Clustering with Constraints

Sugato Basu

SRI Intl. (Al Center)
Email: basu@ai.sri.com

lan Davidson

SUNY — Albany (Dept. of Computer Science)
Email: davidson@cs.albany.edu



Acknowledgements

e Contribution of slides
— Tomer Hertz
— Sepandar Kamvar
— Brian Kulis

 Insightful discussions, comments
— James Bailey
— S.S. Ravi
— Kiri Wagstaft
* Apologies
— If we do not get around to covering your workforau have work

on constraints and clustering and we didn’t include the
bibliography (drop us an email).

© Basu and Davidson 2006 Clustering with Constraints




4 N

Notation

e S:set of training data

e s:ithpointin the training set

o L: clusterlabelson S

 |.: cluster label o§

» C;: centroid ofi""cluster

ML : set of must-link constraints

o CL: set of cannot-link constraints

e CC :aconnected component (sub-graph)

e TC.: the transitive closure
\ D(x,y) : Distance between two pointandy /
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Outline

e Introduction and Motivation [lan]
» Uses of constraints [Sugato]
* Real-world examples [Sugato]
* Benefits and problems of using constraints [lan]
« Algorithms for constrained clustering

» Enforcing constraints [lan]

« Hierarchical [lan]

» Learning distances [Sugato]

* |nitializing and pre-processing [Sugato]

« Graph-based [Sugato]
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Motivating Examples in Non\
Hierarchical Clustering

Given a set of instancé&s
Find the “best” set partition

S={S0S0... §}
e Multitude of algorithms that define “best” differently
— K-Means

— Mixture Models
— Self Organized Maps

Aim is to find novel and actionable patterns ...

o /
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/Automatic Lane Finding froﬁ
GPS tracegsvagstaff et al. '01]

Lane-level
navigation (e.g.,
advance notification
for taking exits)

Lane-keeping
suggestions (e.qg., lane
departure warning)

« Constraints inferred from trace-contiguity (ML) & max-separ ation (CL)
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/I\/Iining GPS Traces (Schroedl et®

e |Instances are represented byxhglocation on the road. We
also know when a car changes lane, but not what lane to.

* Desired clusters are very elongated, horizontally aligned central
lines.

]

Figure 9. k-means cutput for data set 6.k = 4, with nearest clusters marked with different symbols
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/ Clustering For Object \

ldentification

Object Only
identification significant
for Aibo clusters

robots Shown
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/Clustering CMU Faces Data%e
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/ Example Clusters \

o
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/Clustering Example (Numberﬁ\
Clusters=2)

Height
A

>
Weight
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/ Horizontal Clusters \

Height

>
Weight
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Vertical Clusters

Measures of Clustering

Weighted Purity
Rand Index

Mutual Information

Weight
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K-Means Algorithm

1. Randomly assign each instance to a cluster
2. Calculate the centroids for each cluster

3. For each instance
. Calculate the distance to each cluster center
 Assign the instance to the closest cluster

4. Goto 2 until distortion is small

© Basu and Davidson 2006 Clustering with Constraints
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o Standard iterative partitional clustering algorithm

K-Means Clustering

* Findsk representative centroids in the dataset

— Locally minimizes the sum of distance (e.g., sqddtuclidean
distance) between the data points and their cavrebpg cluster

centroids
ZsiDS D(S' ’Cli)

&Simplified form of this problem is intractabj&arey et al.’82]
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/ K Means Example (k=2) \

Initialize Means

A

>
Weight
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/ K Means Example \

= ASSIgNn Points to Clusters

A

>
Weight
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/ K Means Example \

Re-estimate Means

A

>
Weight
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/ K Means Example \

«  Re-assign Points to Clusters

A

>
Weight
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/ K Means Example \

Re-estimate Means

A

>
Weight
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/ K Means Example \

«  Re-assign Points to Clusters

A

>
Weight
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/ K Means Example
HeigAmRe-estimate Means and Converge

X L

~

o

>
Weight
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/ K Means Example

Height
A

Convergence

~

o

>
Weight
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Basic Instance Level Constraints

« Historically, instance level constraints motivated by the
availability of labeled data
— I.e., much unlabeled data and a little labeled datilable
generally as constraints, e.g., in web page clagter
* This knowledge can be encapsulated using instance level
constraint§wagstaff et al. '01]
— Must-Link Constraints
* A pair of pointss ands (i # ]) must be assigned to the same cluster.
— Cannot-Link Constraints
* A pair of pointss ands (i # J) can not be assigned to the same cluster.
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/ Properties of Instance Level\

Constraints

o Transitivity of Must-link Constraints
— ML(a,b)andML(b,c) - ML(a,c)
— LetX andY be sets of points connected M. constraints
— ML(X) andML(Y), a_X, a¥, ML(a,b)» ML(X /7Y)

e The Entailment of Cannot link Constraints
— ML(a,b), ML(c,d)andCL(a,c) - CL(a,d),CL(b,c),CL(b,d)

connected components)
\ — CL(@JCC ,b JCC) - CL(xy), Lk JCGC, [Ny [JCC

— Let CC ... CC be the groups of must-linked instances (i.e., the

/
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/ Complex Cluster Level \

Constraints

e o-Constraint (Minimum Separation)
— For any two cluster§, § 0 1,]
— For any two instancegl1S, s,l1§ U p,q
- D(s,8) 20

» &Constraint
— For any cluste§ |§|> 1

— Up, §0S, 515 €2 D(s, 5), <> S,

o /
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/ Converting Cluster Level to\

Instance Level Constraints

e Delta constraints?

For every point x, must-link

all points y such that

D(x,y) < ¢ i.e. conjunction
>0 of ML constraints

e Epsilon constraints?

— For every poink, must link to at least one powsuch that D(X,y) <=,
l.e. disjunction of ML constraints

O
will generate many instance level constraints /
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/ Other Constraint Types We
Won't Have Time To Cover

e Balanced Clusters
— Scalable model-based balanced clustgiihgng et al. '03]

— Frequency sensitive competitive learnj@glanopoulos et al. 96,
Banerjee et al. '03]

— K-Means clustering with cluster size constrajBtadley et al. '00]

e Clustering only with constraints

— Correlation Clustering / Clustering with Qualitegtiinformation
[Bansal et al.’02, Charikar et al. ‘03, Blum et al. '04, [>&me et al.]

— No distance function, use only constraints toteludata

— Maximize the agreements / minimize disagreemegtisden cluster
partitioning and constraints
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/ Other Constraint Types We
Won't Have Time To Cover

* Negative background information
— Find another clustering that is quite differewinfra given set of
clusteringgGondek et al. '04]
e Labels given on data subset
— Genetic algorithm to incorporate labeled supeswifibemiriz et al.’00]
— Modify cluster assignment step to satisfy givésela[Basu et al.’02]

— Cluster using conditional distributions of labelsin auxilliary space
[Sinkkonen et al. '04]

— Fit Bayesian model with Dirichlet Process piipsume et al.’05]
» learns appropriate number of clusters using non-parametric technique

o Attribute-level / model-level constraintsaw et al.’05]
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Big Picture

e Clustering with constraints:
Partition unlabeled data into groups called clusters
+ use constraints to aid and bias clustering

e Goal:

Examples in same cluster similar, separate clusters
different +constraints are maximally respected
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Enforcing Constraints

» Clustering objective modified to enforce constraints

— Strict enforcement: find “best” feasible clustgriespecting all
constraints

— Partial enforcement: find “best” clustering maxiipaespecting
constraints

e Uses standard distance functions for clustering

[Demiriz et al.’99, Wagstaff et al.’01, Segal et@3, Davidson et al.’05,
Lange et al.’05]

© Basu and Davidson 2006 Clustering with Constraints
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Example: Enforcing Constraints

Em lx EEE Cannot-link

I Must-link

>
Weight

© Basu and Davidson 2006 Clustering with Constraints 34




/ Example: Enforcing Constrai®

A0\

<o Clustering respecting all constraints
A

III”III

EEEEE—— Must-link

Cannot-link

o

>
Weight
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Learning Distance Function

e Constraints used to learn clustering distance function

— ML(a,b) - aandb and surrounding points should be “close”
— CL(a,b) - aandb and surrounding points should be “far apart”

e Standard clustering algorithm applied with learned
distance function

[Klein et al.’02, Cohn et al.’03, Xing et al.’03 aBHillel et al.’03,
Bilenko et al.’03, Kamvar et al.’03, Hertz et all)(De Bie et al.’04]
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/ Why Learn Distance Functiona

DistBoost .
|'||. .
Euclid
. p -
L

e
DistBoost i




/ Example: Learning Distance\

e Function
v

[
° [
° [ [
I Must-link
>
Weight
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Example: Learning Distance\

Function
4 Space Transformed by Learned Function

Em lx EEE Cannot-link

I Must-link

>
Weight
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Example: Learning Distance\

Function
“+  Clustering with Trained Function

Em lx EEE Cannot-link

EEEEE—— Must-link

>
Weight
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/ Enforce Constraints + Learn
Distance

e Integrated frameworkBasu et al.’04]
— Respect constraints during cluster assignment
— Modify distance function during parameter re-eation

« Advantage of integration

— Distance function can change the space to decceasgraint
violations made by cluster assignment

— Uses both constraints and unlabeled data forileadistance
function
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Generating Constraints From Labels

 Most used (in papers) approach to generate caomstra
o Typically setkto equal the number of extrinsic classes

« Clustering labeled ([pand unlabeled data (P
e Generate constraints from @ut how much?, what happens if | /

generate too many constraints?)
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/ Generating Constraints from Video

« Generating constraints from spatio-temporal aspects of video
sequences [Yan et al.’04]

Labeled Set Learning | ‘s | Temporal || Active

ﬁ using L Constraint | | Constraint

.'l. : :l’l'-l. I
Video Data
—

Learning Sequence Constrainis
using L & P p
—
Outpiit Classiflers
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Gene Clustering Using I\/Iicro\
array Data

Genes

|
T
ik

Gene
expressions

=

'i'rf-: T 1]
(G AT UL

Red => low
expression w.r.t
baseline

A

Green => high
expression w.r.t
baseline

Gene clusters I G e b i o TR A
« Constraints from gene interaction information in DIP Experiments
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/ Content Management: Docum\ent

Documents

Clustering

Clustering

i L] j{\ Directory
HH  HH structure
constraints

/
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Personalizing Web Search Result Cluste

96 28 1 1B Clustered search or jaguar - Microsoft Internet E xplorer

company | products | solmtions | customers | demos | press

B AV I 0 )

NEW search for images at Clusty.com

Clustered Results 1]
»» laguar17s) ) |
Jag uar Ca rS ’. m[gi] 1. mﬁmwmﬂu‘rcow Fnaww'md-ow] [frame] kputriw\q_ [dusl.ers.} -
'[F" ™ Wiy fACIUAE. COM - Lycos 1, MEM 1, Ask Jeaves 1 MEN Search 2 ;:5:
@» Parts 2) 2 Jag-lovers - THE source for all Jaguar information jew windon] frame] eache] ]
. [previewd] [olusters] .
Jaguar anlmal * - jaguar, Jaguar,jaguar car jaguar enthusiast, adverts discussion forums jag- .
@-» Classic(14) lovers jaglovers, club ke, xk8 x5 e-type s-type x-type stype xtype Donate NOW and .
support Jag-lovers on the Internet! Senving ... .
. @--bﬂnlml.lﬁﬂ wei, jag-lovers. org - Open Ditectory 2, Lycos 8, MEN 8, Ask Jaeves 8, Loaksmart 12, MEH ;
MaC|ntOSh OS X ’M[s] . Search 44 :
5-» Mark Webber is) . . . .
(Jaguar) '[F -3 Jaguar UK - R s for Bacing jrew wirde [frame] [eache] [previen] [clusters] .
‘?“"‘Iﬂﬂ[s] .. winning C-TYPE = the first car ever to have disc brakes - Jaguar's racing technology o
- Maya ) has been bred into the bloodline of every Jaguar, particularly the very special range of .
road cars that bear . -
i FA L AT=TACINA com. - MEH Seamb 1 MSK 3 4sk Jepves 11 | nnksman 27 .

« Constraints mined from co-occurrence information in query vweb-logs
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/Automatic Lane Finding froﬁ
GPS tracegsvagstaff et al. '01]

Lane-level
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advance notification
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/I\/Iining GPS Traces (Schroedl et®

* Instances are represented byxhglocation on the road. We also know when a car
changes lane, but not what lane to.
e True clusters are very elongated and horizontally aligned héthahe central lines

 Regular k-means performs poorly on this problem instead finding spheltisters.

‘:'; :’ i’i’n’.

- e_

Brine

Rl 1 &0 mnn 0 an AN

Figure 9. k-means cutput for data set 6.k = 4, with nearest clusters marked with different symbols
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A Quick Summary

* Benefits
— Increase accuracy when measured on extrinsic labels
— Obtain clusterings with desired properties

— Limited results for increasing algorithm run-time
(agglomerative hierarchical clustering only)

 Problems
— Feasibility issues, can easily over-constrain problem

\ — Not all constraint sets improve accuracy /
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/ The Feasibility Problem

e \We've seen that constraints are useful ...
 But is there a catch?

 We are now trying to find a clustering under all sorts of
constraints

Feasibility Problem

Given a set of data poing&a set ofML andCL constraints

a lower K|) and upper bound() on the number of clusters,

IS thereat least onesingle set partition obinto k blocks,K, = k = K|

such that no constraints are violated?

i.e. CL(a,b), CL(b,c), CL(a,c), k=27

© Basu and Davidson 2006 Clustering with Constraints

52




Investigating the Feasiblility Problem
and Consequences?

* For a constraint type or combination:
— P :construct a polynomial time algorithm
— NP-complete : reduce from known NP-complete pmoble

 If the feasibility problem is in P then we can:

— Use the algorithms to check if a single feasiblatgon exists before
we even apply K-Means

— Add feasibility checking as a step in K-Means.
 If feasibility problem is NP-complete then:

— If we try to find a feasible solution at eachatigon of K-Means, could
take a long time as problem is intractable.
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/ Summary of Feasibility \

Complexity Results

Constraint Complexity
Must-Link P [15]
Cannot-Link NP-Complete [15]
d-constraint F
e-constraint P
Must-Link and 4 F
Must-Link and ¢ MNP-complete
& and € P

Table 1: Results for Feasibility Problems

o /
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/ Cannot Link Example \

Instances a thru z
Constraints: CL(a,c), CL(d,e), CL(f,g), CL(c,g), (CLf)

Graph K-coloring problem

° Graph K-coloring problem is
e Q Intractable for all values of

K=3

See[Davidson and Ravi '05]
for polynomial reduction from
\ graph K-coloring problem. /
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/ Must Link Example \

Instances a ...z
ML(a,c), ML(d,e), ML(f,g), ML(c,Q)

M1={a,c,f,g}

6 G M2={d,e}

Let r be the size of the transitive
a a closure (i.e. r=2 above), the

number of connected components

Infeasible if k > (n-|TC|)—r
> 26-6 — 2
l.e., can’t have too many cluste
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New Results

» Feasibility Problem for Disjunctions of ML and CL
constraints are intractable

* But Feasibility Problem for Choice sets of ML and CL
constraints are easy.

— ML(X, y) UML(X, Y,) ... UML(X,y,)
— I.e. X must-be linked with one of the y’s.

o /
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/ Is Over-constraining Really a\

Problem

« Wait! You said clustering under cannot link constraints
was intractable.

* \Worst case results say that there is one at least one “hard”
problem instance so pessimistically we say the entire
problem is hard.

 But when and how often doeser-constrainingbecome a
problem.

e Set k = # extrinsic clusters

 Randomly generated constraints by choosing two instances
\ Run COP-k-means j
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Experimental Results

Figure 3: Graph of the proportion of times from 500 independent trials the algorithm in figure 2
gets stuck for various number of randomly chosen ML and CL constraints, k = number of instrinsic
classes: Irizs (2), Pima (2), Breast (2) and Vote (2).

Fima - Algorithm Succeads Iris - Algorithm Succeads

12 12

14 1
o 08 008
i a8 4 & a8 4
B B
& 04 @04

a2+ a2+

Q- Q-

LRI R R I I R R R I
Randomly Generated Constrai nts Randamly Generated Constraints
Vote - Algorithm Succeeds Breast - Algorithm Succeads

12

1 1
o aa
i a8 4
B
& 04

oz

R O N E i R R IR R R R R
Random ly Generated Constraints Randomly Genemted Constrai ms
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/ Some Theoretical Results To
ldentify Easy Constraint Sets

[Davidson, Ravi AAAI '06] |dentify sufficient conditions where
coloring is easy and hence algorithms
like COP-k-means will always

6{ converge if a feasible solution exists.

a) If k= maxDegree(CL-Graph) + 1

b) If k = Q-Induct(CL-Graph) + 1
Q-Inductiveness of a graph:
Ordering of instances and assigne
Integer values so that at m@gedge
point down-stream.
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/Can Constraints Adversely Ef@t\
Performance?

Many people ;<
(including
ourselves) |

Reported averagett——————+————= =% & %

performance .| =asmmm e

[Wagstaff '02]
-

i?:l-
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However Averaging Masks That Som

Constraint Sets Have Adverse Effects

Algorithm
CKM PEM MEM MPEKM
Diata Set [Unconst. Const.|Unconst, Const.|Unconst, Const. |Unconst. Const.
Glass 69.0 G9.4 ww 39.5 G7.8
lonosphere| 55.6 58.7 58.8 5801 580 580 | 589 589
Iris 84.7 5T.8 584.3 58.3 58.0 03.6 88.0 01.8
Wine 70.2 70.9 T1.7 7T2.0 ] 93.3 091.3 3.3 00.6

Table 1. Average performance | Rand Index ) of four constrained clustering algorithms,
for 1000 trials with 25 randomly selected constraints. The best result for each algo-

rithm /data set combination is in bold.

Table 2. Fraction of 1000 randomly selected 25-constraint sets that caused a drop in
accuracy, compared to an unconstrained run with the same centroid intialization.

Algorithm
Data Set |[CEM|P KM|MEM|MPEKM
Glass | 28% | 1% | 11% 0%
[onosphere| 26% | 77% [ 0% TT%
Iris 20% | 19% | 36% 3659
Wine AR | 34% | 87T% T4%

© Basu and Davidson 2006
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/ ldentifying Useful Constraint Se@

Informativeness and Coherence
[Davidson, Wagstaff, Basu '06]

(@) -’ (b)

" oxe - -
Informativeness Coherence
. (&) a (b} 5]
T4C) = ﬁ Zunanf{c,FA] ;wh ; i T R
e i a— ' 4 ) 1

\ {overya =0} Mpa u-.-Erh.J
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e Constraints are strong background information
that should be satisfied.

e Two options

— Satisfy all constraints, but we will run into infeasibility
problems

— Satisfy as many constraints as possible, but working out
largest subset of constraints is also intractable (largest-
color problem)

o /
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/ COP-k-Means — Nearest-
“Feasible”- Centroid Idea

Input: 5, unlabeled data, S5;. labeled data, k the number of clusters to find, g number of

constraints to generate,
Output: A set partition of § = 5, U 5; into k clusters so that all the constraints in C = MLUCL

are satisfied.

1. ML=0,CL=10
2. loop g times do

(a) Randomly choose two distinct points z and y from 5;.
(b) if(Label{z) = Label(y)) ML = ML U{z,y}else CL=CLU{z,y}

(]

. Compute the transitive closure from ML to obtain the connected compceonents CC4, ..., CC,.

4, For each i, 1 <17 < 7, replace data points in CC; with the average of the points in CC;.

o

. Randomly generate cluster centroids €5, ..., CL.

=

loop until convergence do

(a) for i=1 to |S| do
(a.1) Assign s; to closest feasible cluster.
(b) Recalculate C1,...,CL.
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/ Example: COP-K-Means - 1\

Height
A

Em lx EEE Cannot-link

I Must-link

>
Weight
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/ Example: COP-K-Means — ﬂ

ML points Averaged

Height
A

Em lx EEE Cannot-link

I Must-link

>
Weight
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Example: COP-K-Means — ?N
Nearest-Feasible-Assignment

Height
A

Em lx EEE Cannot-link

EEEEE—— Must-link

>
Weight
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Trying To Minimize VQE and Satisfy
As Many Constraints As Possible

o Can’trely on expecting that | can satisfy all constraints at
each iteration.

 Change aim of K-Means from:
— Find a solution satisfying all the constraints amdimizing VQE
TO
— Find a solution satisfying most of the constra{penalized if a
constraint is violated) and minimizing VQE
e Two tricks
— Need to express penalty term in same units as ®i§tartion

— Need to rederive K-Means (as a gradient descgatitim) from
first principles.
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/ An Approximation Algorithm —\

Notation

g(D), g’'() and m(l) refer to thehconstraint

g(l) : assigned cluster for first instance in coaisit
g’'(D) : assigned cluster for second instance insti@mnt
m(l) = 1 for must link, m(l) = O for cannot link

A
1=2, m(I)=0
* * gD=x,g()=x e e \ ° °
) ° .
e CERREE-  NERRENN
|=3, m(l):]_
l : " glh=x, g)=x
) . ‘
[ ° ) . o
e o ° ® ® ) nm lx === Cannot-link
X Must-link
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New Differentiable Objective
Function

Satisfying a constraint may increase distortion
Trade-off between satisfying constraints and distortion
reguires measurement in the same units

(5.5) CVQE; = - > Ti +

S:EQ_;

1 a4t

2 Z (T2 x Tja)

I=1,g({l)=3j

Only one is non-zero
per constraint violation

If ML violated add
distance between
clusters

where
Tia = (Cj—s:)
Tia =k, [(C; = Co)* = Alg" (1), a(1)]™
Tia =k[(Cs = Cuig)* A

If CL violated add
distance between
cluster and nearest
cluster

© Basu and Davidson 2006 Clustering with Constraints 72




/ Visualizing the Penalties \

Either satisfy the constraint, or
Assign to the “nearest” centroid but with a penalty

A
|=2, m(I):o
¢ * gD=x,g()=x e e ° °
® ° .
( ] @gEEEEE® - RENNNEN » \ |:3, m(|)=1
l 8 ® g)=x, g'()=x
® o / ‘
° * .. o ® suudfaens  Cannotlink
o @ . N
. s MUSt-link
X
>
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Constrained K-Means Algorithm

Algorithm aims to minimize CVQE and has a formal derivatior
Randomly assign each instance to a cluster. [ s Link
1. = Average of points assigned to j Penalties

5 I . g . J J —

+ Centroids of points thaghould be assigned to |

+ Nearest Centroids to pointkat should not to be

assigned to |
2. NN assignment for each instance using new distance
Assignxto G, iff argmin CVQE(x,Q)

, , Cannot Link
Qoto 1 untilACVQEIis small Penaltiey

© Basu and Davidson 2006
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Outline

e Introduction and Motivation [lan]
» Uses of constraints [Sugato]
* Real-world examples [Sugato]
* Benefits and problems of using constraints [lan]
« Algorithms for constrained clustering

» Enforcing constraints [lan]

* Hierarchical [lan]

» Learning distances [Sugato]

* [nitializing and pre-processing [Sugato]

« Graph-based [Sugato]

© Basu and Davidson 2006 Clustering with Constraints 75



/ Hierarchical Clustering \

Agglomerative Hierarchical Clustering
Initially, every instance is in its own cluster
Compute similarities between each cluster
Merge two mossimilar clusters into one.
Goto 2

W

Time ComplexityO(n?)

A D B C
A B C D
A0 36 1
B 3 03 2
D= ‘ ‘
C6 305 S e e e
D1 25 0 A B C D
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/ Modify the Distance Matrix (D) To Satisfy\

Instance Level Constraints (KKMO02) - 1

e Metric spaces. Only changing the distance matrix
not the distance function.

. I|33ut we must satisfy the triangle inequality

3 d(x,y) £d(x,z) + d(z,y)
3 d(x,y) 2| d(x,z) —d(z,y) |

6
A C

 If inequality did not hold then shortest distance
between two points wouldn’t be a line.
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/ Modify the Distance Matrix (D) To Satism
Instance Level Constraints (KKMO02) - 2

1): Change ML distance instance entriesin Dto 0

O(r¥)

2
ABCD 5
A o@es 1 . 3
5. B@os 2 mMLAB)
= 6
© 6305 cAD) 4
D1 25 0 d(x,y) < d(x,z) + d(z,y)
d(x,y) 2| d(x,z) —d(z)y) |
Algorithm

o 2). Calculate D’ from D using all pairwise shatt@ath algorithms, takes

\3): D” = D’ Except Change CL distance entriedom max(D)+1 J

© Basu and Davidson 2006 Clustering with Constraints

78



/ Modify the Distance Matrix (D) To Satism

Instance Level Constraints (KKM02) — 3

S @ 1 A B C D
B D

T 3 1 Ao o3 1
0 B

E 5 o o 0 3(1

P %) 3 C(3)3 0 5

5 A C D 1 5 0

d(x,y) <d(x,z) + d(z,y)
d(x,y) 2| d(x,z) —d(z,y) |

Algorithm
 1). Change ML distance instance entriesin Dto O

e 2):. Calculate D’ from D using all pairwise sh@tt@ath algorithms, takes
O(r)
QD” = D’ Except Change CL distance entriedmmax(D)+1 J
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/ Modify the Distance Matrix (D) To Satism

Instance Level Constraints (KKMO02) - 4

S B 1 D A B CD
: ; 6 A0 0 3(6
= 0 5 ._Bo0oo031
P 3 C 3 30 5
. A C D@15o

But Because of entailment property of CL we “mamitéhe triangle inequality
Join(A,B)

Can’t Join((A,B),D) instead Join((A,B),C) and ths&tiop
Indirectly made d(B,D) and d(A,C) >> 6 and makeguaity indirectly hold.
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ﬂ:easibility, Dead-ends and Spee%g

Up Agglomerative Clustering

Feasibility Problem

Instance: Given a set S of points, a (symmetric) distance

\~ 44

function d(x,yr0 LIx,y and a collection of constraints.
Problem: Carsbe partitioned int@t least onesingle
subsets (clusters) so that all constraints are satisfied?

CL(a’b)’ a b For fixedk
CL(b,c), equivalent to graph
\ CL(a,c) coloring so NP-complete
(k

=3, k=2, k=1)?
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/ Feasibility Results \

Constraint Givenk Unspecifiedk
ML P [SDMO5] P [PKDDO5]
CL NP-complete[SDMO5] | P [PKDDO5
O P [SDMO05] P [PKDDO5]
£ P [SDMO05] P [PKDDO5]
ML ande NP-complete[SDMO5] | P [PKDDO5!
ML andd P [SDMO05] P [PKDDO5]
o ande P [SDMO5] P [PKDDO5]
ML, CL ande | NP-complete[SDMO5] | NP-complete
\ [PKDDO5] /
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/ Feasibility under ML and CL\

ML(s4,S3), ML(ML(s,,S;), ML(s,,s,), CL(S, )

ONOBOBONONO

Compute the Transitive Closure on ML={CC. CC} O(n+m,, )

SONORONORONO

Construct Edges {E} between Nodes based on CL: Q(m

\@ O /

Infeasible: iffCh,k: e(s, §) : S, §CC,: O(Mg,
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/ Feasibility under ML and \

S'={x /S : x doesiot have ansneighbobd={ s, S;}
Each of these should be in their own cluster

ONONONOKNONS

ML(s,S,), ML(S3,%;), ML(S,S5)
Compute the Transitive Closure on ML={CC. CC} : O(n+m)

\ Infeasible: iff,j : §7CC, 5 S : O(S’|) /
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An Algorithm for ML and CL Constraints

Constrainedd gglomerative({5 ML,CL) returns Dendrogrami, i = Emin ... kmax

Notes: In Step 5 below, the term “mergeable clusters™ 15 used to denote a pair of clusters whose
merger does not violate any of the given CL constraints. The value of £ at the end of the loop in
Step 5 mives the value of knin.

1. Construct the transitive closure of the ML constraints (see [4] for an algonthm) resulting in
r connected components My M, .. M.
2. If two pomnts {x, y} are both a CL and ML constraint then output “No Solution™ and stop.
LetS) =5 — ':U.'r=1 M) Let ke = 7+ |51
4. Construct an initial feasible clustering with k.., closters consisting of the r clusters M,
<« ., My and a singleton cluster for each point in 5. Set § = kmax.
5. while (there exists a pair of mergeable clusters) do
(a) Select a pawr of clusters €} and U, according to the specified distance criterion.
(b) Merge £ mto Oy, and remove . (The result 15 Dendrogram:—1.)
()t = t— 1.
endwhile

e

Fig. 2. Agglomeratrve Clustering with ML and CL Constraints
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Empirical Results

Data Set Distortion Purity
Unconstrained|Constrained |Unconstrained | Constrained
Iris 3.2 2.7 S8% 66%
Breast 8.0 73 53% 530%
Digit (3 vs 8) 17.1 15.2 35% 45%
Pima 08 8.1 a1% 68%
Census 26.3 223 6% 61%
Sick 17.0 15.6 S0% 50%
Table 1. Average Distortion per Instance and Average Percentage Cluster Punity over Entire Den-
drogram
Data Set  |Unconstrained Constrained
Iri= 22201 3.275
Breast 487,204 59,726
Dagit (3 vs 8)( 3,996,001 000118
Pima 588,289 61,381
Census 2,347 305,601 | 363,034,601
Sick 793 881 159 801

Table 3. The Founded Mean Number of Pair-wise Distance Calculations for an Unconstrained
and Constrained Clustering using the § constraint
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Dead-end Clusterings

Definition 3. A4 feasible clustering C' = [y, C4, ..., Ci | of a set S is irreducible if no
pair of clusters in C' can be merged to obtain a feasible clustering with k — 1 clusters.

A k cluster clustering is a dead-end if it is irreducible, even thoug
other feasible clusterings witlk€lusters exist

Jh

(I) |1 |2 |3 | 4 | 5| ©
,IA ID | I|3 - C Constraints CL(A,B) CL(A,C)
A B CD Join(A,D) Can’t go any further — Deadend
A0 36 1 Even Though Join(B,C), Join(A,D) is possible
B 3 03 2
D =
C 6 30 5
D 1 25 0
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/ Why Are Dead-Ends a \

Problem?

 Theorem (in technical report)

— Letk,< K., then if there is a feasible clustering with
K. clusters and a “coarsening” wikh,, clusters there
exists a feasible clusteririgr every valuebetweerk. ...

andk...
e But you can’t always go from a clustering with

K. t0 one withk . clusters if you perform closest
cluster merge.

e That is If you use traditional agglomerative
\algorithms your dendrogram can end prematW
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Dead-End Results

* For dead-end situations, you can’'t use agglomerative
clustering algorithms, otherwise you'll prematurely

terminate the dendrogram.

Constraint | Dead-end Constraint Dead-end
Solutions? Solutions?

ML No [PKDDO5] ML ande No [PKDDO5]

CL Yes [PKDDO5] ML andd No [PKDDO5]

o No [PKDDO5] o ande No [PKDDO5]

€ No [PKDDO5] ML,CL& ¢ |Yes[PKDDO5]

© Basu and Davidson 2006
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Speeding Up Agglomerative Clustering
Using the Triangle Inequality - 1

Definition 2. (The ~ Constraint For Hierarchical Clustering) Twwo clusters whose geo-
metric centroids are separated by a distance greater than ~y cannot be joined.

Calculate distance between

a pivot and all other points Q1

Bound distances on A D 5 C
remaining pairs of points

=5
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Speeding Up Agglomerative Clustering
Using the Triangle Inequality - 2

Lety=2
Data Set |Unconstrained|Using -y Constraint
A B CD Tris 22.201 19.830
A 0 3 6 1 Breast 487 204 431,321
Digit (3 vs 8)] 3,996,001 3,432,021
B 3 0@ 22 Pima 588,289 501,323
D = C 6 @ 0 @ Census | 2,347.305.601 | 1,992,232 981

Sick 793 881 703,764

b1 22@ 0 Mean number of distance calculations

Calculate: D(a,b)=1, D(a,c) = 3, D(a,d) =6
Save D(b,d35 D(c,dp3
Calculate D(b,&2,
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Algorithm

IntelligentDistance (y, C = {C4,...,Cr})
returns d(z:, 7) v1i, 7.

. fori=2to n—1 dy; = D(C,C;) endloop
2. fori=2ton—1 )
forj=i+1ton—1 dij=|dii—duijl
ifdi; >vythend;; =~+ 1, donotjoin elsed;; = D(xsx;)
endloop
endloop
3. return d 4, Vi, 7.

Fig. 3. Function for Calculating Distances Using the v Constraint and the Triangle Inequality.

* Worst case resuld(r?) distance calculations
» Best case calculated boualivaysexceedy : O(n)
Average case using the Markov inequality: shAZe distance calculations
wherey = cpoandpis the average distance between two points.
PX=A)<E[X]/A

Clustering with Constraints 92

© Basu and Davidson 2006




Outline

e Introduction and Motivation [lan]
» Uses of constraints [Sugato]
* Real-world examples [Sugato]
* Benefits and problems of using constraints [lan]
« Algorithms for constrained clustering

» Enforcing constraints [lan]

« Hierarchical [lan]

» Learning distances [Sugato]

* [nitializing and pre-processing [Sugato]

» Graph-based [Sugato]
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/ Distance Learning as Convex

Optimization[xmg et al. '02]

 Learns a parameterized Mahalanobis (weighted Euclidea
distance using semi-definite programming (SDP):

min 2.l1§ -5 1h=min 2,(5-5)"Al§ -s))

(s .sj)UML (5,S;)OML

2 lls s 1,21

(s,s;)CL

st. ApO
x" ={2,3}, y' = {4,5}: D,(x,y) {2-4, 3-5}'1{2-4, 3-5}

n)

[ {2'41 3'5}T{| 1,1(2'4), |2,2(3'5)}

D,(x,y) O{2-4, 3-5FA{2-4, 3-5}
O AL (2-4F+ A, 3-5F

© Basu and Davidson 2006 Clustering with Constraints 94




/ Alternate formulation

« Equivalent optimization problem:

max g(A)= D IIss Il

(s,s;)0CL

f(A= Yllss k<l m-C
(s,s;)ML

St. ApO M - C,

o
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Optimization Algorithm

« Solve optimization problem using combination of
— gradient ascent: to optimize the objective
— Iiterated projection algorithm: to satisfy the doasits

Iterate

Iterate
A:=argming {||A" — A||p : A" € C1}
A:=argminy {||A" — Al|p: A" € C3}
until A converges

A=A+ a(Vag(d))iv,s

until convergence

» [Bie et al. '05]use a variant of Linear Discriminant Analysis (LD£)

find semi-supervised metric more efficiently thadFs

© Basu and Davidson 2006 Clustering with Constraints
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/Distance Learning in Product Spa

[Hertz et al. '04]

* |nput: O’O
o—" O

— Data seXin R

— Equivalence constraints
e Output: function DX *X - [0,1] such that: O

o
product space

» points from the same class are close to each.other
* points from different classes are very far froraleather.

 Basic Observation:

— Equivalence constraintss Binary labels in product space

— Use boosting on product space to learn function
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Boosting In a nutshell

A standard ML method that attempts to boost théopmance of “weak” learners

Basic idea:
1. Initially, weights are setqually
2. Iterate:

I.  Train weak learner on weighted data

ii. Increaseweights ofincorrectly classifiedexamples (force weak learner to
focus on difficult examples)

3.  Final hypothesiszombination of weak hypotheses
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EM on Gaussian Mixture Moc@

« GMM: Standard data representation that models data using a
number of Gaussian sources

 The parameters of the sources are estimated using the EM
algorithm:

— E step: Calculate Expected log-likelinood of tlaadover all possible
assignments of data-points to sources

— M step: Differentiate the Expectation w.r.t. fegameters
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ﬁl‘ he Weak Learner: Constrainedﬁ“

Constrained EM algorithm: fits a mixture of Gaussians to
unlabeled data given a set of equivalence constraints.

Modification in case of equivalence constraints:

E step: sum only over assignments which comply witthe
constraints
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The DistBoost algorithm

Fort=1,...,T
Input: weighted (1) Learn constrained (2) Generate “weak”
data-points + eq. GMM distance function
constraints
o 9 (%, %)=0.1
& 0-" o — —
5 h(%, %)=0.7 \v
I\
4 (3-4) Compute “weak”
0. distance function
® weight a,
7
®e
o @
O "¢ 0
(7) Translate weights 0
pairs to weights on S (5-6) Update weights
data points o6 on pairs of points

Final distance function:  D(X, X ) = ZtT:lat h(x, x)




Integrated Approach: HMRF

[Basu et al. 04]

Markov Hidden RVs of
_Random cluster labelst
Field (MRF)

P(L): Prior over constraints

Observed

/ data valuesS

P(S|L): Data Likelihood

Hidden Markov
Random Field
(HMRF)

Joint probability Goal of constrained | *=#-*- cannotink
P(L,S) = P(L).P(S|L) clustering: estimation oft-———Mustint
- P(L,S) on HMRF
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/ Constrained Clustering on\

H M R F Gibbs potential

for constraints

Pr(L) Dexpl-2 V(s,s;.1i.1)]

Cluster
distortion
Pr(S|L) OexpF) D(s,C,)]
Joint S
probability U Overall objective of
constrained
clustering

Pr(L,S)=Pr(S|L)Pr(L)

\—IogPr(L,S)D{ZD(s,C)+ZV(S,S,-,|“|J)] /
S Ny
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-~

* Generalized Potts (Ising) potential:

MRF potential

o

W, DL(S,S)) it I #1,(s,s)OML
V(S.S.0.1) =W [Da = Da(s.s)] if 1 =1.(s,s)0CL!
0 else

~

/
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/ HMRF-KMeans: Objective\

'J HMRF

-log P(S|L)

o

Function

KMeans distortion

ML violation: constraint-based

=3 . .<Da(s.C))-

+ Z Wi
(si,s;)0CL
st.l; =l

2 W,
(si,s;)UML
st.l; #l;

CL violationfconstAint-based

-log P(L)

Penalty function: distance-based

/

© Basu and Davidson 2006
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HMRF-KMeans: Algorithm

Initialization:
— Use neighborhoods derived from constraints taaiiae clusters

Till convergence
1. Point assignment:

— Assign each poirgto clusterh® to minimizeboth distance and
constraint violationgNote: this is greedy, other methods possible)

2. Mean re-estimation:

— Estimate cluster centroid@sas means of each cluster

— Re-estimate parametekof D, to minimize constraint violations

© Basu and Davidson 2006 Clustering with Constraints 106



-~

Theorem:

HMRF-KMeans: Convergence

HMRF-KMeans converges to a local minimalg{,s- for

for Bregman divergencd3 (e.g., KL divergence, squared
Euclidean distance) alirectional distancefe.g., Pearson’s
distance, cosine distance)

o /
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Ablation/Sensitivity Experiment

« MPCK-Means: both constraints and distance learning

« MK-Means: only distance learning
« PCK-Means: only constraints
 K-Means: purely unsupervised

o /
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Evaluation Measure

 Compare cluster partitioning to class labels on the dataset
« Mutual Information measurealculated only on test set

hi ]
) | (C:K) [Strehl et al. '00]

T [H(C)+H(K)]/2

Cluster partitions | Underlying classes Ml value

Low
Co 2
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Experiment Results: PenDigits subset
(squared Euclidean distance)

0.9 :

0.85 N N SN &
= 0.8 -
2
T
E 075 |
o
=
™ 0.7 PCK-Means —&— |
% MK-Means —+F—
= DpEs PCK-Means —&— | |

' K-Means — % —
0603 i

0.55 ' ' | .

0 200 400 600 800 1000

Number of Constraints
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xperiment Results: 20Newsgroups-subkset
(cosine distance)
0.35 . | |

0.3

0.25

0.2

0.15

Mutual Information

MK-Means ———
PCK-Means —&—
K-Means —x—

TPCK Means —&—

X PaS XK X

N
P /\

O 1 I I I 1 I I |
0 50 100 150 200 250 300 350 400 450 500

Number of Constraints
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/Comparing Inference Techniqu
for HMRF

0.93
0.92 |
0.91 t
0.89 |
0.88 |
0.87 | |
0.86 | |
0.85 ...:

el ] pe——
0.83 Belief Propagation s |-

| P relaxation — —
0.82 : : :
0 50 100 150 200 250 300
Number of Constrainis
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Related Formulations

e Maximum entropy EM
— Incorporates prior knowledge in both labels anust@ints
— Modify the likelihood function:

min(al(X";©) +AL(X";Y; ) +(1-a - B)L(X*;C;0))

— Infer Gibbs potential from MaxEnt solution BtY)under
constraints encoded InandC

— Generalizes K-Means formulation to EM

— Replaces ICM for posterior distribution calculatio E-step by:
* Mean-field approximatiofLange et al. '05]
* Gibbs samplingLu et al. '05]
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Outline

e Introduction and Motivation [lan]
» Uses of constraints [Sugato]
* Real-world examples [Sugato]
* Benefits and problems of using constraints [lan]
« Algorithms for constrained clustering

» Enforcing constraints [lan]

« Hierarchical [lan]

» Learning distances [Sugato]

* Initializing and pre-processing [Sugato]

» Graph-based [Sugato]
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/ Finding Informative Constraints
given a quota of Queries

* Active learning for constraint acquisitigBasu et al.’04]
— In Interactive setting, constraints obtained bgreps to a user
— Need to geinformative constraints to get better clustering

 Two-phase active learning algorithm:

— Explore:Usefarthest-firsttraversallHochbaum et al.’85to explore

the data and finék pairwise-disjoint neighborhoods (cluster skeleton)
rapidly

— ConsolidateConsolidate basic cluster skeleton by getting npoiats
from each cluster, within mgX-1) queries for any point

* Related technigugohn et al.’03]:

— Can incorporate any user feedback to “repair’tehirsg metric
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Algorithm: Explore

* Pick a points at random, add it to neighborhobig, . = 1

* While queries are allowed ankl < k)
— Pick pointsfarthest from existin@ neighborhoods

— If by queryingsis cannot-linkedo all existing neighborhoods,
then seh =2A+1, start new neighborhodd with s

— Else, add&to neighborhood with which it iswust-linked
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Kctive Constraint Acquisition for CIusthg

Explore Phase

Height
A
° ° e * ° e °*
°
° ¢ *
° ° °
°
° ° e o .
° ° ° ° L
° °
° ¢ o ¢

>
Weight
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Kctive Constraint Acquisition for CIusthg

Height

Explore Phase

>
Weight
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Kctive Constraint Acquisition for CIusthg

Height

Explore Phase

>
Weight
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Kctive Constraint Acquisition for Clusteriml

Explore Phase

“
g
.
“
A

“
2
 J
.
.
.
‘t
 J

“‘
.

>
Weight

© Basu and Davidson 2006 Clustering with Constraints

120



Kctive Constraint Acquisition for Clusteriml

Explore Phase

“
g
.
“
A

“
2
 J
.
.
.
‘t
 J

“‘
.

>
Weight
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Kctive Constraint Acquisition for Cluste$ng

Explore Phase

>
Weight
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Kctive Constraint Acquisition for Clustang

Explore Phase

>
Weight
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Algorithm: Consolidate

« Estimate centroids of each of th@eighborhoods

 While queries are allowed
— Randomly pick a poird not in the existing neighborhoods

— Querys with each neighborhood (in sorted order of decrepsi
distance fronsto centroids) untimust-linkis found

— Addsto that neighborhood to which itmsust-linked
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Kctive Constraint Acquisition for Clustang

Consolidate Phase

>
Weight

© Basu and Davidson 2006

Clustering with Constraints

125



Kctive Constraint Acquisition for Clustemn_x

Height

Consolidate Phase

>
Weight
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Kctive Constraint Acquisition for Clustemn_x

Height

Consolidate Phase

>
Weight
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Kctive Constraint Acquisition for Cluster%

Height

Consolidate Phase

>
Weight
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Ketive Constraint Acquisition for Cluster%

Height

Consolidate Phase

>
Weight
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/Experiments: 20-Newsgroups su@t

0.9
0.8
0.7
0.6
0.5

¢
Active PCK-Means —©&—
PCK-Means —&—
K-Means —>X—

0.1 %< '
\ 0 200 400 600 800 1000 /
Number of Pairwise Constraints
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Confusion Matrices

No constraints

20 queries

Clusterl Cluster2 Cluster3
Misc 71 12 17
Guns 25 61 14
Mideast 12 36 52
Clusterl Cluster2 Cluster3
Misc 84 7 9
Guns ) 91 4
Mideast 7 7 86
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/ Algorithms to Seed K-Means When\

Feasibility Problem Is In Bavidson et al. '05]

e Each algorithm will find a feasible solution.

e You can build upon each to make them minimize the
vector guantization error (or what-ever objective function

your algorithm has) as well.

o /

132
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/ Graph-based Clustering

« Data input as graph:

real valued edges
between pairs of
points denotes
similarity

[ ]
B TheDeath of Right and Wrongll  Deliver Us fromEvil
Hillany's Scheme ] Persecution
B Legacy .
My Turhs at the Bully Bulpit ive Me a Break
[ ] Amogance L .
| Sy Off viith Their Heads 118 Enemy Within
Losing Bin Lades |
Treason
| | | .
B Targetkag ShutUp and Sind* Hafional Party Ho More
Media Control M . Tales from the Left Coast | M I
. Frontier Justice i Who's Llooking Out for You?
P erpetual War for Perpetual Peace [ | Betrayal /| wiiction of Dy
» u | Breakdown
! Weapons of Mass Deception et Freedom Ri
Dreaming War - War on Iraq R ot B TheHo Spin kune om g
[ | B Useful Wiots
Forbidden Truth | Why America Slept . [l a
The Greatest Sedition is Silence || . . . The Right Man aanda The Savage Hation
TheBest Democracy Money Can Buy ] Slesping with D evil .
The Iron Triangle I Bias
9-11 [Chomsky] Thices in High Places Fighting Back
The OhRealy? Factor Hlﬂ'ﬁ Shah's Men The OReilly Factor
B The Lies of George W. Bush . The Way Things Ought to B
i Whit Liberal Media? ay Things Ougr 1o bie
Stupid White Men u 5 Bush atWar | |
BiglLies The G reat Unraveling & Ay Cost
u ]
Lies and the Lying Liars... Bu=h's Brain
|
B American Dyrrasty
Sheth " Bushwiiacked .
Dude, Where's My Country? u The Buying of the President 2004
| ] Backstory
B The Price of Loyal
The Clinton Wars W
[ | |
What Liberal Media? How Much Money War Daddy?
[ |
Had Enough? Perfectly Legal
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/ Constrained Graph—based\

e Clustering criterion: CIUSterI ng

minimize normalized

CUt [ | T.heneathufnigtamwmg. n.a!._.e,uﬂmnfu“
Hllary'sScr.ﬂ-re Eega - pmmui
My Tum at the Bully Pulpit Give Me a Break
. . B Amogance %BEnawwnrin
* Possible solution: B B B

Spectral Clustering B i

Media Control

| L
ShutUp and Sinﬁ‘ Hational Party Ho More
Tales from the Left Coast| B

Frontier Justice ] Who's Looking Out for You?
[Kal I |Var et al . 103] P.EpetuaIWarfur Perpetual Peace | Byl D.erelic‘liond'ﬂl.ty
» | Breakdown
! Weapons of Mass Deception j
Dreaming War - “War on Irdn iy ot B TheHo Spin %%gmm Ring
[ | ") Useful iots
. Forbidden Truth | s Why America Slept . I u u
The Greatest Sedition is Silence The Right Man i
b Constralned graph | Sleeping with D evil ont | Slander The § avage Hation
The Best Dermocracy Money Can Buy ] .
I : . n u The Iron Triangle o Bias
Clu Ste rn g . 9-11 [Chomsky] [} Thieves in High Places . Fighting Back
The OhRealy? Factor e The OReilly Factor
The Lies of George W. Bush L) )
What Liberal Media? TheWay Things Ought to Be

" B
Stugid¥hite e ] m Bush atWar |

minimize cut in input v i
graph while maximally 4 ; -

Cost

u
Bushwhacked -~ American Dynasty

respecting constraints " w8 R aoerrons
in auxilliary constraint \ Teckaanas
What Liberal Media? How Much Money War Daddy?

g rap h H.ad Enough? Eafmﬂy Legal
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Kernel-based Clustering

e 2-circles data not lineal
separable

e transform to high-D
using kernel

e.g_’< S_I_’ Sz >= e_”sl_52||2

o cluster kernel similarity
matrix usingweighted
kernel K-Means
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/ Constrained Kernel-based\

Use the data and the
specified constraints to
create appropriate
kernel

Clustering

1

0.6

0.4

0.2

© Basu and Davidson 2006

Clustering with Constraints 137



/ SS-Kernel-KMean$ulis et
al.’05]

e Contributions:

— Theoretical equivalence between constrained grhysttering and
weighted kernel KMeans

— Uses kernels to unify vector-/graph- based comstthclustering

 Algorithm:
— Forms a kernel matrix from data and constraints
— Runs weighted kernel KMeans

o Benefits:
— HMRF-KMeans and Spectral Clustering are specstga

— Fast algorithm for constrained graph-based clugt€no spectral
decomposition necessary)

— Kernels allow constrained clustering with non-ineluster
boundaries
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/Kernel for HMRF-KMeans With\
squared Euclidean distance

k W. W.
‘JHMRF:Z Z”Sﬂ _Cc”Z_ Z —+ Z ”
c=1 sOS (s,s;)0ML | Si | (s,s;)0CL | Si |
st =l st =l
K=S+W,
( S =SS

where<W +w; if (s,s,) ML

\ T —w if (s,5,) OCL /
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/ Kernel for Constrained \

Normalized-Cut Objective

W,

, :Zk:nnks(vc,V\vc)_ 3 Wi . Y i
Normeut — degl.) (s,5;)OML degMi) (Si1SJ)DCLdegMi)

st.li=l; st.l; =l

K =D"AD+D™WD,

(A =graphaffinity (i, j),
D =diagonaldegreanatrix
+w; If (s,s;) DML
W. =

\ \ ' —w if (s,s,)0CL /
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Experiment: PenDigits subset

NMI Value

0.9

0.85

0.7

0.65

0.6

0.55

- - -HMRF-KMeans
----- SS5-Kernel-KMeans-Linear
— 3S-Kernel-KMeans-Exp

100 200 300 400
Number of Constraints

500
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Experiment: Yeast Gene network

0.9

- - - 33-Kernel-KMeans-NormCut
5 s | i SS-Kernel-KMeans-RatioAssoc .
— 85-Kernel-KMeans-RatioCut

3 0 - SpectralLearning =

0.6

0.5

NMI Value

0.4
0.3}

0.2

0.-1 | | | |
100 200 300 400 500

Number of Constraints
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4 N

Today we talked about ...

e Introduction and Motivation [lan]
» Uses of constraints [Sugato]
* Real-world examples [Sugato]
* Benefits and problems of using constraints [lan]
« Algorithms for constrained clustering

» Enforcing constraints [lan]

* Hierarchical [lan]

» Learning distances [Sugato]

* |nitializing and pre-processing [Sugato]

\ « Graph-based [Sugato] /
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~

Thanks for Your Attention.
We Hope You Learnt a Few

Things

Feel free to ask us questions during the conference

J
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