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ABSTRACT
Clustering with constraints is an emerging area of data min-
ing research. However, most work assumes that the con-
straints are given as one large batch. In this paper we ex-
plore the situation where the constraints are incrementally
given. In this way the user after seeing a clustering can
provide positive and negative feedback via constraints to
critique a clustering solution. We consider the problem of
efficiently updating a clustering to satisfy the new and old
constraints rather than re-clustering the entire data set. We
show that the problem of incremental clustering under con-
straints is NP-hard in general, but identify several sufficient
conditions which lead to efficiently solvable versions. These
translate into a set of rules on the types of constraints that
can be added and constraint set properties that must be
maintained. We demonstrate that this approach is more ef-
ficient than re-clustering the entire data set and has several
other advantages.

1. INTRODUCTION AND MOTIVATION
The last five years have seen extensive work on incorporat-

ing instance-level constraints into clustering methods [14, 1,
2]. Constraints provide guidance about the desired partition
and make it possible for clustering algorithms to perform
better, sometimes dramatically. Instance-level constraints
specify that two items must be placed in the same cluster
(must-link, ML) or in different clusters (cannot-link, CL).
This semi-supervised approach has led to improved perfor-
mance for several UCI data sets as well as for real-world
applications, such as person identification from surveillance
camera clips [2], noun phrase coreference resolution, GPS-
based map refinement [14] and landscape detection from hy-
perspectral data [11].

However, most constrained clustering work involves batch
style specification of the constraints and the subsequent run-
ning of the clustering algorithm. In many applications,
it may be reasonable for constraints to be incrementally
added or removed based on feedback from a user. This
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can be viewed as the user critiquing a clustering and can
be repeated often until the user is happy with the resulting
clustering. Furthermore, it is known that this approach of
selectively choosing constraints produces significantly bet-
ter results than randomly choosing constraints. Consider
the situation of document clustering as described by Cohn,
Caruana and McCallum [3]. After the clustering is per-
formed, the user has the option of critiquing the clustering
by implicit feedback (“a document does not belong in this
cluster”) and explicit feedback (“a document belongs here”
or “these documents should be together/apart”). This in-
corporation of a user into the clustering loop is analogous to
active learning, except that the constraints are chosen by a
user rather than by a machine. Cohn et al. [3] explore the
use of this type of active constraint generation in clustering.
In the area of document clustering using the Reuter’s news-
group data, they simulate actively chosen constraints (by
picking two instances placed in the same cluster but with
known different categories/labels). Ten constraints chosen
using this approach produces as good results as using be-
tween 300% to 600% more constraints that are randomly
chosen. Furthermore, Davidson, Wagstaff and Basu [8] have
recently shown that there is a significant variation in the
benefits (when measured by purity on the class labels) pro-
vided by different sets of constraints. This was shown to be
the case despite each constraint set having the same number
of constraints from the same source (set of labels). This pro-
vides further reason to believe that user-specified constraints
are better than randomly chosen constraints.

The works of Cohn et al. [3] and Davidson et al. [8] illus-
trate that incremental constrained clustering offers tremen-
dous potential improvement over batch style constraint pro-
cessing and that not all constraint sets are equal in terms of
their effect on the final solution. However, the work of Cohn
et al. required the clustering algorithm to be re-run after
each set of constraints is added, an approach we refer to as
non-incremental constrained clustering or total reclustering.
This is an extremely time consuming exercise if the data set
is large. In addition, the user may have liked the existing
clustering and there is no guarantee that a similar clustering
would be found after reapplying the algorithm. We provide
experimental evidence to support of this claim.
Contributions of this paper. The purpose of this work is
to investigate the conditions under which incremental clus-
tering with constraints can be carried out efficiently with
large data sets. To do this, we allow the addition and re-
moval of constraints and try to find clusterings that can
be obtained by making a small number of changes to a



given clustering. We begin in section 2 by defining several
versions of the incremental constrained clustering problem.
These problems encompass reasonable methods of specifying
feedback in the form of constraints. In general, incremen-
tally adding constraints is intractable; further, incrementally
removing constraints is intractable when a reasonable sec-
ondary objective such as minimizing the partition diameter
is specified. These results are in shown in section 3. Because
of these general intractability results, our focus is on finding
sufficient conditions which give rise to restricted versions of
the problem that can be solved efficiently. These sufficient
conditions can be used to provide instructions to a user re-
garding the properties to be satisfied by constraints so that
a given partition can be efficiently updated to satisfy the
new constraints. Our sufficient conditions are described in
Sections 4.1 and 4.2, and a greedy update algorithm that
uses these conditions is described in Section 5. Section 6
presents experimental results to show that our incremental
constrained algorithm is more efficient than re-running the
batch style constrained clustering algorithm and even pro-
duces better quality results compared to batch style con-
strained clustering algorithms that attempt to satisfy all
constraints.

2. PROBLEM DEFINITIONS
Assumptions. To provide a proper perspective for our con-
tributions, we mention the assumptions used in this work.
Firstly, our earlier work on the feasibility problem [4, 5, 7]
addressed the question of determining whether there is a
partition that satisfies a given set of constraints. In this
paper, we assume that a clustering satisfying all the initial
constraints (C) is given and that the addition of new con-
straints (C′) may give rise to a combined set of constraints
for which no feasible clustering exists for the given value of
k (the number of clusters). We also assume that the value
of k cannot be changed when constraints are added or re-
moved. Without loss of generality, we study the addition
of only one constraint at a time. The addition of multiple
constraints can be carried out by repeating the procedure
for each constraint. Finally, we assume that adding a new
constraint does not cause an obvious contradiction such as
ML(x, y) and CL(x, y).

In an ideal situation, the user should be able to specify
several different forms of feedback such as:

(a) An instance x does not belong in cluster Q.

(b) An instance x should be in cluster Q.

(c) Two instances x and y must be in the same cluster.

(d) Two instances x and y shouldn’t be in the same cluster.

Feedback types (a) and (b) provide label information for
an instance while (c) and (d) provide constraints on two
instances. It should be noted that it is possible to unam-
biguously translate a set of labels on instances to a set of
constraints but the converse is not true. For this reason,
we assume that all feedback from the user is in the form
of must-link and cannot-link constraints. While these con-
straints will not be able to efficiently encode all types of
feedback (e.g. limits on cluster sizes), they can model many
useful forms of feedback.

We now formally define the incremental clustering prob-
lems addressed in this paper. The incremental nature of the

problems are with respect to a) adding constraints and b)
removing constraints. When a change (i.e., the addition or
deletion of constraints) is specified, the goal is to efficiently
update a given clustering, without running the base
clustering algorithm. In updating a partition, one may
also be interested in optimizing a suitable objective function
(e.g. the objective function used by the algorithm that pro-
duced the original clustering) or the number of changes to
the given partition.

Throughout this paper, a clustering is a partition of the
given set of points. We use the term “k-clustering” to mean
a partition with k subsets. Several objective functions are
known (e.g. vector quantization error, partition diameter,
partition purity) for measuring the quality of a partition.
Given a partition Π, we use f(Π) to denote the quality of
the partition as given by the objective function. Some objec-
tive functions represent minimization objectives (e.g. vec-
tor quantization error, partition diameter) while others (e.g.
partition purity) are maximization objectives. We will for-
mulate the incremental clustering problems assuming that
f is a minimization objective. We will also indicate the
changes to the formulation when f is a maximization objec-
tive.

We begin by formulating the incremental clustering prob-
lem under the addition of new constraints. These formula-
tions assume that the new clustering (when it exists) should
also improve the objective function. We will comment on
this issue after the problem specification.

Problem 2.1. Incremental Clustering under
Constraint Addition. Let S be a set of points and let C be
a set of constraints. Let Π be a k-clustering of S satisfying
all the constraints in C. Let C′ be a new set of constraints
such that C ∩ C′ = ∅. Is there a k-clustering Π′ of S such
that (i) Π′ satisfies all the constraints in C ∪ C′ and (ii)
f(Π′) ≤ f(Π)? If so, find a partition Π∗ for which f(Π∗) is
a minimum among all partitions that satisfy conditions (i)
and (ii).

When constraints are added, the most desirable outcome
is that there is a feasible partition for the new set of con-
straints and the partition improves the value of the objec-
tive function. However, this may not be the case in general.
When there is no feasible partition for the constraint set
C ∪ C′, a system can ask the user to choose a different set
of constraints. Another possibility is that there are feasible
partitions for the new constraint set, but none of these par-
titions improves the objective function value. In such a case,
an algorithm would try to produce a partition Π′ such that
the increase in the value of the objective function is as small
as possible. It is again up to the user to decide whether or
not the new constraints should be used.

In the statement of Problem 2.1 if f is a maximization
objective, the condition “f(Π′) ≤ f(Π)” would be replaced
by “f(Π′) ≥ f(Π)” and one would seek an optimal partition
Π∗ for which f(Π∗) is a maximum among all partitions that
satisfy the conditions.

We now define the natural analog of the constraint addi-
tion problem, namely the constraint removal problem.

Problem 2.2. Incremental Clustering under
Constraint Removal. Let S be a set of points and let C be
a set of constraints. Let Π be a k-clustering of S satisfying
all the constraints in C. Let C′ ⊂ C be a subset constraints



to be removed. Find a k-clustering Π∗ of S such that f(Π∗)
is a minimum among all the k-clusterings that satisfy the
constraints in C − C′.

The formulation of the problem under constraint removal
is slightly different from from that of constraint addition
since feasibility is not an issue in the former case; the original
partition will itself satisfy the new set of constraints. So, the
focus is on optimizing the objective function value.

3. WORST CASE COMPLEXITY RESULTS
This section presents the following results.

(a) The problem of determining whether there is a feasible
solution under the addition of a single ML or CL con-
straint is computationally intractable. These results
do not depend on optimizing the objective function.
They are discussed in Sections 3.1 and 3.2.

(b) As mentioned earlier, the feasibility problem is triv-
ial under constraint removal. However, we show that
if the goal is to delete a constraint and minimize the
partition diameter, the problem is computationally in-
tractable. This result is presented in Section 3.3.

We have also obtained complexity results for other forms
of incremental clustering such as removing points (not con-
straints) to reduce cluster diameter. These results are not
shown here due to space reasons. We believe that these are
somewhat specialized versions of the incremental clustering
problem and that practitioners are likely to be more inter-
ested in addition and removal of constraints.

The remainder of this section, which proves the results
mentioned in (a) and (b) above, can be skipped on first
reading of this paper without loss of flow.

3.1 Incremental Clustering Under the Addi-
tion of a Must-Link Constraint

Given a set of points, a set of constraints and a parti-
tion of the point set into k subsets such that all the given
constraints are satisfied, we want to determine whether the
addition of a new ML constraint can cause infeasibility. In
this section, we examine the complexity of this problem. We
begin with a precise formulation of the problem.

Incremental Feasibility Testing: Adding an ML Con-
straint (IFT-ML)

Instance: A set S = {s1, s2, . . . , sn} of n points; an integer
k, 1 ≤ K ≤ n; a set C of constraints; a partition Π of S
into k subsets such that Π satisfies all the constraints in C;
a constraint ML(si, sj) which is not in C.

Required: Determine whether there is a partition of S into
k subsets such that all the constraints in C ∪ {ML(si, sj)}
are satisfied. If so, output one such partition Π′.

The main result of this section is that unless P = NP,
there is no efficient algorithm for the IFT-ML problem. Be-
fore we can prove this result, we need to introduce some
preliminary definitions and results.

3.1.1 Preliminary Definitions and Results
Recall that the graph 3-colorability problem is NP-complete

[9]. In fact, the problem remains NP-complete even when
restricted to graphs in which the maximum node degree

1. Let G(V, E) be the given graph, with V =
{v1, v2, . . . , vn}.

2. Construct graph G1(V1, E1) as follows.

(a) Let VA = {a1, a2, . . . , an} and VB =
{b1, b2, . . . , bn}. Let V1 = V ∪ VA ∪ VB.

(b) Let E′ denote the set of edges
{{ai, vi}, {bi, vi} : 1 ≤ i ≤ n}. Let E′′

denote the set of edges {{ai, bi} : 1 ≤ i ≤ n}.
Let E1 = E ∪ E′ ∪ E′′.

Figure 1: A Graph Construction Procedure

is 4 [9]. We refer to this restricted version of the graph
3-colorability problem as the Restricted 3-Colorability
Problem (R3CP). The following result is proven in [9].

Theorem 3.1. The Restricted 3-Colorability Problem is
NP-complete.

We also need another result from graph theory. This well
known result, called Brooks’s Theorem, gives an upper
bound on the number of colors needed for a graph in terms
of the maximum node degree. The proof of the following
theorem can be found in [13].

Theorem 3.2. [Brooks’s Theorem] Any undirected graph
with a maximum node degree of ∆ can be colored using at
most ∆+1 colors. Moreover, such a coloring can be obtained
in polynomial time.

Let G(V, E) be an undirected graph with V = {v1, v2, . . . , vn}.
Figure 1 describes a procedure for constructing another graph
G1 from G. Informally, this construction adds two new
nodes for each node of G and adds three edges that con-
nect the three nodes into a complete graph. An example of
this construction is shown in Figure 2. Some key properties
of this construction are shown in the following lemma.

Lemma 3.1. Suppose G is an undirected graph with n
nodes and a maximum node degree of 4. Let G1 be the
graph obtained from G using the construction described in
Figure 1. The following properties hold.

(a) G1 is 5-colorable. Moreover, a 5-coloring of G1 can be
constructed in polynomial time.

(b) There is a 5-coloring of G1 in which all the nodes in
VA = {a1, a2, . . . , an} have the same color and all the
nodes in VB = {b1, b2, . . . , bn} have the same color if
and only if G is 3-colorable.

Proof:
Part (a): Note that G has a maximum node degree of 4.
Thus, by Brooks’s theorem, G is 5-colorable and one such 5-
coloring can be obtained in polynomial time. A 5-coloring of
G1 can be constructed efficiently from that of G as follows.
Consider any node vi of G and let j denote the color assigned
to vi. Choose two different colors other than j and assign
them to ai and bi respectively. By repeating this process for
each vertex of G, we obtain a 5-coloring of G1.
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Figure 2: An example for the graph construction
procedure described in Figure 1. (The given graph
G is shown in (i) and the graph G1 resulting from the
construction is shown in (ii). The new edges added
to produce G1 are shown as dashed lines.)

Part (b):
If part: Suppose G is 3-colorable, and let the colors used be
{1, 2, 3}. Use color 4 for all the nodes in VA and color 5
for all the nodes in VB. Clearly, this is a 5-coloring of G1 in
which all the nodes in VA have the same color and all the
nodes in VB have the same color.
Only If part: Suppose there is a 5-coloring of G1, using colors
{1, 2, 3, 4, 5}, in which all the nodes in VA have the same
color and all the nodes in VB have the same color. Note
that the color assigned to the nodes in VA must be different
from the one assigned to the nodes in VB since G1 has the
edge {a1, b1}. So, let 4 and 5 denote the colors assigned to
the nodes in VA and VB respectively. Now, consider any
node vi of G. Since vi is adjacent to both ai and bi, colors
4 and 5 cannot be used for vi. In other words, each node of
G must be colored 1, 2 or 3; that is, G is 3-colorable.

3.1.2 Complexity of theIFT-ML Problem

Theorem 3.3. Unless P = NP, there is no polynomial
time algorithm for IFT-ML problem.

Proof: Suppose there is a polynomial time algorithm A
for the IFT-ML problem. We will show that A can be used
to solve the Restricted 3-coloring Problem (R3CP) in poly-
nomial time. Since R3CP is NP-complete (Theorem 3.1),
this would contradict the assumption that P 6= NP.

Consider any instance of the R3CP problem with G(V, E)
being a graph in which the maximum node degree is 4.
We refer to the algorithm in Figure 3 as B. This algo-
rithm constructs the graph G1 from G (as described in Fig-
ure 1), creates a set S of points corresponding to the nodes
of G1, and uses the edges of G1 to create the initial set
C consisting of CL constraints. The algorithm produces
an initial partition of S into 5 subsets using the result of
Lemma 3.1(a). The algorithm then successively adds the
ML constraints ML(y1, y2), ML(y2, y3), . . . ML(yn−1, yn−1),
ML(z1, z2), ML(z2, z3), . . . ML(zn−1, zn−1), one at a time,
and invokes Algorithm A to determine whether there is a
feasible solution after each addition. In terms of G1, it
can be seen that the effect of above collection of ML con-

1. Let G(V, E) be the given graph with maximum node
degree 4, with V = {v1, v2, . . . , vn}.

2. Construct graph G1(V1, E1) from G as described
in Figure 1. Let VA = {a1, a2, . . . , an}, VB =
{b1, b2, . . . , bn} and E1 = {e1, e2, . . . , em}.

3. Create a set of points S = X ∪ Y ∪ Z, where X
= {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} and Z =
{z1, z2, . . . , zn}. (The sets X, Y and Z are in one-
to-one correspondence with sets V , VA and VB respec-
tively. Coordinates are not specified for the points in
S since they play no role in the algorithm.)

4. For each edge ej ∈ E1, create the constraint cj =
CL(x, y), where x and y are the points corresponding
to the two nodes joined by ej , 1 ≤ j ≤ m. Initialize
the constraint set C to {c1, c2, . . . , cm}.

5. Find a 5-coloring of G1 as explained in the proof of
Lemma 3.1. Let Wr be the set of nodes of G1 such
that all nodes in Wr have color r, 1 ≤ r ≤ 5. Cre-
ate a partition Π of S into 5 subsets S1, S2, S3, S4

and S5, where Sr has the points corresponding to the
nodes in Wr, 1 ≤ r ≤ 5. (Note that Π satisfies all the
constraints in C.)

6. Let L denote the list of the following 2n − 2 ML con-
straints: 〈ML(y1, y2), ML(y2, y3), . . ., ML(yn−1, yn),
ML(z1, z2), ML(z2, z3), . . ., ML(zn−1, zn)〉. Let Li de-
note the ith constraint in L, 1 ≤ i ≤ 2n − 2.

7. for i = 1 to 2n − 2 do

(a) Execute Algorithm A on S, with constraint set
C and partition Π to determine whether there is
a feasible solution when constraint Li is added.

(c) if Algorithm A returns “Yes” along with new
partition Π′

then

Let C = C ∪ {Li} and Π = Π′.

else

Print “G is not 3-colorable” and stop.

8. Print “G is 3-colorable”.

Figure 3: Algorithm B Used to Prove Theorem 3.3



straints is to force all nodes in VA to have the same color
and all nodes in VB to have the same color. Thus, from
Lemma 3.1(b), it follows that Algorithm A can produce a
feasible solution satisfying all the original constraints and
the new ML constraints if and only if G is 3-colorable.

Thus, Algorithm B correctly decides whether G is 3-colorable.
In Figure 3, it is easy to see that all steps except Step 7 can
be carried out in polynomial time. In Step 7, Algorithm B
makes at most 2n − 2 calls to Algorithm A. Thus, if Algo-
rithm A runs in polynomial time, then so does Algorithm B.
In other words, we have a polynomial time algorithm for
the R3CP problem. This contradicts our assumption that
P 6= NP and completes the proof of Theorem 3.3.

3.2 Incremental Clustering Under the Addi-
tion of a Cannot-Link Constraint

In this section, we present our complexity result for in-
cremental clustering when a CL constraint is added. The
problem formulation is as follows.

Incremental Feasibility Testing: Adding a CL Con-
straint (IFT-CL)

Instance: A set S = {s1, s2, . . . , sn} of n points; an integer
k, 1 ≤ K ≤ n; a set C of constraints; a partition Π of S
into k subsets such that Π satisfies all the constraints in C;
a constraint CL(si, sj) which is not in C.

Required: Determine whether there is a partition of S into k
subsets which satisfies all the constraints in C∪{CL(si, sj)}.
If so, output one such partition Π′.

The following theorem points out the difficulty of obtain-
ing an efficient algorithm for the IFT-CL problem.

Theorem 3.4. Unless P = NP, there is no polynomial
time algorithm for the IFT-CL problem.

Proof: Suppose there is a polynomial time algorithm A1 for
the IFT-CL problem. We will show that A1 can be used to
devise a polynomial time algorithm for the k-coloring prob-
lem. This would contradict the assumption that P 6= NP.

Let G(V, E) and integer k represent the given instance of
the k-coloring problem. We refer to the algorithm shown in
Figure 4 as B1. Algorithm B1 starts with an empty set C
of constraints and an arbitrary partition of the set S into k
subsets. (Since the constraint set C is empty, any partition
of S is a feasible solution.) For each edge of the graph, the
algorithm creates a new CL constraint and invokes Algo-
rithm A1 to determine whether there is a feasible solution
when the new constraint is added. We now show that B1

correctly decides whether G is k-colorable.
Suppose Algorithm B1 outputs the message “G is k-colorable”.

Then, from the description in Figure 4, Algorithm A1 pro-
duced a feasible partition into k subsets after all the CL
constraints corresponding to the edges of G were added. Let
S1, S2, . . ., SK denote the resulting subsets. Consider the
coloring of G obtained by assigning color j to all the nodes
corresponding to the points in Sj , 1 ≤ j ≤ K. This color-
ing uses k colors. Further, for any edge {vx, vy} of G, the
constraint CL(sx, sy) ensures that sx and sy are in different
subsets of the partition. In other words, nodes vx and vy

have different colors. Thus, we have a valid k-coloring of G.
Suppose Algorithm B1 outputs the message “G is not k-

colorable”. Thus, at some stage, Algorithm A1 must have

1. Let G(V, E) be the given graph, with V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.

2. Create an arbitrary set S = {s1, s2, . . . , sn} of n points.
(Note that S is one-to-one correspondence with the
node set V . Coordinates for the points in S are not
specified since they play no role in the algorithm.) Ini-
tially, the constraint set C is empty. Create an arbi-
trary partition of S into k subsets. Let Π denote this
partition.

3. for i = 1 to m do

(a) Let edge ei join nodes vx and vy . Create a new
constraint c = CL(sx, sy).

(b) Execute Algorithm A1 on S, with constraint
set C, partition Π and new ML constraint c to
determine whether there is a feasible solution.

(c) if Algorithm A1 returns “Yes” along with new
partition Π′

then

Let C = C ∪ {c} and Π = Π′.

else

Print “G is not k-colorable” and stop.

4. Print “G is k-colorable”.

Figure 4: Algorithm Used to Prove Theorem 3.4

returned “No” in Step 3(c) of Figure 4. We prove by contra-
diction that there is no valid k-coloring of G. Suppose G is
k-colorable, and let 1, 2, . . ., k denote the colors used. Thus,
there is a partition of the node set V into k subsets V1, V2,
. . ., VK such that Vj is the set of all nodes assigned color j,
1 ≤ j ≤ K. Consider the partition of S into k subsets S1,
S2, . . ., SK , where Sj contains all the points corresponding
to the nodes in Vj , 1 ≤ j ≤ K. Clearly, this partition sat-
isfies all the CL constraints added by Algorithm B1. Thus,
Algorithm A1 cannot return “No” at any stage. This con-
tradiction shows that G has no valid k-coloring.

Thus, Algorithm B1 correctly decides whether G is k-
colorable. In Figure 4, it is easy to see that all steps except
Step 3 can be carried out in polynomial time. In Step 3, Al-
gorithm B1 makes at most m = |E| calls to Algorithm A1.
Thus, if Algorithm A1 runs in polynomial time, then so does
Algorithm B1. In other words, we have a polynomial time
algorithm for the k-coloring problem. This contradicts our
assumption that P 6= NP and completes the proof of The-
orem 3.4.

3.3 Removing Constraints to Reduce Partition
Diameter

We now discuss the flip-side problem of removing con-
straints. Since we are given a partition that already satisfies
a given set of constraints, such a partition will trivially also
satisfy any subset of these constraints. Instead we shall ex-
plore whether there exists a new partition which minimizes
the clustering diameter. We begin by first defining the clus-
tering (partition) diameter.



Definition 3.1. Suppose S = {s1, s2, . . . , sn} is a set of
n points with a distance d(si, sj) for each pair of pointe si

and sj in S. Let Π be a partition of S into k subsets (clus-
ters) S1, S2, . . ., SK. The diameter of cluster Si, denoted
by dia(Si), 1 ≤ i ≤ K, is given by

dia(Si) = max{d(sx, sy) : sx, sy ∈ Si}.

The diameter of the partition Π, denoted by Dia(Π), is
given by

Dia(Π) = max{dia(Si) : 1 ≤ i ≤ K}.

Pruning Constraints to Decrease Diameter (Pcdd)

Instance: A set S = {s1, s2, . . . , sn} of n points; distance
d(si, sj) for each pair of pointe si and sj in S; an integer k,
1 ≤ K ≤ n; a set C of constraints; a partition Π of S into
k subsets such that Π satisfies all the constraints in C and
Dia(Π) = σ1; a subset C′ ⊆ C of constraints and a number
σ2 < σ1.

Question: Is there a partition Π′ of S into k blocks such that
Π′ satisfies all the constraints in C −C′ and Dia(Π′) ≤ σ2?

Theorem 3.5. The Pcdd problem is NP-complete. More-
over, the result holds even when the given constraint set con-
tains only ML constraints and the number of constraints to
be removed is 1.

Proof Idea: The proof involves a reduction from k-coloring
and is omitted due to space reasons.

4. EASY INSTANCES OF INCREMENTAL
CONSTRAINED CLUSTERING PROBLEMS

In this section we introduce several sufficient conditions
that despite our previous worst case results, give rise to sit-
uations where there are efficient algorithms to find a feasi-
ble clustering to satisfy the new and old set of constraints.
We begin by first describing the basic conditions and then
move on to non-trivial conditions. In section 5 we put these
results together into a greedy algorithm that we experimen-
tally verify in section 6 and compare its performance against
non-incremental constrained clustering.

4.1 Basic Sufficient conditions
We present the following basic situations with little expla-

nations and no proofs. Without loss of generality we discuss
a single constraint on points x and y. Recall that a cluster-
ing Π is given that satisfies the constraint set C and that
the additional constraint is denoted by C′.

• The constraint in C′ is on a pair of points that are
not already involved in a constraint in C. In this sit-
uation, if the constraint is not already satisfied, we
move the constrained points (x and y) together (for
ML) or apart (for CL) in such a way to minimize the
objective function f . For ML and CL constraints, this
would use respectively O(k) and O(k2) evaluations of
the function f .

• The constraint in C′ involves a pair of points such that
only one of the points is involved in an existing con-
straint in C. Since one of the points is unconstrained,
it can be easily moved to satisfy the constraint. For

Figure 5: A constraint graph for ML(a,b), ML(a,c),
ML(d,e), ML(f,g), ML(h,i), ML(j,k), CL(a,l),
CL(l,j), CL(d,i), CL(d,l)

abc l

fghi de

jk

an ML constraint, this does not need any evaluation
of the function f . For a CL constraint, this uses O(k)
evaluations of f .

• All of the constraints in C and C′ are must-link con-
straints. In such a situation we can efficiently recom-
pute the transitive closure.

4.2 Non-Trivial Sufficient Conditions
The non-trivial situations occur when both constrained

points x and y are already involved in constraints in C.
This is precisely the situation that is exploited in proving
our worst case results. For these non-trivial situations we
make use of several sufficient conditions which make the
incremental clustering problem easy. We now describe these
sufficient conditions and the implications on the limitations
of what constraints can be included in C′.

4.2.1 Brooks’s Theorem
Consider clustering under the set of constraints: ML(a, b),

ML(a, c), ML(d, e), ML(f, g), ML(h, i), ML(j, k), CL(a, l),
CL(l, j), CL(d, i) and CL(d, l) as graphically shown in Fig-
ure 5. The edges represent CL constraints and must-linked
points are represented by a single node. We refer to such a
graph as a constraint graph. Suppose we wish to cluster the
data for k = 3. Proceeding in the order of the points in the
data set (alphabetically), there could be an assignment of
abc to cluster 1, de to cluster 2, jk, hi and fg to cluster 3,
but then point l can’t be assigned to any cluster feasibly. It
is not that the graph is not 3-colorable, rather the ordering
of the nodes presents a problem. This is of pragmatic im-
portance [7] since the ordering of the points as processed by
clustering algorithms is typically fixed apriori and does not
change.

Brooks’s theorem (see Theorem 3.2) points out that if the
maximum node degree of a graph G is ∆ and k ≥ ∆ + 1,
then a k-coloring of the graph is easy to obtain using any
linear ordering of the nodes. This means that if the maxi-
mum number of CL-constraints involving the same point is
at most k − 1, then the feasibility problem is guaranteed to
be easy; otherwise, the feasibility problem may be difficult.

The above discussion points out one way of making the in-
cremental constrained clustering problem easy. We can add
constraints without restriction except to make sure that no
single point is involved in k or more CL constraints, includ-
ing given and entailed constraints.

We can use this sufficient condition to make the incremen-
tal addition of a CL constraint easy, but the addition of an
ML constraint may still involve a large number of cluster
reassignments. Why this is the case can be explained by
examining figure 6. Consider the top graph. Both x and
y are already constrained and are in the same cluster. The
new constraint to add is CL(x, y). Since we want to use
Brooks’s theorem, both x and y will have at least one “free”



Figure 6: A graphical representation of the situation
where the constraint to add is either a ML or CL
constraint for k = 5. The number in parentheses
is the cluster number the point is assigned to. We
discuss single points without loss of generality.

x(1)

c(4)a(2) b(3)

y(1)

f(5)d(2) e(3)

C’=CL(x,y)

x(1)

c(4)a(2) b(3)

y(2)

f(5)d(1) e(3)

C’=ML(x,y)

color/cluster-id. In our example, we can assign x to cluster
5 or y to cluster 4, whichever choice optimizes the chosen ob-
jective function f . In general, this operation may use O(k2)
evaluations of the function f . However, if the new constraint
to add is ML(x, y), no such easy reassignment may exist, as
can be seen by considering the lower diagram in figure 6.
Clearly, x cannot be placed in y’s cluster and vice-versa.
The only solution is to place x and y together in cluster 3,
4 or 5 and then assign those points in the chosen cluster to
which x and y are cannot-linked to another cluster, while
making sure that none of their constraints are violated.

Note that Brooks’s theorem states that a ∆ + 1 coloring
is possible regardless of the order in which nodes are con-
sidered. However, there may exist a coloring using far less
the ∆ + 1 colors. The notion of inductiveness of a graph,
explored in the next section, provides a particular ordering
of the nodes and hence can significantly reduce the number
of colors needed.

4.2.2 Inductiveness of a Constraint Graph
Consider the example in Figure 5. According to Brooks’s

theorem, this graph is four-colorable; actually, the graph is
two-colorable. Here, we examine another graph property
which generalizes Brooks’s result to give a stronger upper
bound on the number of colors. More importantly, the prop-
erty can be used to order the instances in the training data
set to make the feasibility problem easy. The value of q
(to be defined) along with this ordering gives us another
sufficient condition which if satisfied when adding in new
constraints will allow for an efficient incremental clustering
algorithm.

The following definition is from [10].

Definition 4.1. Let q be a positive integer. An undi-
rected graph G(V, E) is q-inductive if the nodes of G can be
assigned distinct integer values in such a way that each node
has an edge to at most q nodes with higher assigned values.

To illustrate this definition, consider a star graph G(V, E)
with n nodes. Let v0 denote the center node (with degree
n − 1) of the star and let vi, 1 ≤ i ≤ n− 1 denote the other
n−1 nodes (each of which has degree 1). Assign the integer
1 to node v1, 2 to node v2, . . ., n − 1 to node vn−1 and
n to node v0. This creates the following linear ordering of
the nodes: 〈v1, v2, . . . , vn, v0〉. Examining the nodes in this

order, it can be seen that each node has an edge to at most
one node with a higher assigned value (each node vi, i 6= 0,
has one edge to v0).

The usefulness of q-inductiveness is shown in the following
theorem from [10].

Theorem 4.1. Suppose G(V, E) is q-inductive. G can be
colored using at most q + 1 colors.

Thus, the star graph is 1-inductive and is two-colorable,
whereas Brooks’s theorem would state that it is n colorable.
As a further example for the graph in Figure 5, the following
is a 1-inductive ordering: fg, abc, jk, l, de and hi ; hence the
graph is 2-colorable.

The proof of the above theorem actually provides an algo-
rithm that colors the graph G using at most q +1 colors. In
particular, the algorithm colors the nodes in an order that
is the reverse of the given q-inductive ordering. This trans-
lates into the reasonable heuristic of ordering the instances
to cluster from the most constrained to the least (if at all)
constrained.

We can make use of existing instance ordering given by
the q-inductiveness of a constraint graph to efficiently re-
color (re-assign) instances given additional new constraints
in linear time to the number of instances to cluster. Indeed
the situation will be similar to that of Figure 6. Since the
q-inductiveness ordering ensures that the most constrained
points are assigned clusters first, there will always be one
free color/cluster-id for both x and y.

It should be noted that the instances may need to be re-
ordered when new constraints are added to the old set.

5. PUTTING IT ALL TOGETHER: AN EF-
FICIENT INCREMENTAL CONSTRAINED
CLUSTERING ALGORITHM

It should be noted that the following algorithm is only
correct when our basic and non-trivial conditions listed in
sections 4.1 and 4.2 occur. The algorithm takes an input
a single constraint at a time and depending on the proper-
ties of the constraint will attempt to greedily optimize the
objective function f . If the constraint does not improve f
then the constraint is passed over and the user chooses an-
other. Furthermore, since finding a clustering to satisfy a
must-link constraint between two points that are already
constrained by cannot-link constraints cannot be done effi-
ciently, we also inform the user of this situation and pass
over the constraints. The algorithm is shown in its entirety
in Figure 8.

6. EXPERIMENTAL RESULTS
We now present results from testing the algorithm de-

scribed in Figure 8 under the stronger sufficient condition
of k > q + 1. Our first set of experimental results shows
that the approach of adding in new constraints and then to-
tally reclustering the data (i.e. the non-incremental/total-
reclustering approach) using COP-k-means [14] has several
significant limitations. However, if there are substantially
many more constraints to be added this is a reasonable
approach. The second set of experimental results shows
that our incremental clustering algorithm is efficient with
respect to the number of instances moved and interestingly



Figure 7: Graph of the Average KL distance (over
500 repetitions) between the initial constrained clus-
tering under 20 randomly chosen constraints and
the clustering obtained from these 20 and additional
constraints (1 to 20). Series -x- indicates incremen-
tal constrained clustering results and series -o- indi-
cates non-incremental total constrained reclustering
results. Number of clusters k is set to number of ex-
trinsic classes.
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the resultant clustering quality is typically better than total
reclustering of all the available data under the constraints.

6.1 Limitation of Total Re-Clustering
We take six UCI data sets and randomly choose to keep

only 10% of the data point labels. From these labeled points
we will generate ML constraints (when the labels agree)
and CL constraints (when the labels disagree) by randomly
choosing two points at a time. We begin by clustering using
COP-k-means [14] the various UCI data sets with twenty
initial randomly chosen constraints (C) to produce the ini-
tial clustering Π. The COP-k-means algorithm attempts to
find a set partition with minimum vector quantization er-
ror that satisfies all of the constraints. We randomly choose
more constraints which are then given to our greedy incre-
mental clustering algorithm (Figure 8) one at a time. The
algorithm will accept an additional twenty constraints (C′).
Note that these twenty additional constraints are actively
chosen in the sense that they reduce the objective function
f , which in this case is the average label purity over all
clusters over all points.

In the non-incremental clustering case, each constraint is
added one at a time to C, we recluster the data with the
initial twenty and progressively added constraints. We then
report the difference between the new clustering and the
initial clustering with respect to the Kullback-Leibler (KL)

distance of the respective mixture distributions each clus-
tering defines. It should be noted that, for each run, we use
the same random number seed and hence the same cluster
centroids; so, the only thing that changes from experiment
to experiment is the set of additional constraints.

These results, shown in Figure 7, indicate that the ap-
proach of total re-clustering can lead to significantly differ-
ent clusterings compared to the initial clustering, while the
results of incremental clustering remain rather similar to the
initial clustering even for up to 20 incrementally added con-
straints. This will often be desirable, since the user may pre-
fer the existing clustering for application-oriented reasons.
Adding in a single constraint and reclustering can give vastly
different results, particularly if the new constraint contains
instances that are towards the start of the ordering of how
the instances will be assigned. For a fair comparison to see
how different the initial and final clusterings would be, we
gave the non-incremental constrained clustering algorithm
the constraints chosen by our algorithm. We will not do
this for the remainder of our experimental section.

It is tempting to think that since non-incremental cluster-
ing can greatly change a clustering solution, then why not
just fix all instances not involved in the new constraints.
However, due to the transitivity of ML constraints (ML(x, y),
ML(y, z) →ML(x, z)) and the entailment property of CL
constraints (ML(a, b),ML(c, d),CL(a, c) → CL(a, d),CL(b, c),
CL(b, d)) many points not explicitly in C′ have additional
constraints placed on them and the points that can be fixed
may be quite small. Furthermore, fixing points to be in a
particular cluster may lead to the situation where a parti-
tion that satisfies the joint constraint set (C ∪ C′) may not
exist.

6.2 Benefits of Greedy Incremental Algorithms
In this section we show that incremental clustering as ex-

pected is more efficient and also that the results obtained
by using an incremental algorithm compare favorably with
non-incremental (total-reclustering) COP-k-means.

We repeat a similar set of experiments as before, except
that this time we measure how much “work” is performed
by each algorithm. For incremental clustering this is mea-
sured as the number of instances moved from one cluster to
another. For non-incremental clustering it is the number of
changed assignments from iteration to iteration for all iter-
ations until the algorithm converges. Results are shown in
Figure 9.

When comparing the accuracy of incremental constrained
clustering with two styles of non-incremental constrained
clustering (COP-k-means and Basu, Bilkeno and Mooney’s
MKM algorithm [1] that learns a distance function) we see
some interesting results. Firstly, when compared to algo-
rithms that attempt to satisfy all constraints (as it does)
incremental constrained clustering compares favorably and
indeed performs better. This is to be expected as by incre-
mentally specifying the constraints (rather than all at once)
the incremental algorithm does not get over-constrained as
the non-incremental variant can [7].

However, both non-incremental and incremental algorithms
that satisfy all the constraints are typically outperformed by
distance learning algorithms. The latter class of algorithms
interpret ML(a, b) and CL(x, y) as indicating that a and b
should be close together and x and y should be far apart
in some learnt distance function. The reason why these ap-



proaches perform better than those satisfying all constraints
is that learning a distance metric means not only that a and
b are closer together (most likely in the same cluster) but
all points surrounding a and b are closer together. In this
way, each constraints is helpful beyond those points that
are part of the constraint. Typical experimental results are
shown in Figure 10. In all cases, incremental algorithms that
satisfy all constraints perform better than non-incremental
algorithms that satisfy all constraints; sometimes, the for-
mer class of algorithms perform as well as distance metric
learning. This result indicates that investigating the prob-
lem of incrementally learning distance functions should be
profitable.

7. CONCLUSION AND FUTURE WORK
Previous work by ourselves and others has established the

benefits of clustering under a batch of given instance level
constraints. In this paper we look at the problem of in-
cremental constrained clustering. We explore several prob-
lem definitions that allow the user to provide feedback by
critquing an existing clustering through constraints and to
receive feedback on how useful the additional constraints
were at further optimizing a given objective function. This
approach allows for a two-way feedback: The user presents
feedback to the algorithm in the form of a constraint. The al-
gorithm provides feedback to the user by indicating whether
the given constraint was useful.

However, our complexity analysis show that both adding
and removing constraints is typically intractable. In this pa-
per, we focus on the constraint addition problem and show
that just adding a single constraint (be it ML or CL) is in
the worst case intractable. However, we identify two suffi-
cient conditions when the feasibility problem for adding of
constraints is easy which translate into restrictions on the
types of constraints that can be added. For example, the
first condition, namely Brooks’s theorem, requires a user to
choose new CL constraints so that no point is part of k or
more CL constraints. The second condition, namely Irani’s
q-inductiveness condition, restricts a user to those CL con-
straints which ensure that each point x is cannot-linked to
at most k − 1 points that follow x in the chosen ordering.

We then developed an efficient algorithm for these suf-
ficient conditions that incrementally allows feedback and
tested it using simulated feedback from small amounts of
labeled data. Our results show that a) just adding one con-
straint but not performing incremental clustering, rather re-
running the constrained clustering algorithm using the same
random number seed and initial centroids can produce quite
different clusterings b) incremental clustering is more effi-
cient than re-running the entire clustering algorithm with
the additional constraints and c) incremental clustering per-
forms better than non-incremental clustering because the
latter can get over-constrained as reported earlier [7]. How-
ever, both the incremental and non-incremental algorithms
that attempt to satisfy all constraints can sometimes per-
form significantly worse than algorithms that learn a dis-
tance metric from the constraints and then using it to cluster
the data.

For future work we wish to investigate what is the maxi-
mum number of additional constraints allowed before com-
plete re-clustering should be performed. Furthermore, for
the k = 2 case we have preliminary results for efficient al-
gorithms to incrementally add both ML and CL constraints

which we wish to further explore. Finally, the problem of
incrementally modifying a distance function remains an im-
portant open question.
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Input: Π = {S1 . . . Sk}: a clustering of point set S into k
clusters satisfying all the ML & CL constraints in C.
f(Π): an objective function that the user wishes to optimize
with respect to a set partition.
f(Π, move(x1, from1, to1) : . . . move(xm, fromm, tom)): an
overloaded objective function that evaluates a set partition
Π after making the indicated instance moves.
r: the number of constraints the user wishes to add.
Output: A partition Π′ of S into k clusters so that all the

constraints in C∪C′ are satisfied and the objective function
f is heuristically minimized.

1. z = 1 ; C′ = ∅

2. I ∈ {ML(x, y), CL(x, y)}: the new constraint.

3. if SufficientCondition(C∪C′∪I) = false goto step 2.

4. Let a = Cluster(x) and b = Cluster(y).

5. switch(I) do

ML(x, y), x, y /∈ C ∪C′ (pure points, see section 4.1)
if ∄ i:x, y ∈ Si then
Π′ = Modify Π by moving x, y to j :
argminjf(Π, move(x, a, j) : move(y, b, j))
if f(Π′) < f(Π) then z = z + 1; C′ = C′ ∪ I ;
if z > r then exit.

CL(x, y) and x, y /∈ C ∪ C′ (pure points, see section
4.1)
if ∃ i: x, y ∈ Si then
Π′ = Modify Π by moving x, y to clusters i, j :
argmini,jf(Π, move(x, a, i) : move(y, b, j))
if f(Π′) < f(Π) then z = z + 1; C′ = C′ ∪ I ;
if z > r then exit.

ML(x, y)and x /∈ C ∪ C′, y ∈ C ∪ C′ (x is pure, see
section 4.1)
if ∄ i:x, y ∈ Si then
Π′ = Modify Π by moving x to Cluster b
if f(Π′) < f(Π) then z = z + 1; C′ = C′ ∪ I ;
if z > r then exit.

CL(x, y) and x /∈ C ∪ C′, y ∈ C ∪ C′ (x is pure, see
section 4.1)
if ∃ i: x, y ∈ Si then
Π′ = Modify Π by moving x to cluster j:
argminjf(Π, move(x, a, j))
if f(Π′) < f(Π) then z = z + 1; C′ = C′ ∪ I ;
if z > r then exit.

ML(x, y) and x, y ∈ C ∪ C′ (x, y are already con-
strained, see section 4.2)
if ∄ i: x, y ∈ Si then
return no efficient series of moves.

CL(x, y) and x, y ∈ C ∪ C′ (x, y are already con-
strained, see section 4.2)
if ∃ i: x, y ∈ Si then
Let the set Q be clusters not cannot-linked to x.
Let the set R be clusters not cannot-linked to y.
Π′ = Modify Π by moving x to cluster i and y to
cluster j: argmini∈Q,j∈R,i6=jf(Π, move(x, a, i) :
move(y, b, j)).
if f(Π′) < f(Π) then z = z + 1; C′ = C′ ∪ I ;
if z > r then exit.

6. Π = Π′; goto step 2.

Figure 8: Efficient Incremental Algorithm

Figure 9: Graph of the Average Number of Moves
(over 500 repetitions) required to find a solution to
satisfy a varying number of additional constraints (1
to 20) to the initial 20 constraints. Series -x- indi-
cates incremental constrained clustering results and
series -o- indicates non-incremental total recluster-
ing results. Number of clusters k is set to number
of extrinsic classes.
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Figure 10: Three typical results for average ac-
curacy (over 500 repetitions) as measured using
the cluster purity. Series -x- indicates incremen-
tal constrained clustering results and series -o- in-
dicates non-incremental total reclustering results
with COP-k-means and the solid line indicates non-
incremental total reclustering with Basu, Bilenko
and Mooney’s distance learning technique MKM.
Number of clusters k is set to number of extrinsic
classes.
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