lower dimensional data hedce
does not perform well. It is important to note that all of these
tering quality measurements we present are calculated loastne
original dataX. That is, even though we transformX to an
alternative space we measure the alternative clusteringgrop-
erties in the original space. We illustrated that our approach not
only achieves clusterings of comparable quality but alsdsfi di-
verse set of clusterings. We were able to focus on alteeraiss
or quality by adjusting the paramete(see Table 2). Our approach
can also find different interpretable clusterings in imaggnsen-
tation applications (see Figures 3, 4 and 5). Finally, wes¢méed
the experiments where the desirable and undesirable dustthe
new clustering can be explicitly specified, and the resuitsved
that our approach can find alternative clusterings whilentaiiing
the expected clusters (See Table 3). Our future work willuide
kernelizing the current approach to find alternative clusts by a
non-linear transformation of the data.

In Table 3, we shows that the new clusteringin three data sets
is of good quality as measured by DI and VQE. Meanwhiieis
not only different tor as compared by JI but also maintains the
cluster we want to keep as indicated by the high Hit Rates. akle ¢
increase the Hit Rate by increasing the exponreintEq.(12).

Data mining aims to find novel and actionable patterns witetmo
algorithms typically returning just one such set of resuttewever,
in some circumstances we wish to find multiple alternativelax
nations of the data. In this paper we study the following feob
given a clustering, find a good quality alternative which vesén
termed the singular alternative clustering problem. THawes the
domain expert who already has a not useful clustering todmco
this knowledge so that the algorithm does not find the sam clu
tering again. Multiple sequential solutions to this problean also
be used to find many possible alternative patterns in the data

Previous works to address this problem, including our owarew
limited in several ways. Firstly, they were (except our ovef) [
algorithm-dependent; secondly, they were all (including own
[5]) unrefined in the sense that they only allowed the domgiee
to say "find a completely alternative clustering” but did atéow
them to specify what properties of the given clustering tegker
not keep.

In this paper we formulate a solution to this problem as a con- Acknowledgments
strained optimization problem that minimizes the Kullbdakbler
divergence between the probability density functions ef ahigi-
nal data set and a new transformed data set. This ensurefehat
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APPENDIX
A. SOLUTION TO EQ.(1)

Here we derive the solution to the optimization problem in(Eg
D=%"3.

Since Y is transformed fronX by the transformatio” = DX,
we can find the connection between two density functien@:)
andpy (y): py(y) = 2557, where|D| is the Jacobian determinant
of transformation matrixD. Then we can rewrite the objective
function in Eq.(1) as follows:

Dir(py(y)l|p=(z)) = /ypy(y) log zfz—gng 4w

_ (@)L iy
‘/ D[ o8 17 “(P)

1
- / pe(z) g 775 (@)

(18)

To minimize Dk 1. (py (y)||p=(z)) is to maximizelog | D|.
Therefore, Eq.(1) is equal to Eq.(19).

n k
1 2
4= E E i— mj <
%1290( log |D| s.t o [I(z m;)lz <8 (19)

1=1j=1,2;¢C};

SinceB is a positive definite matrix wherB = DT D, and it
can be rewritten as follows:

n k
max log|B| S-tgz > li@i—mylz <8 (20)

=1 j=1,2;¢C;

Use the method of Lagrange multiplier,

n k
og|Bl =7 > S0 @ —my)ls - 6)

=1 j=1,2;¢C};

n k
1
:10g|B|—’Y(EZ Y (@i—my) Blwi—m;) - B)
i=1 j=1,2;¢C;

1
=log |B| — w(g(tr(BZ
i=1j

S (@i—my)(ai—my)T)) - B)
1,2;¢C;

=log | B — L(ir(BE) - )
(21)

Take the derivative oB to get Eq.(22) and let it be 0. The scaler
I does not impact the transformation and can be removed. Then

we get the solutiol3 = S i.e.D =¥ 2.

tr(B™Y) — %tr(E)

B. LIST OF NOTATIONS

The following notations are used in this paper.

(22)

Notation Description
X The givend-dimensional data sefX{ C
R%)

T Thesth object inX

n Number of objects inX

k Number of clusters

T The given clustering found iX

Y The transformed data set by transforma-
tionY = DX (Y C RY)

Yi Theith object inY

' The new clustering found il

Pe () Probability density function ok

py(y) Probability density function o

D The transformation matrix

B B=D"D

C; Thejth cluster inm

n; Size of C;

mg Centroid ofC;

Ci Thejith cluster int’

i Size ofC;

M Projection ofm; in Y’

1 Identity matrix

|-l Mahalanobis distance with weight ma-
trix B

fily) Multivariate ~ Gaussian  distribution
which C; follows

by Covariance matrix offi(y), (1 < i <
k)

Dk (pyllp=) Kullback-Leibler divergence between
two distributionsp,andp,

v Auxiliary matrix to deriveD defined in
Eq.(11)

a Parameter to specify the trade-off be-
tween alternativeness and quality in
Eq.(12)

Cy The set of clusters to be retained in Sec-
tion 4

Cn The set of clusters not to be retained in
Section 4

s(xs, z5) The constraint that; andz; must be in
the same cluster

S S = {s(xs,x;),...} includes all the
specified constraints in Section 4

o Auxiliary matrix to deriveD defined in
Eq.(14)

P Auxiliary matrix to deriveD defined in
Eq.(16)

M >0 Matrix M is positive semidefinite




