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Abstract 
 
 
Bayesian Model Averaging (BMA) is well known for improving predictive accuracy by averaging inferences over all models in 
the model space. However, Markov chain Monte Carlo (MCMC) sampling, as the standard implementation for BMA, encounters 
difficulties in even relatively simple model spaces. We introduce a minimum message length (MML) coupled MCMC 
methodology, which not only addresses these difficulties but has additional benefits. The MML principle discretizes the model 
space and associates a probability mass with each region. This allows efficient sampling and jumping between model spaces of 
different complexity. We illustrate the methodology with a mixture component model example (clustering) and show that our 
approach produces more interpretable results when compared to Green’s popular reverse jump sampling across model sub-
spaces technique. The MML principle mathematically embodies Occam’s razor since more complicated models take more 
information to describe. We find that BMA prediction based on sampling across multiple sub-spaces of different complexity 
makes much improved predictions compared to the single best (shortest) model. 
 
1. Introduction 
 
Bayesian model averaging (BMA) removes the model uncertainty by making inferences from all possible models in 
the considered model spaces weighted by their posterior probabilities. The removal of uncertainty decreases the 
associated risk of making predictions from only a single model hence improves the prediction accuracy [8]. The 
standard BMA implementation involves running a Markov chain that has the posterior distribution of the models as 
its stationary distribution typically using either the Gibbs’ or Metropolis-Hasting’s algorithm. However, the method 
encounters difficulties [5] in even simple model spaces, such as mixture models. Not only are the full conditional 
distributions difficult to derive and sample from, but mixing can also become slow, which can be exacerbated if the 
data has relatively high dimensions. Thus, powerful as BMA is, these difficulties prevented its wide application in the 
machine learning and statistical inference problems. 
 
The Minimum Message Length (MML) principle [1] evaluates the quality of a model by the total message length to 
encode both the model and the data D. The message length of a model � has a simple relationship with the posterior 
probability of the model since ( ))|()(exp)|( θθθ DMsgLenMsgLenDp −−∝  where the information length is measured in 
nits. This property allows sampling models according to their posterior probabilities calculated from the message 
lengths of the models. In this paper we show that the MML-MCMC sampler has significant additional benefits over 
MCMC with traditional estimators, in particular: 
 
• The full conditional distribution defined by the message length distribution is easier to derive and sample from. 
 
• MML mathematically embodies Occam’s razor by associating the model’s prior probability with its complexity.  
 
• MML uses message length as the universal metric to evaluate the quality of models, allowing easily sampling 

across different model subspaces or even fundamentally different model spaces. 
 
• The MML discretization of the model space into regions with each region having a representative model greatly 

reduces the size of the model space, resulting in more efficient sampling. 
 
In this paper, we illustrate the MML coupled MCMC framework with mixture model as an example although the 
approach is applicable to other model families. We start by introducing the MML principle and its formalization for 
mixture models. We then formally propose the five kernel moves in the MML-MCMC sampler and prove its 
convergence to the MML defined posterior. The convergence is then empirically verified via chain diagnosis on an 
artificially generated Gaussian dataset. Next, we compare MML-MCMC sampler with the reversible jump sampler [4] 
and illustrate that MML-MCMC sampler finds more interpretable posterior distribution of k by adopting the 
automatic prior in the MML principle. Finally, we empirically explore the predictive capability of BMA with a 
number of standard machine learning and statistical datasets. This work is an extension of our earlier work [11] to 
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include jumping between model spaces of varying complexity. To our knowledge, it is the first work to address model 
averaging across model spaces of varying dimension for predictive purposes. 
2. Minimum Message Length Principle 
 
The minimum message length principle measures both the model complexity and the model’s fit to the data in nits of 
information. The total message length equals to the sum of two parts: the message length to encode the model and the 
message length to encode the data in the presence of the model. 
 

)|()(),( θθθ DMsgLenMsgLenDMsgLen +=          (1) 
 
One can only encode the model to some finite precision otherwise the message length will be infinite. For this reason, 
the model space must be discretized into a number of cells. All the models contained in each cell are considered to be 
uniformly distributed throughout it and the cell is represented by the model in the center. The larger the cell volume 
is, the less number of cells will there be in the model space, and the less information required to specify a particular 
model. The volume of the cell and the precision are inversely related, hence, larger cell volumes lead to inaccurate 
model specifications resulting in longer expected message length in the second part of the message. The MML 
principle of Wallace provides an approach to determine the optimal volume of a cell V that minimizes the total 
expected message length.  For a model with d parameters, the optimal volume is determined [3] by  
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Here, �d is the lattice constant [6], and F(�) is the expected Fisher information. Using the optimal cell volume 
produces a message length of: 
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The different message lengths of different models have a simple and important association with the posterior 
distribution [3].        
 ( ))|()(exp)|( θθθ DMsgLenMsgLenDp −−∝          (4) 
 
We will produce Markov chains whose stationary distribution is given by the MML defined posterior. 
 
3. Minimum Message Length in Mixture Component Model 
 
A mixture component model (M) with d dimensions and n instances can be specified as },,,{ θkpwM = , where 
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},...,,{ 21 kpppp =   The relative weight of each component 0≥ip �
=

=
k

i
ip

1

1 

Kk ,...,2,1=   Number of components, K is the maximum possible value for k. 
},{ σµθ =  The dk × parameter matrices of the mixture component model. },{ ijij σµ stands for the mean 

and standard deviation for the jth dimension in the ith component. 
 
The full encoding of the mixture model consists of two parts. The first part of the message encodes the independent 
parameters θ,, pk  according to their prior distributions. The second part of the message encodes the assignments w 
and the data. Given the knowledge of p, the optimal coding dictionary encodes the assignment to component j with 

jpln− nits. Then the instances are encoded with knowledge of w and �.  An instance x with d dimensions will take 
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An expansion similar to that of Baxter and Oliver [2] gives the full message length expansion. 
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Each different parameters tuple { }wpk ,,, θ  corresponds to a model in the model space and its message length is 

calculated by equation (10) from which the joint distribution ),,,,( Dwpkp θ  can be derived. Also the full conditional 
distribution where some of the parameters are known, such as ),,,|( Dwpkp θ , can be conveniently transformed from 
the same message length distribution only by fixing the given parameters as constants. 
 
4. MML Coupled Markov Chain Monte Carlo 
 
The standard approach to sampling from the posterior distribution is by running a Markov chain that has the posterior 
distribution as its stationary distribution. In the chain, the state at time t, },,,{ ttttt kpwM θ= , will only depend on the 
state at time t-1, },,,{ 11111 −−−−− = ttttt kpwM θ . The iteration from time t-1 to t, usually called a sweep, consists of 
sampling each parameter conditionally on all other remaining parameters. In the MML-MCMC sampler for mixture 
component model, there are five moves in each sweep which we now describe briefly. 
 
4.1 Sampling w 
 
The assignment w(x) of an instance x will affect two parts in the total message length. Firstly the instance assignment 
w(x) to a component must be encoded with ( ))(ln xwp  nits. Then the data point itself must be encoded using )(xwθ  which 

will take ( ))(|ln xwx θ−  nits. We only consider the message length parts that are functions of w(x) in equation (10) since 

all other parts of message length are constants and can be ignored in calculating the full conditional distribution. The 
truncated message length distribution that an instance x is assigned to component j is: 
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The distribution consists of k message lengths each corresponds to the k possible assignments for the instance. This 
message length distribution can be transformed into the full conditional distribution. 
 

�
=

−

−

==
k

j

jxMsgLen

jxMsgLen

e

e
Dkpjxwp

1

),(

),(

),,,|)(( θ           (8) 

 
The instance is randomly assigned to one of the components using this distribution. This random assignment process 
repeats for each instance in the dataset. 
 
4.2 Sampling p 
 
We are to sample p from the full conditional distribution ),,,|( Dwkpp θ . By fixing k, w and � as constant parameters, 
the message length in equation (3). We sample p using a message length defined distribution derived from the 
equation below. 
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4.3 Death and Rebirth 
 
Completely empty components and components that contain only single instance require special attention, as they 
usually indicate a redundant part of the model that increases the message length to specify the model yet will not help 
compress the data. To increase the mixing rate and shorten the total message length, better parameters can be 
proposed to help encode the data. The death and rebirth moves involve destroying an empty component or a nearly 
empty component and reinitialize it with new parameters, which will hopefully encode the data more efficiently. 
 
As we adopt uniform priors for � and p, their message length is always the same no matter what values we encode. 
Reinitializing the parameter values for the empty component will not change the total message length since no 
instance is encoded with the empty component.  Also, we maintain a symmetrical parameter proposal function by 
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reinitialize the parameters randomly so that the detail balance will be satisfied [9]. If a component contains one 
instance, we cannot always reinitialize the component since changes of the parameters of the component will affect 
the message length to encode the single instance in that component. The increase of the message length 
is )|(ln newxf θ−  since it takes 0 nits to encode the instance previously (the parameters of the component contains all 
information about the instance). Thus the probability of accepting the move is )|( newxf θ . If the dimensionality of the 
data is high, then the acceptance rate becomes very low. One way of overcoming this difficulty is by only 
reinitializing the parameter only in one random dimension. 
 
4.4 Split and Combine 
 
This is the move that enables sampling across subspaces with different k values. At each split and combine move, we 
will stochastically determine whether to attempt to split or to combine. When k=1, we always attempt the split move 
and when k equals the maximum number of components K, we always attempt the combination move. At all other k 
values, both the probability to split and the probability to combine will equal to 0.5. 
 
4.4.1 Split 
 
First a random component is chosen as the split candidate. Then we choose the variable with the largest standard 
deviation to generate the split pivot. The split pivot sp is randomly generated from [ ]σµσµ +− ,  in the chosen 
dimension and all instances inside the component are divided into two groups: those larger than the pivot and those 
smaller in the chosen dimension. All the parameters of the two groups are estimated using the maximum likelihood 
estimator. Let s be the candidate component proposed to split into s1 and s2, the change of the message length after the 
proposed split can be calculated from equation (10): 
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The move is subject to a Metropolis test and will pass the test with a probability of },1min{ MsgLene ∆− . 
 
It is also important that the split proposal function and the combination proposal function be symmetrical. That is, if s 
splits into s1 and s2, then the probability of choosing s for the split attempt should equals the probability of choosing s1 
and s2 for the combination attempt. To achieve this, we enforce that after the split, at least one of the two newly 
produced components must be the most adjacent component of the other. Here, when we say component j1 is the 
most adjacent component to j2, we mean j1 has the shortest Euclidean distance to j2. Note that this property is not 
mutual, that is, j1 is most adjacent to j2 does not follow that j2 is most adjacent to j1. If none of the two components is 
most adjacent to the other, the split attempt is unconditionally rejected. How this proposal function enforces 
symmetry we discuss in greater detail in the section on proving convergence. 
 
4.4.2 Combine 
 
We pick the two candidate components to combine by choosing the first candidate component randomly and choose 
its most adjacent component as the second candidate component. The message length change for a combination step 
is very similar to the reverse as that of the split step.  
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The combination move is accepted with the Metropolis probability },1min{ MsgLene ∆− . 
 
4.5 Sampling � 
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The truncated message length in sampling � from the conditional distribution ),,,|( Dwpkp θ , by fixing all given 
parameters as constants, is 
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Because there are k components and in each component there are d independently Gaussian distributions, the total 
number of Gaussian distribution is dk × . The message length for the jth component and mth variable is: 
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We sample jiwmj ),(, ,µσ from the full conditional distribution transformed from the above message length calculations. 

This step is completed for each component and each attribute.  
 
5. Proof of Convergence 
 
If the stationary distribution of a Markov chain is to converge towards the posterior distribution, the chain must be 
aperiodic, irreducible and satisfy the detail balance condition [5]. Given any state at time t, the probability the next 
state is the same state is greater than zero. Thus it is possible that the chain will stay at one state for arbitrary number 
of iterations and move to other states. The chain can only repeat the history with a probability less than 1. Therefore, 
the chain can never get into the deterministic cycle that satisfies the periodicity condition. The chain is also 
irreducible as the transition probability between any two states is greater than zero thus it will not take infinite time 
for the transition to take place. We now prove that detail balance holds for the five moves. 
 
In the five moves the parameters are sampled from the full conditional distributions transformed from the message 
length distribution. In move 1, 2 and 5 where Gibbs sampling is used, it is easy to see the detail balance holds since 
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Here � stands for whichever parameter being sampled in the move and Z is the normalization factor � −

i

mie .  

In move 3 and 4 where Metropolis sampling is used, 
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But it remains to prove that in the Metropolis test, the proposal function is symmetrical. In the death and rebirth 
move, since these parameters are randomly reinitialized, the probability of a proposal is independent of the current 
state and is obviously symmetrical. In the split/combine move, the probability of proposing a component as the split 
candidate equals 1/k. The proposed component j is split into j1 and j2. We also enforce that at least one component 
resulted from the split must the most adjacent of the other. Without losing generality, let j2 be the most adjacent 
component of j1.  In the combination step, the probability of choosing j1 and j2 equals to the sum probability of 
choosing j1(which will automatically choose j2 subsequently) and the probability of choosing  j2 and then j1 as its 
most adjacent component. Let )2,1( jjp be the probability of proposing components j1 and j2 as the combination 
candidates and )( jp be the probability of proposing component j as the split candidate, then 
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The proposing function is symmetrical and the detail balance holds.  
 
In summary, the proposed MML coupled MCMC sampler consists of five moves. The Markov chain grown by the 
sampler is aperiodic, irreducible and detail balanced therefore its stationary distribution converges to the MML 
defined posterior distribution of the models. 
 
6. MCMC Diagnosis  
 
In this section, we empirically diagnose the MML coupled MCMC sampler to verify the convergence and analyze the 
mixing rate. A four component two dimension Gaussian mixture (Figure 1) dataset is used for the purpose. We run 
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the chain for 200,000 iterations with the first 50,000 as the burn-in period. We diagnose the convergence by 
comparing the posterior probabilities of k among different segments of the chain, each with a size of 50,000 iterations. 
If the chain has converged then the posterior probabilities should be constant across the segments. The probability of 
a particular value of k is the number of iterations the sampler stays in the given model sub-space. The comparison 
results are presented in Figure 2. Trace plots for k (Figure 3) indicates efficient mixing across the subspaces of 
different k, with split move and the combine move have an acceptance rate of 11.2% and 11.3% respectively.  

  

7.  Comparisons with Green’s Reversible Jump Sampling 
 
The sampler is capable of jumping across subspaces with different k values and the posterior distribution of k is the 
relative frequency the sampler stays in each subspace. This distribution of k reflects the belief in how many 
components should there be in the data. In this section we apply the MML coupled MCMC sampler on three 
univariate datasets used by Richardson and Green (Figure 4) in their paper on reversible jump sampling [4]. We 
compare the posterior distribution of k found by MML-MCMC sampler with that found by the reversible jump 
sampler. The comparison results are summarized in Table 1. 
 

Table 1 comparing the distribution of k on enzyme, acidity and galaxy datasets 

 

k 1 2 3 4 5 6 7 8 Split  Combine 

MML 0 0.996 0.004 0 0 0 0 0 0.10% 0.10% Enzyme 

RG 0 0.024 0.29 0.317 0.206 0.095 0.041 0.017 8% 4% 

k 1 2 3 4 5 6 7 8 Split  Combine 

MML 0.039 0.774 0.142 0.034 0.008 0.002 0 0 19.30% 21.00% Acidity 

RG 0 0.082 0.244 0.236 0.172 0.118 0.069 0.037 14% 7% 

k 1 2 3 4 5 6 7 8 Split  Combine Galaxy 

MML 0.239 0.241 0.506 0.014 0 0 0 0 1.80% 3.00% 
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 RG 0 0 0.061 0.128 0.182 0.199 0.16 0.109 11% 18% 

 
MML-MCMC sampler finds quite different k distributions from the reversible jump sampler. This great difference, 
however, does not invalidate either approach. In Richardson’s work, they adopt a uniform prior distribution on k, that 
is, the complexity of the model is not considered as part of the problem. In minimum message length principle, larger 
k values, which imply more complicated model, are penalized as they require more information to encode. However, 
upon examining the histogram of the datasets visually, the posterior distribution of k found by MML-MCMC is more 
consistent with human cognitions. For example, the reversible jump sampler suggests the best k values for the three 
problems are 4, 4 and 6 respectively while MML-MCMC suggests 2, 2 and 3. The smaller acceptance rate on split 
and combine for MML-MCMC in the enzyme and galaxy data does not suggest better mixing rate for reversible jump 
sampler since it finds much more diffused posterior distribution of k than MML-MCMC sampler.  
 

 

Figure 4. The instance density distribution for Enzyme, Acidity and Galaxy datasets (picture reproduced from [4]) 

 
8. Bayesian Model Averaging and Classification 
 
As previously stated, MML-MCMC sampler automatically adopts a prior distribution of the models that penalizes 
overly complicated models. In this section we empirically show that the MML-MCMC sampler when making 
predictions via Bayesian model averaging performs significantly better than predictions made from a single model. 
We show our results on a number benchmark machine learning and statistics dataset. We compare the prediction 
capability between the single best model found by EM and the Bayesian averaged model calculated from the MML-
MCMC sampler. It should be noted that some of these datasets have high dimensions and to our best knowledge, no 
previous sampler may sample across subspaces for data with high dimension efficiently.  
 

Table 2 Performance of EM and Bayesian model averaging on UCI datasets 
 

Datasets 
Number 

of 
Attributes 

EM  
Error (%) 

EM 
Standard 
Deviation 

BMA 
Error (%) 

BMA 
Standard 
Deviation 

Error 
Reduction 

Standard 
Deviation 
Reduction 

Wine 13 13.1 14.8 4.0 2.6 69.47% 82.40% 
Iris 4 34.7 7.6 10.9 7.6 68.59% 0.00% 

Pima 8 30.8 2.7 29.3 2.6 4.87% 3.70% 
Glass 9 51.8 5.6 45.7 6.5 11.78% -16.10% 

Diabete 3 27.2 5.9 12.4 4.5 54.41% 23.70% 
Shuttle 9 17.7 4.3 10.3 3.3 41.81% 23.30% 
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We see that the Bayesian averaged model from the MML-MCMC sampler makes much better predictions, both in 
terms of accuracy and variance. The removal of the model uncertainty occurs at two levels. Not only is the 
uncertainty of k value removed, but also the model uncertainty for a given k. These accuracies might not be the 
highest among all possible classifiers available, such as C4.5 and neural network. However, we expect the Bayesian 
model averaged C4.5 performs better than plain C4.5 and the Bayesian model averaged neural network performs 
better than a plain neural network. 
 
9. Conclusion 
 
Minimum message length principle evaluates the quality of models by the information length to encode both the 
model and data. The different message lengths associated with different models constitutes a message length 
distribution which can be conveniently transformed into the posterior distribution or full conditional distributions. 
This allows building MML-MCMC samplers that are easier to mathematically and pragmatically work with. 
Furthermore, it inherits the benefit from the MML principle that enables computable connection between model 
complexity and the prior probability of the model. With all these conveniences and a newly proposed sampling 
algorithm with five moves, we introduced an MML-MCMC sampler for the mixture component models. The sampler 
can sample across subspaces with different components with good mixing rate even for high dimensional data. Also, 
it finds posterior distribution of k that is more consistent with human cognition. Thus the sampler can reliably 
estimate k on high dimensional data where estimation by visualization becomes less obvious to human. Moreover, 
such a sampler allows making Bayesian model averaging predictions which are empirically verified to be more 
accurate than the single best models. 
 
Pragmatically, the work motivates the implementation of MML-MCMC sampler for other model families such as 
Hidden Markov Model (HMM) or a C4.5 decision tree, making inference by averaging the inference from all models 
in each model space, or further, in both model spaces together. MML-MCMC makes sampling across fundamentally 
different model spaces possible since the posterior is calculated from a universally computable metric, the message 
length. Such a sampler is a long-term goal of this work. The BMA predictor in this situation should also achieve 
improved accuracy and reduced variance. 
 
Philosophically, the work justifies the consistency between Occam’s razor and human cognition in a statistical light. 
By assigning smaller prior probability to more complicated models, we have obtained estimation on the number of 
components that is more interpretable to a human. This automatic prior obtained from the model complexity, now 
becomes the prior in the literal sense. That is, it is not acquired via repeated exposure to experience, but rather 
preexists in the learning faculty itself [10]. 
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