
A SAT-based Framework for Efficient Constrained Clustering

Ian Davidson ∗ S. S. Ravi † Leonid Shamis ‡

Abstract

The area of clustering under constraints has recently
received much attention in the data mining commu-
nity. However, most work involves adding constraints to
existing algorithms which, although being quite prag-
matic, raises several difficulties. Examples of these dif-
ficulties include creating intractable constraint satisfac-
tion sub-problems and constrained clustering algorithms
that are easily over-constrained so they may not con-
verge or converge to a poor clustering solution. In this
paper we show how both instance and cluster-level con-
straints can be expressed as instances of the 2SAT prob-
lem and how multiple calls to a 2SAT solver can be used
to construct algorithms that are guaranteed to satisfy
all the constraints and converge to a global optimum for
a number of intuitive objective functions. Our approach
provides two additional advantages. Firstly, it leads to
polynomial time algorithms for the k = 2 case for sev-
eral objective functions. Secondly, one can specify large
sets of constraints without fear of over-constraining the
problem: if one or more solutions satisfying all con-
straints exist, our algorithm is guaranteed to find a
best such solution. We present experimental results to
show that our approach outperforms several popular al-
gorithms particularly for large constraint sets, where
these algorithms are over-constrained and fair poorly.

1 Introduction and Motivation

Wagstaff and Cardie [15, 16, 17] first introduced con-
straints to the machine learning and data mining com-
munities. The introduction of constraints addresses an
important problem elegantly: the clustering algorithm’s
objective function need not capture all the domain ex-
pert’s requirements, but user specified constraints can
help guide the algorithm to a desirable set partition.
Wagstaff and Cardie introduced simple instance-level
constraints that were termed must-link (two instances
must be in the same cluster) and cannot-link (two in-

∗Department of Computer Science, University of California -
Davis, Davis, CA 95616, davidson@cs.ucdavis.edu

†Department of Computer Science, University at Albany -
Albany, NY 12222, ravi@cs.albany.edu

‡Department of Computer Science, University of California -
Davis, CA 95616, lshamis@ucdavis.edu

stances must be in different clusters). They added these
constraints to the k-means and COB-WEB algorithms
with others adding these constraints to EM [1, 3], hier-
archical [8] and spectral clustering algorithms [4], just
to name a few. Most algorithms make use of these two
types of constraints and typically for the situation k = 2
since constraints are often derived from two-class la-
beled instances [2].

However, the addition of constraints to pre-existing
clustering algorithms is not without its difficulties some
of which we list below.

1. The addition of constraints is typically in a form
that is incompatible with the objective function.
This makes it difficult to trade-off satisfying most
constraints with minimizing the objective function.
For example, k-means minimizes the vector quan-
tization error (a function of pairwise distances) but
one cannot easily add another part to the objective
function to guarantee satisfying all constraints (a
decision problem).

2. The addition of cannot-link constraints can lead to
a computationally intractable feasibility sub-
problem [6]; that is, unless P = NP, there is
no efficient algorithm for finding any clustering
that satisfies all the constraints, let alone a best
such clustering. Workarounds such as trying to
minimally prune instance-level constraints have
also been shown to be computationally intractable
[7].

3. Even if a feasible clustering satisfying all con-
straints exists, algorithms that attempt to satisfy
all constraints are easily over-constrained so that
they do not converge [6]. This is so since they typ-
ically build up a clustering incrementally (without
back-tracking) to satisfy the constraints.

4. Finally, the whole idea behind constrained cluster-
ing is to allow the user to guide the algorithm to a
desired set partition. However, due to the complex
interaction between constraints and the objective
functions used by existing algorithms, this is often
not the case. This is starkly illustrated in our ear-
lier work [9] where for a variety of algorithms and



Algorithm
Data CKM PKM MKM MPKM

[17] [3] [3] [3]
Glass 31% 7% 16% 3%

Ionosphere 26% 68% 3% 80%
Iris 27% 23% 31% 41%

Wine 35% 38% 82% 69%

Table 1: Fraction of 1000 randomly selected 25-
constraint sets that caused a drop in accuracy, com-
pared to an unconstrained run with the same centroid
initialization for a variety of constrained clustering al-
gorithms.

constraint sets generated from the ground truth
labels, the quality (as measured by the cluster pu-
rity using those same labels) of the resulting clus-
tering is often worse compared to using no con-
straints. This result is reproduced in Table 1.

To overcome these issues, we consider formulating
both the constraints and the objective function in the
same underlying language, namely propositional formu-
las in conjunctive normal form (CNF). In this paper we
focus on the first but pragmatic step of this research by
considering the k = 2 case, that is, partitioning a given
set of points into two clusters. This may be considered
as limiting but it should be noted that k = 2 is an often
studied problem [2] in the constrained clustering litera-
ture given the sources of constraints are often two-class
labels. Furthermore, the k = 2 case has recently been
shown to be intractable for popular algorithms such as
k-means and self organized maps (SOM) that attempt
to optimize the vector quantization error [10].

We observe that the resulting constrained optimiza-
tion problems can be solved efficiently using a subrou-
tine for solving 2SAT (i.e., CNF formulas in which each
clause has at most two literals). The number of calls
to the 2SAT subroutine is typically O(log n), where n is
the number of points to be clustered.
Contributions. We make several contributions to the
field of constrained clustering as summarized below.

• We show how instance-level constraints (must-link
and cannot-link) and complex cluster-level con-
straints such as maximum diameter and minimum
separation can be represented in the language of a
CNF expression in Section 2. A long term goal is
to have a language of constraints based on a first
order logic.

• Using the fact that every optimization problem has
a corresponding decision problem, we show how the

cluster-level constraints can be used as a framework
for objective functions such as minimizing the max-
imum diameter, minimizing the difference in diam-
eters and even multi-objectives such as minimizing
the maximum diameter while maximizing the min-
imum separation in Section 3 and Proposition 3.1.

• Unlike most existing work [5] we present a setting
for constrained clustering that is not easily over-
constrained and is guaranteed to find a global
optimum (provided there are solutions satisfying
all the constraints).

• All our algorithms run in polynomial time. Fur-
ther, in Section 4 we show if a near-optimal solu-
tion1 is acceptable, our approach can also lead to
asymptotically faster approximation schemes (see
Theorem 4.1).

• We show how SAT solvers can be used to globally
optimize a constrained clustering problem directly,
rather than solving a relaxed version of the problem
(as done in spectral clustering) or just finding local
minima (as done by the k-means algorithm).

2 Expressing Constrained Clustering Problems
as CNF Formulas

For the remainder of this paper, we assume that a
given set S = {s1, s2, . . . , sn} with n points is to be
partitioned into two clusters; that is, k = 2. We also
assume that an n×n distance matrix D = [Dij ], where
Dij represents the distance between si and sj , is given.

We assume that the reader is familiar with the
satisfiability problem (SAT) for formulas in conjunctive
normal form. Throughout this paper, we refer to the
2SAT problem, which a special case of SAT in which
each clause has at most two literals. A proof of the
following theorem can be found in [13].

Theorem 2.1. Given a 2SAT formula F with n vari-
ables and m clauses, the satisfiability of F can be de-
termined in time O(n + m). If F is satisfiable, then a
satisfying assignment for F can also be constructed in
O(n + m) time. �

To express the clustering problem as a CNF for-
mula, each point si is represented by a propositional
variable Xi, i = 1, 2, . . . , n. Since k = 2, we may use in-
dices 0 and 1 to denote the two clusters. We use the con-
vention that if Xi is assigned the value True (False),
point si belongs to cluster 1 (0).

1By “near optimal”, we mean that the solution is within a
factor of (1+ ǫ) of the optimal solution value, for any given ǫ > 0.



2.1 Instance-Level Constraints We start by ob-
serving how must-link (ML) and cannot-link (CL) con-
straints can be expressed as CNF formulas. The no-
tation ML(i, j) means that points si and sj must be in
the same cluster. Similarly, the notation CL(i, j) means
that points si and sj must not be in the same cluster.
In all cases, we assume that the set C of clauses to be
constructed is initially empty and that clauses resulting
from various constraints are added to C.

Definition 1. ML(i,j)
The constraint ML(i, j) is logically equivalent to the for-
mula (Xi ⇔ Xj), which is, in turn, logically equivalent
to the CNF formula (¬Xi∨Xj)∧(Xi∨¬Xj). Therefore,
the constraint ML(i, j) can be accommodated by setting
C = C ∪ {(¬Xi ∨ Xj), (Xi ∨ ¬Xj)}.

Definition 2. CL(i,j)
The constraint CL(i, j) is logically equivalent to the
formula (Xi ⇔ ¬Xj), which is, in turn, logically
equivalent to the CNF formula (Xi∨Xj)∧(¬Xi∨¬Xj).
Therefore, the constraint CL(i, j) can be accommodated
by setting C = C ∪ {(Xi ∨ Xj), (¬Xi ∨ ¬Xj)}.

We note that both ML and CL constraints add
clauses with two literals to C. Thus, the resulting set
C of clauses represents an instance of 2SAT.

2.2 Cluster-Level Constraints We now indicate
how certain cluster-level constraints can also be modeled
using 2SAT. We recall that the diameter of a cluster Q
is the maximum distance between a pair of points in Q.
Further, the separation between two clusters S1 and
S2 is the minimum distance between a pair of points,
one from S1 and the other from S2.
Cluster-Level Maximum Diameter. This cluster-
level constraint requires that the diameter of any cluster
be at most a given value α. To achieve this, we must
ensure that any pair of points si and sj with Dij > α
are in different clusters; that is, we need the constraint
CL(i, j). This is captured by the following definition
(which uses the clauses for a CL constraint introduced
in Definition 2).

Definition 3. Maximum-Diameter(α)
This constraint can be handled by adding to the set C
the two clauses (Xi∨Xj) and (¬Xi∨¬Xj) for every pair
of points si and sj for which Dij > α, 1 ≤ i < j ≤ n.

Cluster-Level Minimum Separation. This con-
straint requires that the separation between the two
clusters be at least a given value β. To achieve this,
we must ensure that each pair of points si and sj with

Dij < β are in the same cluster; that is, we need the
constraint ML(i, j). This is captured by the following
definition (which uses the clauses for an ML constraint
introduced in Definition 1).

Definition 4. Minimum-Separation(β)
This constraint can be handled by adding to the set C

the two clauses (¬Xi∨Xj) and (¬Xi∨Xj) for every pair
of points si and sj for which Dij < β, 1 ≤ i < j ≤ n.

We note that the maximum diameter and minimum
separation constraints also introduce only clauses with
two literals; that is, the formula C continues to be an
instance of 2SAT.

3 Extending Cluster-Level Constraints to a
Family of Objective Functions

Here, we make use of the fact that for every optimization
problem there is a corresponding decision problem. We
begin with the case where the is a single objective
function and then consider a multi-objective function.

3.1 Optimizing a Single Objective We show here
how repeated calls to 2SAT instances generated from
the constraints can be used to develop an optimization
procedure for the maximum diameter and minimum
separation objectives. An important observation is that
the optimum value for either of these objectives must
be one of the pairwise distance values in the matrix
D. Therefore, as long as a solution satisfying all the
constraints exists, the optimum value can be found by
carrying out a binary search over the distance values in
D. The corresponding algorithm shown in Figure 1. We
will explain how the algorithm works for minimizing the
maximum diameter. A similar explanation can be given
for maximizing the minimum separation.

The algorithm begins by sorting the pairwise dis-
tances and chooses the median value as a candidate so-
lution to the diameter problem. A 2SAT instance is con-
structed where clauses are created so that any pair of
points whose distance is greater than the median value
are required to be in different clusters. (These are in
addition to the clauses for the given ML and CL con-
straints.) If the 2SAT solver returns a solution (cluster-
ing) for this problem, then we set the median as the new
upper bound on the diameter (we are minimizing the ob-
jective function), select the new median value and con-
struct another 2SAT instance. If the 2SAT solver fails,
then we know this median value is below the optimum
value and we set it as the new lower bound, recalculate
the median and construct another 2SAT instance as be-
fore. This is repeated until the algorithm converges to
the smallest legal cluster diameter that also satisfies all
ML and CL constraints.



Algorithm SingleFunctionOptimize

Input:

D: Matrix of pairwise distances.
C: The set of ML and CL constraints expressed as

clauses.
f : Objective: {Minimize Maximum-Diameter,

Maximize Minimum-Separation}.

Output: The optimal value γ for the objective
function and a corresponding 2-clustering.

1. Create a sorted array L[1 .. t] in increasing order
of all distinct pairwise distances in D. Let ℓ = 1
and h = t.

2. while (ℓ 6= h) do

3. Let m = ⌈(ℓ + h)/2⌉ and γ = L[m].

4. Create a 2SAT instance P using C, γ and
Definition 3 or 4 depending on f .

5. if P is satisfiable

6. if f is Minimize-Diameter, let h = m.

7. if f is Maximize-Separation, let ℓ = m.

8. else /* P is not satisfiable */

9. if f is Minimize-Diameter, let ℓ = m + 1.

10. if f is Maximize-Separation, let h = m − 1.

11. end while

12. return γ = L[ℓ] and the corresponding 2-clustering
(based on the solution to P ).

Figure 1: Optimizing a Single Objective Function

In specifying the algorithm in Figure 1, we assume
that there is a solution that satisfies all the given ML
and CL constraints2 in the set Ψ. Note that this can
be determined using just one call to the algorithm for
2SAT.

It can be seen from the above discussion that
given a set of points S and a collection Ψ of ML and
CL constraints, the (decision) problem of determining
whether there is a 2-clustering of S such that all the
constraints in Ψ are satisfied and the maximum cluster
diameter is α can be solved efficiently by constructing
the corresponding 2SAT instance and testing whether it
is satisfiable. In particular, since the number of possible
distinct constraints (and hence the number of clauses in
the 2SAT instance) is O(n2), the running time of the
2SAT algorithm would be O(n2).

We will use the notation Dia-Test(S, α) to denote
a function that returns “Yes” if there is a partition
of S into two clusters such that a given set Ψ of ML
and CL constraints is satisfied and each cluster has a
diameter of at most α. To avoid clutter, we think of Ψ
as an implicit set of constraints and do not include Ψ in
the notation Dia-Test(S, α). Note that the function
Dia-Test(S, α) can be implemented by one call to the
algorithm for 2SAT. Table 2 includes the definitions of
Dia-Test(S, α) and other similar functions which will
be used in the remainder of this paper. In each case,
whenever the answer is “Yes”, we can also obtain a 2-
clustering from the satisfying assignment returned by
the algorithm for 2SAT.

3.2 Other Single Objectives
Minimizing the Difference Between Diameters.
One can also exploit the relationship to 2SAT to op-
timize other functions of diameters. For example, one
may be interested in obtaining a 2-clustering such that
the difference between the diameters of the two clusters
is minimized. Intuitively, this corresponds to finding
two clusters which have nearly equal diameters.
This problem can be solved efficiently by considering
the following generalization of the diameter problem:
Given two positive values α1 and α2, where α1 ≤ α2,
is there a partition into two clusters S1 and S2 such
that the diameter of Si is at most αi for i = 1, 2? This
problem can also be reduced to 2SAT as follows.

As before, let Xi denote the Boolean variable
corresponding to point si, 1 ≤ i ≤ n. We will
continue to use the convention that after solving the
2SAT problem, all points corresponding to variables set

2Note that these constraints are separate from the constraints
due to the objective function.



Function Interpretation

Dia-Test(S, α) Returns “Yes” if there is
a partition of S into two
clusters such that each
cluster has a diameter of
at most α; otherwise, re-
turns “No”.

Sep-Test(S, β) Returns “Yes” if there is
a partition of S into two
clusters such that the
separation between the
two clusters is at least β;
otherwise, returns “No”.

Dia-Sep-Test(S, α, β) Returns “Yes” if there is
a partition of S into two
clusters such that each
cluster has a diameter of
at most α and the sep-
aration between the two
clusters is at least β; oth-
erwise, returns “No”.

Table 2: List of functions used in subsequent sections.
(Each function can be implemented using one call to
the algorithm for 2SAT. In each case, there may be
additional implicit set Ψ of ML and CL constraints.)

to True (False) are in cluster S1 (S2). For each pair
of points si and sj (i 6= j), we do the following.

1. If Dij > α2, then we add the two clauses (Xi ∨Xj)
and (¬Xi ∨ ¬Xj). (This is equivalent to the
constraint CL(i, j).)

2. If α1 < Dij ≤ α2, we introduce the clause (¬Xi ∨
¬Xj). (This is to ensure that the two points don’t
appear together in S1, the cluster with the smaller
diameter α1).

It is easy to verify that the resulting instance of
2SAT has a solution if and only if there is a 2-clustering
where the diameter of Si is at most αi, i = 1, 2.

Let Two-Dia-Test(S, α1, α2) denote the function
corresponding to the above generalized version of the
diameter problem. It is a simple matter to use this
function to solve the problem of minimizing the differ-
ence between the diameters. One can try each possible
pair (α1, α2) of diameter values, where α1 ≤ α2. For
each value of α1, the smallest value of α2 such that
Two-Dia-Test(S, α1, α2) returns “Yes” can be found
using a binary search on the possible values of α2. Thus,
for each value of α1, the number of calls of the form
Two-Dia-Test(S, α1, α2), each of which results in a
call to 2SAT, is O(log n). Since the number of possible

values of α1 is O(n2), the total number of calls to 2SAT
to get the smallest difference between the diameter val-
ues is O(n2 log n). We note that here also, a set Ψ of
ML and CL constraints can be accommodated without
increasing the number of calls to 2SAT.

Minimizing Sum of Diameters. In the previous
section, we considered the objective of minimizing the
maximum diameter of a cluster. Given a partition into
two clusters, this objective corresponds to taking the
maximum of the diameters. Instead of maximum, one
can consider taking the sum of the diameters of the
two clusters. This leads to the problem of finding a 2-
clustering where the goal is to minimize the sum of the
two diameters. For this problem, an algorithm with
a running time of O(n3 log n) was presented in [11].
An improved algorithm with a running time of O(n3)
was presented in [14]. Both of these algorithms rely
on efficient algorithms for 2SAT. We note that the use
of 2SAT also allows us to solve the minimum sum of
diameters problem subject to ML and CL constraints.

3.3 Time Complexity of Single Objective Algo-
rithm This section refers to the time complexity of the
algorithm shown in Figure 1 which is used to produce
our experimental results in Section 5. This algorithm
is guaranteed to converge to the global optimum. In
Section 4 we describe an approximation scheme that is
guaranteed to converge within 1−ǫ of the true optimum
which has a time complexity of O(log log Dmax

Dmin

) where
Dmax and Dmin are the maximum and minimum values
in the distance matrix [Dij ].

Since the binary search is over an array of size
O(n2), the number of calls to 2SAT used by the
algorithm in Figure 1 is O(log (n2)) = O(log n). Since
each call to the 2SAT solver has complexity O(n2) in
the worst case the overall worst case complexity of our
approach is O(n2 log(n)) where n is the number of data
points. We note that this worst case analysis assumes
the number of clauses is Θ(n2); in practice, the number
of clauses would be far less.

3.4 Multiple Objectives So far we have limited
ourselves to single objective functions. Our framework
also lends itself to combining these objective functions
though optimizing multiple objectives is non-trivial.
Possible methods for optimizing multiple objectives
include the following.

1. A bi-criteria optimization approach.

2. Optimizing a ratio of single objective functions.

3. Seeking a Pareto optimum.



In this section we explore the first two approaches; the
third approach is left for future work.
A Bi-criteria Optimization Approach. Suppose we
want to consider the minimum diameter and maximum
separation objectives together. One way to handle both
of these objectives is to use one of them as a constraint
and optimize the other subject to that constraint.
For example, constraining the cluster diameter to be
no more than a chosen value α, one can focus on
maximizing the separation subject to this constraint.
This can also be done by a binary search similar to the
one shown in Figure 1. The steps of this procedure are
as follows.

1. Construct the set C of clauses using the given
constraint set Ψ and the diameter bound α.

2. Carry out a binary search over the distances in D to
find the largest separation β satisfying Ψ and the
diameter bound α. (Each iteration of the binary
search uses a call to the Sep-Test(S, β) function
defined in Table 2.)

Thus, we can find the maximum separation value for
each specified diameter bound α using O(log n) calls
to 2SAT. In a similar manner, we can also find the
minimum diameter for each specified separation bound
β using O(log n) calls to 2SAT.

In practice, when both the diameter and separation
objectives are considered, one can save some calls to the
2SAT algorithm using the following result.

Proposition 3.1. Suppose α and β denote the required
upper bound on the diameter and the required lower
bound on the separation respectively, with α < β. If
there are points si and sj such that α < Dij < β, then
no feasible 2-clustering satisfying both constraints exists.

Proof. From Definitions 3 and 4, it can be seen that the
diameter and separation constraints on si and sj lead
to the following clauses:

(1) (Xi ∨ Xj) (2) (¬Xi ∨ ¬Xj)
(3) (¬Xi ∨ Xj) (4) (Xi ∨ ¬Xj).

Resolving (1) and (3) produces Xj and resolving (2) and
(4) produces the contradiction ¬Xj . Hence, the set of
clauses is not satisfiable.

Minimizing A Ratio of Objective Functions. In
the last section, we considered the two objectives,
namely minimizing the diameter and maximizing the
separation, separately. They can also be combined into
a single objective as follows: find a 2-clustering that
minimizes the ratio of diameter to separation. This
problem can also be solved efficiently using 2SAT as

follows. Recall that given a diameter value α and sep-
aration value β, the problem of determining whether
there is a 2-clustering such that the maximum diameter
is at most α and the minimum separation is at least β
can be solved using 2SAT. Let Dia-Sep-Test(S, α, β)
denote a procedure which solves this problem as indi-
cated in Table 2. Note that this procedure can be im-
plemented by one call to an appropriately constructed
instance of 2SAT. To solve the problem of minimizing
the diameter to separation ratio, we proceed as follows.
(The method is similar to the one for minimizing the
difference between the diameters.) For each value of α,
the largest value of β such that Dia-Sep-Test(S, α, β)
returns “Yes” can be found using a binary search on the
possible values of β. Thus, for each value of α, the num-
ber of calls of the form Dia-Sep-Test(S, α, β), each of
which results in a call to 2SAT, is O(log n). Since the
number of possible values of α is O(n2), the total num-
ber of calls to 2SAT to get the smallest diameter to sep-
aration ratio is O(n2 log n). As before, a set Ψ of ML
and CL constraints can be also accommodated without
increasing the number of calls to 2SAT.

3.5 Extensions to Incorporate Dimension-Level
Constraints. To extend the above constraints to the
dimension-level counterparts requires that for each of
the d dimensions, pairwise distances be stored in matri-
ces D(r), r = 1, . . . , d. Then dimension-level constraints
are the same as above except the test is on a specific di-
mension r, that is, matrix D(r) rather than D. (The
extension to a diameter-level constraint on a subset of
the d dimensions is straightforward.) Of course, this
may decrease the probability that a feasible clustering
exists, but fortunately checking for this situation can be
done efficiently because of Theorem 2.1.

4 Reducing the Number of Calls to 2SAT:
Approximation Schemes

Basic Idea. In the previous section, it was shown that
for k = 2, a clustering which minimizes the maximum
diameter (or maximizes the minimum separation) can
be obtained in polynomial time using a subroutine for
2SAT. With n points to be clustered, the number of
calls to the 2SAT subroutine was shown to be O(log n).
In this section, we observe that the number of calls to
2SAT can be asymptotically smaller if one is willing to
accept an approximate solution which is provably within
a factor (1 + ǫ) of the optimal value, for any ǫ > 0. We
will present the details for minimizing the maximum
diameter and indicate the necessary modifications for
maximizing the minimum separation.

Let Dmin and Dmax denote the smallest and largest
distance values in the input. The number of calls to



1. Let ℓ = 0 and h = q.

2. while (ℓ 6= h) do

(a) Let m = ⌈(ℓ + h)/2⌉.

(b) if Dia-Test(S, Dmin (1 + ǫ)m) returns
“Yes” then h = m else ℓ = m + 1.

3. return ℓ.

Figure 2: Steps of the Binary Search used in the
Approximation Scheme

the 2SAT subroutine used by the approximation scheme
presented in this section is3 O(log log (Dmax/Dmin)).
Thus, the number of calls used by the approxima-
tion algorithm can be asymptotically smaller than that
used by the optimization algorithm when the ratio
Dmax/Dmin is significantly smaller than 2n. Such ap-
proximation schemes are also known for other optimiza-
tion problems (see for example [12]).
Steps of the Approximation Scheme for Di-
ameter. Recall that for any α > 0, the function
Dia-Test(S, α) defined in Table 2 can be implemented
using one call to the 2SAT subroutine. Further, the
function Dia-Test(S, α) also returns the two clusters
S1 and S2.

Given any ǫ > 0, our approximation scheme pro-
duces a solution which is at most (1+ ǫ) times the opti-
mal diameter. The steps of this approximation scheme
are as follows.

1. Let Dmin and Dmax denote the smallest and largest
distances between points in S. Compute the
smallest integer q such that Dmin(1+ ǫ)q ≥ Dmax.
Note that q = O(log (Dmax/Dmin)).

2. Perform a binary search over the set of indices
{0, 1, 2, . . . , q} to find the smallest index j such
that Dia-Test(S, Dmin(1 + ǫ)j) returns the an-
swer “Yes”; that is, there is a partition of S into
two clusters S1 and S2 such that each of the clus-
ters has a diameter of at most Dmin (1 + ǫ)j . The
steps of this binary search procedure are shown in
Figure 2.

3. Return the partition (S1, S2) found in Step 2 above
as the approximate solution.

3We use log log (x) to denote log (log (x)).

We now establish the performance guarantee of
the above approximation scheme and also bound the
number of calls to 2SAT.

Theorem 4.1. The above approximation algorithm
satisfies the following two properties.

(a) Let D denote the diameter returned by the approx-
imation algorithm and let D∗ denote the optimal
diameter. Then, D ≤ (1 + ǫ)D∗.

(b) The number of calls to 2SAT used by the algorithm
is O(log log (Dmax/Dmin)).

Proof:

Part (a): Since Dmin is the smallest distance be-
tween a pair of points in S, we have D∗ ≥ Dmin.
Let j be the smallest index in {0, 1, . . . , q} such that
Dia-Test(S, Dmin(1 + ǫ)j) returns “Yes”. If j = 0,
then the diameter of both S1 and S2 is at most Dmin;
that is, we have an optimal solution. So, we may assume
that j > 0. Since Dia-Test(S, Dmin(1 + ǫ)j) returns
“Yes”, we have

(4.1) D ≤ Dmin (1 + ǫ)j .

Since j > 0 is the smallest index satisfying the above
condition, Dia-Test(S, Dmin(1 + ǫ)j−1) returns “No”.
In other words, there is no solution where each of the
clusters has a diameter of at most Dmin(1 + ǫ)j−1.
Therefore,

(4.2) D∗ > Dmin(1 + ǫ)j−1.

Using Equations (4.1) and (4.2), it follows that
D ≤ (1 + ǫ)D∗.

Part (b): As mentioned in the description of the
approximation algorithm, q = O(log (Dmax/Dmin));
in other words, the size t of the set over which binary
search is carried out is O(log (Dmax/Dmin)). The
number of indices tried by the binary search procedure
is O(log t) = O(log log (Dmax/Dmin)). For each
such index, there is one call to Dia-Test(S, α) or
equivalently, one call to 2SAT. Hence the number of
calls to 2SAT made by the approximation algorithm is
O(log log (Dmax/Dmin)). �

Modifications for Maximizing Minimum Sep-
aration. The outline of the approximation scheme and
for maximizing the minimum separation and its analysis
are similar to those for minimizing the maximum diame-
ter. The key differences between the two approximation
schemes are as follows.

(a) Recall that for any β, the function Sep-Test(S, β)
defined in Table 2 can be implemented using one



call to the 2SAT subroutine. In the binary search
procedure for approximating the minimum sepa-
ration, we must use Sep-Test(S, β) instead of
Dia-Test(S, α).

(b) In the approximation scheme, we need to find
the smallest index j such that the call to
Sep-Test(S, Dmax/(1 + ǫ)j) returns “Yes”.

Let β∗ denote the optimal separation. We note that
β∗ ≤ Dmax. Carrying out an analysis similar to that for
the diameter problem, we can conclude that the approx-
imation scheme produces a separation β which satisfies
the condition β ≥ β∗/(1 + ǫ) for any chosen ǫ > 0.
The number of calls to 2SAT made by the approxima-
tion algorithm remains O(log log (Dmax/Dmin)).

5 Experimental Results

Our previous sections have shown that our algorithms
are guaranteed to find the global optimum. Hence
our experimental section is then not to test this claim
(we already proved it), but rather ask other useful
questions. We focus on our simplest objective functions,
namely maximizing the minimum separation (min-sep)
and minimizing the maximum diameter (max-dia).

We aim to answer several key questions in this
section:

1. How does the quality of the constrained clustering
found by our new algorithms compare with existing
popular algorithms in the literature?

2. The performance of previous constrained clustering
algorithms was often worse when compared to the
case where no constraints were used (see Table 1).
Do our algorithms exhibit the same behavior?

The answer to Question (1) is most important since it
not only validates the usefulness of our objective func-
tions but also the interaction of the constraints with
these objective functions. We investigate four data
sets, namely Ionosphere, Iris, Hepatitis and Heart Spec-
troscopy, for this purpose. These were chosen primarily
since they are small enough to do many thousands of
repetitive experiments so as to clearly understand the
effects of constraints but also have a large variety of
properties. For example, Iris can be considered as a
two class problem since one class can be removed (as
it is perfectly isolated) but the remaining two classes
highly overlap in lower dimensional space. Ionosphere
is a thirty-four dimensional continuous data set while
the Heart spectroscopy data set is a nineteen dimen-
sional Boolean dataset. In all experiments, constraints
are generated in the standard way of sampling the la-
bels of the points and if they agree generating a ML

Algorithm
Data CKM MPKM Max-S Min-D
Heart 0.50 0.55 0.66 0.66

Hepatitis 0.73 0.72 0.76 0.78
Ionosphere 0.59 0.59 0.64 0.66

Iris 0.83 0.82 0.87 0.88

Table 3: Average (over 1000 constraint sets) of the
RAND index for a variety of algorithms using 24 ran-
domly chosen constraints. The seminal COP-k-Means
algorithm (CKM), metric learning conditional random
field approach (MPKM) and our algorithms Max-S
(maximize cluster separation) and Min-D (minimize
cluster diameter). Our algorithms converge to global
minima and hence were run only once per constraint
set. CKM and MPKM were run ten times and the best
results were chosen. Best performers (in bold) are sta-
tistically significant at the 95% confidence level using a
pairwise student T test.

constraint otherwise a CL constraint. The success of a
constrained clustering algorithm is then measured using
the RAND index between the clustering found by the
algorithm and the set partition induced by the labels.

Table 3 shows the average RAND index with respect
to the labels (over 1000 constraint sets) for the four
datasets previously mentioned. Note the COP-k-Means
algorithm is a seminal work in the field and the MPKM
algorithm is a combination of the popular PKM and
MKM algorithms [3] that won the best paper award
at KDD 2004. Since the COP-k-Means and MPKM
algorithms converge to local minima, they were run
10 times from random restarts and the best results
were chosen. The total run-time of our algorithms was
typically far less than these other algorithms since they
are run only once.

The base (unconstrained) RAND index results for
for maximizing minimum separation is 0.46 (Iris), 0.53
(Ionosphere), 0.72 (Hepatitis) and 0.49 (Heart) and
for minimizing the maximum diameter is 0.70 (Iris),
0.58 (Ionosphere), 0.707 (Hepatitis) and 0.48 (Heart).
Our algorithms perform better than the COP-k-Means
and MPKM approaches but not due to the objective
function (unconstrained k-means obtains better RAND
index results than above), but rather due to the addition
of constraints. An explanation of our better results can
be found later where we describe how algorithms that
attempt to iteratively construct a feasible set partition
can become over-constrained.

An important property to investigate is whether the
RAND index increases as a function of the number of
constraints. Our results can be seen in Figures 3, 4, 5



and 6 where we report the average RAND index over
fifty constraint sets for 0 (unconstrained), 10, 24, 50
and 100 constraints randomly generated from the data
with an equal number of ML and CL constraints. For
CKM and MPKM results are averaged over ten random
restarts. We see two interesting trends. Firstly, even
though our unconstrained objective functions (whose
results correspond to zero sized constrained sets in the
figures) are typically as good as (Heart and Ionosphere)
or worse (Iris and Hepatitis) as k-means with the addi-
tion of constraints they quickly exceed the performance
of other algorithms. This is most likely since our algo-
rithms find a global optimum of their objective function
rather than a local optimum.

Secondly, the RAND index does improve as the
number of constraints increases, but we also see that
it continues to rise as the number of constraints goes
above fifty. The COP-k-means algorithm gets over-
constrained and does not converge for any of the
runs when more than 50 constraints are gen-
erated for any dataset. The reason is that we
can view COP-k-means as being a greedy search algo-
rithm that attempts to find the best clustering while
attempting to satisfy all constraints without back-
tracking [6]. Consider a simple illustrative problem
with just five instances a, b, c, d, e and the constraints
CL(a, b), CL(b, c), CL(c, d) and CL(d, e). Clearly, this
set of points can be clustered to satisfy all the con-
straints for k = 2. However, if the order in which in-
stances are assigned to clusters is a, c, e, b, d and if a and
c are assigned to clusters 1 and 2 respectively, then the
COP-k-means algorithm cannot converge. Even though
MPKM converges, it still suffers from this problem since
it too incrementally constructs the set partition. We see
that our algorithm works best when there are 50+ con-
straints.

Finally, to address Question (2) we break down
the entries in Table 3 and see what proportion of the
1000 constraint sets for each of our algorithms resulted
in a decrease of the RAND index compared to the
unconstrained algorithm. These results are shown in
Table 4 and by comparing it with Table 1 we see that
the number of constraints set that lead to poorer results
than using no constraints is still non-zero, but far less
than comparable algorithms. We believe this is so since
our algorithms are not easily over-constrained.

6 Conclusions and Future Work

In this paper we have taken the first step towards com-
pletely constraint driven clustering algorithms by show-
ing how to formulate a variety of constraints as instances
of the 2SAT problem. By repeated calls to a 2SAT
solver, we showed how optimization goals such as min-

Algorithm
Data Min-Sep Max-Diam
Heart 8% 6%

Hepatitis 11% 5%
Ionosphere 11% 7%

Iris 8% 12%

Table 4: Fraction of 1000 randomly selected constraint
sets of size 24 that caused a drop in accuracy, compared
to the counterpart unconstrained algorithm. Compare
with Table 1.

imizing the maximum cluster diameter or maximizing
the minimum cluster separation can be achieved. We il-
lustrated how optimizing these objective functions can
be performed using O(log n) calls to a 2SAT solver, thus
obtaining efficient algorithms. It was also shown in Sec-
tion 4 how the number of calls can be further reduced
if a near-optimal solution (factor 1 + ǫ approximation)
is acceptable resulting in O(log log(Dmax

Dmin

)) calls. Fi-
nally, we illustrated how to perform efficient search with
multi-objective functions. In all cases, the algorithms
are guaranteed to not only converge to the global op-
tima, but also to never become over-constrained.

Our experimental results in Table 3 show that our
algorithms on average outperform other popular con-
strained clustering algorithms and (c.f. Table 1 and
Table 4) are less likely to produce a result worse than
using no constraints. The stability of our algorithms
in this respect is of practical significance since it means
constraint sets are unlikely to adversely affect the algo-
rithm’s performance. Figures 3, 4, 5 and 6 show that
the performance of our algorithms increases with more
constraints and are not over-constrained. This is an im-
portant property if constraints are plentiful or we have
multiple sources of constraints.

The source code for our algorithms
will be made available on our site
www.constrained-clustering.org. Future work
will address the following issues: (a) extension to
k > 2, (b) using approximation results for weighted
MAX-SAT to allow some constraints to be ignored
and (c) the trade-off between the value of ǫ and the
quality of solution in generating near-optimal solutions
(Section 4).

Acknowledgments: The authors thank the reviewers
for their comments and support of this work from NSF
GRANT IIS-0801528 CAREER:Knowledge Enhanced
Clustering, ONR - Award N000140910712 P00001 and
a Google Research Award. The first author thanks the
students of ECS270 Winter 2009 at U.C. Davis for their
thoughts on the topic.



References

[1] A. Bar-Hillel, T. Hertz, N. Shental and D. Weinshall,
“Learning Distance Functions Using Equivalence Re-
lations”, Proc. Intl. Conference on Machine Learning

(ICML 2003), Washington, DC, Aug. 2003, pp. 11–18.
[2] S. Basu, I. Davidson, and K. Wagstaff, (editors) Con-

strained Clustering: Theory, Algorithms and Applica-

tions, CRC Prentice Hall, 2008.
[3] S. Basu, M. Bilenko and R.J. Mooney, “A Probabilistic

Framework for Semi-supervised Clustering”, Proc. 10th

ACM SIGKDD Intl. Conf. on Knowledge Discovery

and Data Mining (KDD-2004), Seattle, WA, Aug.
2004, pp. 59–68.

[4] T. Coleman, J. Saunderson and A. Wirth, “Spectral
Clustering with Inconsistent Advice”, Proc. Intl. Con-

ference on Machine Learning (ICML 2008), Helsinki,
Finland, June 2008, pp. 152–159.

[5] I. Davidson and S. S. Ravi, “Identifying and Gener-
ating Easy Sets of Constraints For Clustering”, Pro-

ceedings of the Twenty-First National Conference on

Artificial Intelligence (AAAI 2006), Boston, MA, July
2006, 6 pages.

[6] I. Davidson and S. S. Ravi, “The Complexity of Non-
Hierarchical Clustering with Constraints”, J. Knowl-

edge Discovery and Data Mining (DMKD), Vol. 14,
No. 1, 2007, pp. 25–61.

[7] I. Davidson and S. S. Ravi, “Intractability and Clus-
tering with Constraints”, Proc. Intl. Conference on

Machine Learning (ICML 2007), Corvallis, OR, June
2007, pp. 201–208.

[8] I. Davidson and S. S. Ravi, “Using Instance-Level
Constraints in Hierarchical Agglomerative Clustering:
Theoretical and Empirical Results”, Data Mining and

Knowledge Discovery, Vol. 18, No. 2, Apr. 2009, pp.
257–282.

[9] I. Davidson, K. Wagstaff and S. Basu, “Measuring
Constraint-Set Utility for Partitional Clustering Al-
gorithms”, Proc. Intl. Conf. Principles and Practice

of Knowledge Discovery in Databases (PKDD 2006),
Berlin, Germany, Sept. 2006, pp. 115–126.

[10] P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V.
Vinay, Clustering of large graphs via the singular value
decomposition, Machine Learning (56), pp. 9-33, 2004.

[11] P. Hansen and B. Jaumard, “Minimum Sum of Di-
ameters Clustering”, J. Classification, Vol. 4, 1987,
pp. 215–226.

[12] E. L. Lloyd, R. Liu, M. V. Marathe, R. Ramanathan
and S. S. Ravi, “Algorithmic Aspects of Topology Con-
trol Problems for Ad Hoc Networks”, Mobile Networks

and Applications (MONET), Vol. 10, Issue 1-2, Feb.–
Apr. 2005, pp. 19–34.

[13] C. H. Papadimitriou, Computational Complexity, Ad-
dison Wesley, Reading, MA, 1994.

[14] R. Sarnath, “Dynamic Digraph Connectivity Has-
tens Minimum-Sum-of-Diameters Clustering”, SIAM

J. Discrete Mathematics, Vol. 18, No. 2, Oct. 2004,
pp. 272–286.

[15] K. Wagstaff, Intelligent Clustering with Instance-Level

Constraints, Ph.D. Dissertation, Department of Com-
puter Science, Cornell University, Ithaca, NY, 2002.

[16] K. Wagstaff and C. Cardie, “Clustering with Instance-
Level Constraints”, Proc. 17th Intl. Conf. on Machine

Learning (ICML 2000), Stanford, CA, June–July 2000,
pp. 1103–1110.

[17] K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl,
“Constrained k-Means Clustering with Background
Knowledge”, Proc. 18th Intl. Conf. on Machine Learn-

ing (ICML 2001), Williamstown, MA, June–July 2001,
pp. 577–584.



Sheet1

0 10 24 50 100
0.45

0.55

0.65

0.75

0.85

0.95

Iris

Our Algorithm – 

Max Separation

Our Algorithm – 

Min Diameter

COP-k-Means

MPKM

Number of Constraints

R
a

n
d

 In
d

e
x

Figure 3: Iris: For a variety of algorithms the RAND index averaged over fifty constraint sets against the size of
the constraint set.

Sheet1

0 10 24 50 100
0.45

0.55

0.65

0.75

0.85

0.95

Ionosphere Our Algorithm – 

Max Separation

Our Algorithm – 

Min Diameter

COP-k-Means

MPKM

Number of Constraints

R
a

n
d

 In
d

e
x

Figure 4: Ionosphere: For a variety of algorithms the RAND index averaged over fifty constraint sets against the
size of the constraint set.



Sheet1

0 10 24 50 100
0.45

0.55

0.65

0.75

0.85

0.95

Heart Spectroscopy

Our Algorithm – 

Max Separation

Our Algorithm – 

Min Diameter

COP-k-Means

MPKM

Number of Constraints

R
a

n
d

 In
d

e
x

Figure 5: Heart Spectroscopy: For a variety of algorithms the RAND index averaged over fifty constraint sets
against the size of the constraint set.

Sheet1

0 10 24 50 100
0.45

0.55

0.65

0.75

0.85

0.95

Hepatitis

Our Algorithm – 

Max Separation

Our Algorithm – 

Min Diameter

COP-k-Means

MPKM

Number of Constraints

R
a

n
d

 In
d

e
x

Figure 6: Hepatitis: For a variety of algorithms the RAND index averaged over fifty constraint sets against the
size of the constraint set.


