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Abstract

Bayesian Model Averaging (BMA) is well known fopioving predictive accuracy by averaging inferenogsr all models in
the model space. However, Markov chain Monte C@MEGMC) sampling, as the standard implementationBbA, encounters
difficulties in even relatively simple model spac®ge introduce a minimum message length (MML) @ugiICMC
methodology, which not only addresses these diifessubut has additional benefits. The MML prineigliscretizes the model
space and associates a probability mass with eagion. This allows efficient sampling and jumpirgvieen model spaces of
different complexity. We illustrate the methodolegth a mixture component model example (clustgramgd show that our
approach produces more interpretable results whemmgared to Green’s popular reverse jump samplingpss model sub-
spaces technique. The MML principle mathematicaltybodies Occam’s razor since more complicated rsotdde more
information to describe. We find that BMA prediatibased on sampling across multiple sub-spacesfigreht complexity
makes much improved predictions compared to thgesimest (shortest) model.

1. Introduction

Bayesian model averaging (BMA) removes the modekttainty by making inferences from all possibledeis in

the considered model spaces weighted by their posterobabilities. The removal of uncertainty desses the
associated risk of making predictions from onlyirgle model hence improves the prediction accuf@yThe

standard BMA implementation involves running a Marlchain that has the posterior distribution of thedels as
its stationary distribution typically using eithéére Gibbs’ or Metropolis-Hasting’s algorithm. Hovesythe method
encounters difficulties [5] in even simple modebhsgs, such as mixture models. Not only are thecfufiditional

distributions difficult to derive and sample frobyt mixing can also become slow, which can be exeated if the
data has relatively high dimensions. Thus, poweafuBMA is, these difficulties prevented its wiggphcation in the
machine learning and statistical inference problems

The Minimum Message Length (MML) principle [1] emates the quality of a model by the total messaggth to
encode both the model and the datarhe message length of a modédias a simple relationship with the posterior
probability of the model since(d| D) O exp(- MsgLer(8) - MsgLer(D | §)) where the information length is measured in

nits. This property allows sampling models accaydio their posterior probabilities calculated frahe message
lengths of the models. In this paper we show thatMML-MCMC sampler has significant additional bétseover
MCMC with traditional estimators, in particular:

» The full conditional distribution defined by the ssage length distribution is easier to derive amdme from.
 MML mathematically embodies Occam’s razor by asstomg the model’s prior probability with its compity.

« MML uses message length as the universal metrieveduate the quality of models, allowing easily piny
across different model subspaces or even fundafhediferent model spaces.

 The MML discretization of the model space into ce with each region having a representative moaitly
reduces the size of the model space, resultingoire refficient sampling.

In this paper, we illustrate the MML coupled MCM@ihework with mixture model as an example althotigh
approach is applicable to other model families. $et by introducing the MML principle and its foafization for
mixture models. We then formally propose the fivernel moves in the MML-MCMC sampler and prove its
convergence to the MML defined posterior. The cogeace is then empirically verified via chain diagis on an
artificially generated Gaussian dataset. Next, aragare MML-MCMC sampler with the reversible jumprgder [4]
and illustrate that MML-MCMC sampler finds more eénpretable posterior distribution &f by adopting the
automatic prior in the MML principle. Finally, wemirically explore the predictive capability of BM#ith a
number of standard machine learning and statistiatdsets. This work is an extension of our eavlierk [11] to
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include jumping between model spaces of varyingaderity. To our knowledge, it is the first work &mldress model
averaging across model spaces of varying dimerfsigoredictive purposes.

2. Minimum Message Length Principle

The minimum message length principle measures thetimodel complexity and the model’s fit to theadiat nits of
information. The total message length equals testime of two parts: the message length to encodmttdel and the
message length to encode the data in the preséittee model.

MsgLer{D, ) = MsgLer{d) + MsgLer{D | 8) (D)

One can only encode the model to some finite pi@tiatherwise the message length will be infinier this reason,
the model space must be discretized into a nunfleelis. All the models contained in each cell epasidered to be
uniformly distributed throughout it and the cellrepresented by the model in the center. The latgecell volume
is, the less number of cells will there be in thedel space, and the less information required ¢zifpa particular
model. The volume of the cell and the precisioniaversely related, hence, larger cell volumes l@athaccurate
model specifications resulting in longer expectegssage length in the second part of the message MNiL
principle of Wallace provides an approach to debeenthe optimal volume of a cell that minimizes the total
expected message length. For a model diparameters, the optimal volume is determined ¥3] b

v= |t (2)

()" detF(6))

Here, k4 is the lattice constant [6], are(d) is the expectedFisher information. Using the optimal cell volume
produces a message length of:

MsgLen= % In(x,) - In(p(H))+% In(de{F (6)))+L(8) +% 3)

The different message lengths of different modelseha simple and important association with thetguius
distribution [3].

p(#| D) O exp(— MsgLer(8) - MsgLer(D | §)) (4)
We will produce Markov chains whose stationaryrdisttion is given by the MML defined posterior.
3. Minimum Message Length in Mixture Component Modé

A mixture component modeM) with d dimensions and instances can be specifiedvas:-{w, p,k, &} , where

W={W,W,,... W} The assignments of the instances, each{12,...k} i=123...,n

p={pP, P, P} The relative weight of each component= 0 zk: p =1

k=12,...K Number of components, K is the maximum possiblee fork.

0={uo} The kxd parameter matrices of the mixture component mdgelo, } stands for the mean

and standard deviation for tith dimension in thé&h component.

The full encoding of the mixture model consistdwbd parts. The first part of the message encodesnitependent
parameterg, p,6 according to their prior distributions. The secqradt of the message encodes the assignments

and the data. Given the knowledgepothe optimal coding dictionary encodes the assagrtnio componerijt with
—In p, nits. Then the instances are encoded with knowledgeandd. An instancex with d dimensions will take

d
=20 F (X, | Loy Tuin) NILS 0 €NCOdE.  IN SUMMary,
m=1

MsgLen=—In(h(k, p.8))=n>" P, 1N P, =3 I £ (X | oy Tuy) +%In(detF(k, 0.6) 5)
j=1

i=1 m=1

An expansion similar to that of Baxter and Olive} gives the full message length expansion.
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3k-1

d 2P
MsglLen= kZIn(Zapopm ) In(k - 1)'+ZZIn-(—’r Inn+nz p,Inp,

. );m (6)
——In(271)+22|naw(,)m+zz Fooil 0

=1 me1 =1 m=1 ZO'W(,)J

Each different parameters tup{e, p,6,w} corresponds to a model in the model space anthéssage length is

calculated by equation (10) from which the joirdtdbutionp(k, p,8,w,D) can be derived. Also the full conditional
distribution where some of the parameters are knewoh ap(d]k, p,w,D), can be conveniently transformed from
the same message length distribution only by fixireygiven parameters as constants.

4. MML Coupled Markov Chain Monte Carlo

The standard approach to sampling from the postdistribution is by running a Markov chain thashhe posterior
distribution as its stationary distribution. In tbleain, the state at tinteM*' ={w*, p',k",6"}, will only depend on the
state at timg-1, M ={w™, p™* k'"™,6}. The iteration from timd-1 to t, usually called a sweep, consists of
sampling each parameter conditionally on all otleenaining parameters. In the MML-MCMC sampler faxture
component model, there are five moves in each swbégh we now describe briefly.

4.1 Samplingw

The assignmeni(x) of an instance will affect two parts in the total message lengginstly the instance assignment
w(x) to a component must be encoded Wit(pw(x)) nits. Then the data point itself must be encodsags, ,, which

will take —In(x|t9w(x)) nits. We only consider the message length paatsatte functions ofv(x) in equation (10) since

all other parts of message length are constantgamdbe ignored in calculating the full conditiod#dtribution. The
truncated message length distribution that an igtais assigned to compongns:

MsgLerfx, ) ==In(p,) =In 1(x]6,) ==In(p,) + S In(@) + 3’ Ina, +Z—( Z‘Jﬁ’m) @)

j,m
The distribution consists &f message lengths each corresponds td phessible assignments for the instance. This
message length distribution can be transformedtidull conditional distribution.

—MsglLer(x,])

. e
p(w(x) = j|p.k,8,D) = —— (8)
ZestgLeqx,J)

The instance is randomly assigned to one of thepoments using this distribution. This random agssignt process
repeats for each instance in the dataset.

4.2 Samplingp

We are to samplp from the full conditional distributiop(p |k, w,8,D). By fixing k, wandé as constant parameters,
the message length in equation (3). We sarpplesing a message length defined distribution ddrirem the

equation below.

MsgLen= —In(h(p)) nz pjInp; + (detF(p)) =Inh(p) —In(n!)+ f (nj!)— i n; In(pj)+%ln )
=1 j=1

j

4.3 Death and Rebirth

Completely empty components and components thaaicoonly single instance require special attentas they
usually indicate a redundant part of the model itareases the message length to specify the nyetelill not help
compress the data. To increase the mixing rate stuotten the total message length, better parametarsbe
proposed to help encode the data. The death aithreioves involve destroying an empty componena orearly
empty component and reinitialize it with new parteng which will hopefully encode the data moreécightly.

As we adopt uniform priors fa# andp, their message length is always the same no malttar values we encode.
Reinitializing the parameter values for the empdynponent will not change the total message lengtbesno
instance is encoded with the empty component. ,Als® maintain a symmetrical parameter proposaltiondy
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reinitialize the parameters randomly so that th&itidalance will be satisfied [9]. If a componertntains one
instance, we cannot always reinitialize the compbsénce changes of the parameters of the compavidraffect
the message length to encode the single instancthah component. The increase of the message length
is-In f(x|8,) since it takes 0 nits to encode the instance posly (the parameters of the component contains all

new.

information about the instance). Thus the probighdf accepting the move igx|8._,) . If the dimensionality of the

new.

data is high, then the acceptance rate becomes loery One way of overcoming this difficulty is bynly
reinitializing the parameter only in one random éirsion.

4.4 Split and Combine

This is the move that enables sampling across swgbspwith differenk values. At each split and combine move, we
will stochastically determine whether to attempspdit or to combine. Whek=1, we always attempt the split move
and wherk equals the maximum number of components K, weyswatempt the combination move. At all otlker
values, both the probability to split and the ptuility to combine will equal to 0.5.

4.4.1 Split
First a random component is chosen as the splilidate. Then we choose the variable with the largemdard
deviation to generate the split pivot. The splitgpisp is randomly generated frofu-o,u+a] in the chosen

dimension and all instances inside the componentiaided into two groups: those larger than theijpand those
smaller in the chosen dimension. All the paramebdéthe two groups are estimated using the maxirtiketihood
estimator. Let be the candidate component proposed to splitsrdands,, the change of the message length after the
proposed split can be calculated from equation; (10)

AMsgLen:Zi;ln(ZJpODm)—lnk+2 In (U“Zps)lz +In (U“ 2ps)22 =In JJ_psz+glnn

+ ns(psl ln psl + psz ln psz - ps In ps)_ nsi(psl ln asl,m + psz Inasz,m - ps Inas,m) (10)
— S (X W')J) ( NW')J) ( W(I)J)2 —Inlk +1
[xﬂcz(:sl); ZO'W(I)J mczsl)mz_1 20, i(.), xﬂ;s); ZUW(,)J n( )

The move is subject to a Metropolis test and vabpthe test with a probability afin{1,e™"<"*} .

It is also important that the split propo$fahction and the combination propo$ahction be symmetrical. That is,df
splits intos; ands;, then the probability of choosirgfor the split attempt should equals the probabditchoosings,
ands, for the combination attempt. To achieve this, wéorce that after the spligt leastone of the two newly
produced components must be the most adjacent cmnpof the other. Here, when we say compoiikins the
most adjacent component j& we mearjl has the shortest Euclidean distancg@td\Note that this property is not
mutual, that isjl is most adjacent @ does not follow thg® is most adjacent td. If none of the two components is
most adjacent to the other, the split attempt isonditionally rejected. How this proposal functienforces
symmetry we discuss in greater detail in the saabio proving convergence.

4.4.2 Combine

We pick the two candidate components to combinehmpsing the first candidate component randomlycmbse
its most adjacent componest the second candidate component. The messadb tdramnge for a combination step
is very similar to the reverse as that of the sibp.

AMsglen= —ZIn(ZU )+In(k -1)- Z In(i_) (\/ﬁ bz\/_p)szJ—glnn

d
-n(paInpy+p,Inp, - p,Inp,)+n Y (p,Inc,, +p,no,, - p,inc,,) (11)

m=1

+[xﬂ;ﬂ)mzi;(xm_€w(i),1)z + Z Zd:(x w(m)2 Z Z( W('“)zj—lnk

Zaw(i),J XOC(s) m=1 ZO'W(I) i XOC(s) m=1 ZO'W(I) i

The combination move is accepted with the Metrappibbabilitymin{1, e "} .

4.5 Samplingd
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The truncated message length in samplinfjom the conditional distributiop(@|k, p,w,D), by fixing all given

parameters as constants, is
2
e (Xl,m W(I),J)

k d 1 n d n —/J
MsglLen= In =+ no,, .+ —_—— (12)
22 Mo F Ao 2 o
Because there alecomponents and in each component theradanelependently Gaussian distributions, the total
number of Gaussian distribution ks<d . The message length for tfth component andith variable is:

2

nj - 2 nj = )
MsglLedo, .. o) = n-(a—l)? +nIng,, .+ le(xmza—zw‘“) = (nj - 2)In Ooirm * le(xmza#
o

w(i),j w(i), j

(13)

We sampleo, .4, from the full conditional distribution transforméam the above message length calculations.
This step is completed for each component and atichute.

5. Proof of Convergence

If the stationary distribution of a Markov chaint@s converge towards the posterior distributiorg thain must be
aperiodic, irreducible and satisfy the detail batacondition [5]. Given any state at tipeghe probability the next
state is the same state is greater than zero. iTlugossible that the chain will stay at oneestfatr arbitrary number
of iterations and move to other states. The chamanly repeat the history with a probability Iésan 1. Therefore,
the chain can never get into the deterministic eytlat satisfies the periodicity condition. The ioh& also

irreducible as the transition probability betweery &vo states is greater than zero thus it will tadde infinite time

for the transition to take place. We now prove thethil balance holds for the five moves.

In the five moves the parameters are sampled frarfull conditional distributions transformed frahe message
length distribution. In move 1, 2 and 5 where Gibampling is used, it is easy to see the detadrzad holds since

p(6,) P(6, — 6,) :%BZ— = p(6,)p(6, - 6) (14)

Hered stands for whichever parameter being sampledemtbve and is the normalization factop e™ .

In move 3 and 4 where Metropolis sampling is used,

em™ - e™ e
p(gl) p(gl - Hz) ZTmln{e . ml)vl} ZTmln{e (m mZ)vl} = p(gz)p(gz - 01) (15)

But it remains to prove that in the Metropolis tabie proposal function is symmetrical. In the Heand rebirth
move, since these parameters are randomly reiné@l the probability of a proposal is independsfthe current
state and is obviously symmetrical. In the splitdbine move, the probability of proposing a compdraanthe split
candidate equal¥/k. The proposed compongnis split intoj1 andj2. We also enforce thatt least onecomponent
resulted from the split must the most adjacenthef ather. Without losing generality, [ be the most adjacent
component ofl. In the combination step, the probability of chiogjl andj2 equals to the sum probability of
choosingjl(which will automatically choos@ subsequently) and the probability of choosijfyand therjl as its
most adjacent component. LgXj1, j2) be the probability of proposing componejitsandj2 as the combination

candidates angb(j) be the probability of proposing compongiais the split candidate, then

P(jLj2) =—F+——=—-=p(]) (16)
The proposing function is symmetrical and the dietaliance holds.

In summary, the proposed MML coupled MCMC samplensists of five moves. The Markov chain grown by th
sampler is aperiodic, irreducible and detail badahtherefore its stationary distribution converggshe MML
defined posterior distribution of the models.

6. MCMC Diagnosis

In this section, we empirically diagnose the MMLlupted MCMC sampler to verify the convergence aralyae the
mixing rate. A four component two dimension Gaussisxture (Figure 1) dataset is used for the puepdge run
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the chain for 200,000 iterations with the first @) as the burn-in period. We diagnose the conwemdy
comparing the posterior probabilitieskohmong different segments of the chain, each waize of 50,000 iterations.
If the chain has converged then the posterior gitiias should be constant across the segments prdbability of
a particular value ok is the number of iterations the sampler stays engiven model sub-space. The comparison
results are presented in Figure 2. Trace plotskf@ffigure 3) indicates efficient mixing across th#spaces of
differentk, with split move and the combine move have anpateree rate of 11.2% and 11.3% respectively.
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Figure 1. Four components two-
dimension Gaussian Mixture Figure 2. Posterior distribution of k
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Figure 3. Typical trace plot of k (iteration 180001200000)

7. Comparisons with Green’s Reversible Jump Sampig

The sampler is capable of jumping across subspaiteglifferentk values and the posterior distributionkois the
relative frequency the sampler stays in each suespahis distribution ok reflects the belief in how many
components should there be in the data. In thisicseeve apply the MML coupled MCMC sampler on three
univariate datasets used by Richardson and Gregnré~4) in their paper on reversible jump sampligg We
compare the posterior distribution kffound by MML-MCMC sampler with that found by thevessible jump
sampler. The comparison results are summarizeclmeTl.

Table 1 comparing the distribution ofk on enzyme, acidity and galaxy datasets

k 1 2 & 4 5 6 7 8 Split Combine
Enzyme | pmL 0 0.996 0.004 0 0 0 0 0 0.10% 0.10%
RG 0 0.024 029 0.317 0.206 0.095 0.041 0.017 8% 4%
k 1 2 3 4 5 6 7 8 Split Combine
Acidity | MML  0.039 0.774 0.142 0.034 0.008 0.002 0 0 19.30%  21.00%
RG 0 0.082 0244 0236 0.172 0118 0.069 0.037 14% 7%
Galaxy k 1 2 3 4 5 6 7 8 Split  Combine
MML 0.239 0.241 0506 0.014 0 0 0 0 1.80% 3.00%
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RG 0 0 0061 0128 0182 0199 0.16 0109  11% 18%

MML-MCMC sampler finds quite differerit distributions from the reversible jump samplerisTgreat difference,
however, does not invalidate either approach. th&idson’s work, they adopt a uniform prior disitibn onk, that
is, the complexity of the model is not considersghart of the problem. In minimum message lengithciple, larger
k values, which imply more complicated model, aregheed as they require more information to encétievever,
upon examining the histogram of the datasets Miguae posterior distribution & found by MML-MCMC is more
consistent with human cognitions. For example,réhwersible jump sampler suggests the lBestlues for the three
problems are 4, 4 and 6 respectively while MML-MCMG@ggests 2, 2 and 3. The smaller acceptance maselid
and combine for MML-MCMC in the enzyme and galasaddoes not suggest better mixing rate for retviergiimp
sampler since it finds much more diffused postadistribution ofk than MML-MCMC sampler.

Enzyme data
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Figure 4. The instance density distribution for Engme, Acidity and Galaxy datasets (picture reproduce from [4])

8. Bayesian Model Averaging and Classification

As previously stated, MML-MCMC sampler automatigadidopts a prior distribution of the models thahglezes
overly complicated models. In this section we eioplty show that the MML-MCMC sampler when making
predictions via Bayesian model averaging perforigeificantly better than predictions made from agé model.
We show our results on a number benchmark mackiamihg and statistics dataset. We compare thdcpiced
capability between the single best model found Bydhd the Bayesian averaged model calculated flerMML-
MCMC sampler. It should be noted that some of tlietasets have high dimensions and to our bestlkdge, no
previous sampler may sample across subspacestfowith high dimension efficiently.

Table 2 Performance of EM and Bayesian model averaging onCl datasets

Number EM EM BMA BMA Error Star)dgrd

Datasets _of Error (%) Star)dz_ird Error (%) Star_1dz_ard Reduction DeV|at|_on

Attributes Deviation Deviation Reduction
Wine 13 13.1 14.8 4.0 2.6 69.47% 82.40%
Iris 4 34.7 7.6 10.9 7.6 68.59% 0.00%
Pima 8 30.8 2.7 29.3 2.6 4.87% 3.70%
Glass 9 51.8 5.6 45.7 6.5 11.78% -16.10%
Diabete 3 27.2 5.9 12.4 4.5 54.41% 23.70%
Shuttle 9 17.7 4.3 10.3 3.3 41.81% 23.30%
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We see that the Bayesian averaged model from the IMI@MC sampler makes much better predictions, both
terms of accuracy and variance. The removal of rtfeelel uncertainty occurs at two levels. Not onlythg
uncertainty ofk value removed, but also the model uncertaintyafajivenk. These accuracies might not be the
highest among all possible classifiers availablehsas C4.5 and neural network. However, we exjihecBayesian
model averaged C4.5 performs better than plain @Adb the Bayesian model averaged neural networfiorpes
better than a plain neural network.

9. Conclusion

Minimum message length principle evaluates theiguaf models by the information length to encod&hbthe
model and data. The different message lengths iassdcwith different models constitutes a messagwgth
distribution which can be conveniently transformetb the posterior distribution or full conditiondlistributions.
This allows building MML-MCMC samplers that are Easto mathematically and pragmatically work with.
Furthermore, it inherits the benefit from the MMkinziple that enables computable connection betwaedel
complexity and the prior probability of the mod#lith all these conveniences and a newly proposeupkag
algorithm with five moves, we introduced an MML-M@NMsampler for the mixture component models. Thepsam
can sample across subspaces with different compométin good mixing rate even for high dimensiodata. Also,

it finds posterior distribution ok that is more consistent with human cognition. Tkius sampler can reliably
estimatek on high dimensional data where estimation by \igation becomes less obvious to human. Moreover,
such a sampler allows making Bayesian model avegagredictions which are empirically verified to bere
accurate than the single best models.

Pragmatically, the work motivates the implementatad MML-MCMC sampler for other model families suels
Hidden Markov Model (HMM) or a C4.5 decision treeaking inference by averaging the inference fronmaldels
in each model space, or further, in both model epacgether. MML-MCMC makes sampling across fundaaiky
different model spaces possible since the postéioalculated from a universally computable metitie message
length. Such a sampler is a long-term goal of #isk. The BMA predictor in this situation shouldsalachieve
improved accuracy and reduced variance.

Philosophically, the work justifies the consistef@tween Occam’s razor and human cognition in téstal light.

By assigning smaller prior probability to more cdimgted models, we have obtained estimation omtimaber of
components that is more interpretable to a humars &automatic prior obtained from the model comiexiow

becomes the prior in the literal sense. That iss ihot acquired via repeated exposure to expexiebat rather
preexists in the learning faculty itself [10].
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