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I ntroduction

Non-hierarchical clustering has along history in numerical taxonomy [13] and machine
learning [1] with many applications in fields such as data mining [2], statistical analysis
[3] and information retrieval [17]. Clustering involves finding a spedfic number of sub-
groups (k) within a set of s observations (data points/oljeds); each described by d
attributes. A clustering algorithm generates cluster descriptions and assgns each
observation to ane duster (exclusive assgnment) or in part to many clusters (partial
assgnment). Throughout this paper, we shall refer to the output of a clustering algorithm
asthe dustering results, solution, or model.

The information in a clustering solution is extensive, a mixture model or K-Means
model produces k.s conditional probabiliti es or distances. Visualizing the dustering
results can help to quickly assmil ate this information and provide insights that support
and complement textual descriptions or statistical summaries. For example, we quickly
wish to know how well defined are the dusters, how different are they from each other,
what is their size, and do the observations belong strongly to the duster or only
marginally? Visualizing a clustering solution has many potential uses. The analyst user
during the highly iterative model building processcan quickly obtain insights from the
visuali zation that suggest the adequacy of the solution and what further experiments to
conduct. Alternatively, the business user can examine and query the final clustering
solution using the visuali zation.

Theinteresting parts of a clustering solution will depend on the appli cation. Database
segmentation applications such as target marketing focus on the dusters and investigate
which clusters are similar, which are autonomous and which have, for example, a high
propensity to crosssell. Anomaly detedion applications attempt to identify those
observations that do not “belong”, are interesting and require further investigation. The
focus is the observations and we wish to know if they belong strongly or only marginally
to their most likely cluster. Typical uses of anomaly detedion are deteding money
laundering, identifying network intrusion, and data cleaning [5].

In this paper, we describe a general particle framework to display theinformation in a
clustering solution. Changes to the parameters of the framework can emphasize
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information useful for a particular clustering application. Our threedimensional
information visualization represents the previoudy clustered observations as particles
affeded by gravitational forces. We map the duster centersinto athreedimensional cube
so that similar clusters are adjacent and dssmil ar clusters are far apart. We subsequently
placethe particles amongst the centers according to the gravitational force exerted on the
particles by the duster centers. A particle's degree of membership to a cluster provides
the magnitude of the gravitational force eerted.

The output of most clustering algorithms can be the input into our visualization
framework. The inputs to the visualization are a k by k distance matrix containing the
distance between the k cluster descriptions and for each observation, k columns
containing the observation's degreeof membership to every cluster that must sum to ane.
For instance, the distancematrix may contain the Kull back Leibler or Euclidean distances
between the duster descriptions. For a mixture model, the observation’s degree of
membership to a cluster could be the normalized likelihood, while for K-Means
clustering it could be the observation’s distance to the duster normali zed by the sum of
its distance to all clusters. We focus on applications of clustering in data mining but
beli eve our visualization approach is useful for other clustering appli cations.

Our approach to visualize dustering results is computationally very efficient. The
calculations to visualize a clustering result of thousands of records take only a few
seands on desktop machines. The cmputational efficiency of the two steps in the
approach is of order O(k?)+O(ks) where k is the number of clusters and s is the number
of observations with s>> k. The time to generate the visuali zation is linear with resped
to the number of observations making it suitable to visuali ze large data sets.

We begin the paper by describing the particle visualization framework in detail. We
define how to placethe duster centersin athreedimensional spaceand how to placethe
observations amongst the duster centers according to an attractive gravitational law.
Next, we visuadlize the UCI [12] churn data set for the purpose of segmentation,
discussng and verifying the insights and properties that the visualizaion provides. We
then construct a spedal |aw suitable for anomaly detedion appli cations whose usefulness
we illustrate on the UCI cars data set. We conclude by describing related work,
summarizing our approach and describing potential extensionsto aur framework.

Throughout this paper, our clustering resultsare from an EM [4] mixture modeler. An
observation's degree of membership to a cluster is its normalized likelihood for that
cluster. This paper buil ds upon our earlier work [5] by amongst other things: refining the
basic framework, introducing the idea of density visualizaions of the output and
verification of the visualization.

Visualizing Cluster Solutions as Particles Affected by
Gravitational Forces

Clustering is inherently density estimation in an instance space The general aim of
clustering is to find sub-regions of the instance space where many observations occur.
The description of these sub-regions can vary depending on the dustering technique. If
we onsider the duster centers as having a large mass and each observation a small
massthen a natural graphical view of a clustering solution is as cluster centers pulling
on the observationg/particles. We wish our visuali zaion to be a snapshat of the particle
positions, at some instant in time, after the appli cation of gravitational forces.



In our particle visuali zation approach to clustering results, we first placethe duster
(density) centers in a threedimensional space trying to preserve their spacing in the
original d dimensional space We then place the observations (particles) amongst the
centers to refled the gravitational pull on the particles as represented by the degree of
membership that a particle has for each cluster. Throughout this paper, we describe our
approach in two dimensions for clarity but in practice use threedimensions.

Placing the Cluster Centers

We first map the oncentrated areas of mass (the duster centers) as points onto the
canvas whil e attempting to preserve the distance spacing that occurs in the origina d
dimensional space In our experiments, we use the average Kullback-Leibler (KL)
distances between two cluster centersto producethe distance matrix between the duster
centers (Dyarix)- We use Multi Dimensional Scaling (MDS) [6][9][7] to place the k
cluster centersin a cube whose diagonal |ength is equal to ane. Functionally MDS takes
asinput a k by k matrix (Dyagix) that contains normalized cluster distances that sum to
one. MDS attempts to create a layout of the points in the abe so that the @lculated
distances between the points (D¢pe) are dose to those in Dyqix. We initialy randomly
placethe k points and move them whil e trying to minimize the oljedive function |Dyaix
— Deund®. We use a smulated annealing [8] approach with multi ple random restarts to
find a good local optimum. MDS is a powerful general technique, the type of MDS we
implement uses Kruskal-Shepard and Metric scaling acoording to the dasdfication
scheme described by Buja e’ a [9]. Our MDS algorithm follows in pseudo code,
variables arein Italics:

Pl ace the k points randomy in the cube
Let the current set of points placenents be P,
Err ,,= MAX_FLOAT (a very large positive real nunber)
Epsilon= M N_FLOAT (a very small positive real nunber)
Wi I e(Err , > Epsilon and Number _Of _Iterations < 100)
Err ,, = Cal cError (D, Peive)
('bpy PCuhe to P, Cube . . . .
Perturb the k point positions in P, (see Figuel)
Err Candidate = Cal CEr ror ( DMalrx’ P, Cuhe)
/1 Accept new position if new error <= old error
I f ( Err Candidate <= Err Old) then PCuhe = P,

//Performa Metropolis test 1f new error > old error
| f(Err >Err ) &&(en( - Err +Err ) <rand(0, 1))

Candidale_
Endi f
End Wil e
Cal cError Function: Cal cError(DistancesA , Points )
Cal cul at e DistancesB  Fr om Points

atrx !

Candidate

Cube Cube

Error =0
For i =1 to Kk, For j = 11to k
Error += (DistancesA ,, - DistancesB  )"2
EndFor
EndFor

Ret urn Error
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Figure 1. A perturbation of cluster center A where (Dcype(a,g) - Dmatrixa8)> (Dcubeiacy
- Dwmatrixac)) > 0.

The MDS algorithm attempts to minimize the overall stress (|Duatrix — Dourel?) by
asynchronously moving each cluster center. Figure 1 illustrates the
perturbation/movement of cluster center A. As the actual distance of A to B and C
(Dcute(apy @d Deupeacy) i greater than as expeded (Diarixa sy Dwvarixac)) then Awill be
moved closer to B and C. Both B and C exert a force whose diredion is given by aline
conneding their centersto A, the size of the forceis given by the difference between the
expeded (Dyarix) Versus actual (Dewwe) distances, therefore the force exerted by B is
stronger. The resultant vedor, which is the sum of the individual vedors, gives the
diredion of movement for A. The size of movement is a random number that can be as
large as the magnitude of the resultant vedor. The aomputational efficiency of thisentire
step is of order O(k?) as it isfor most MDS algorithms [10]. However, k is typically less
than 10.

Placing the Observations (Particles) Amongst the Cluster Centers

We nedl to placethe observations to refled the gravitational pull on the observations by
the duster centers. Each observation belongs to every cluster with some degree of
membership. We now describe the observation placement shown in Figure 2. Firstly, we
placethe observation near its most likely cluster, cluster A, at a distance proportional to
(L =Pr(x| 6a) ). Pr(x | 6y) is observation x's degree of membership in cluster A. This
provides a circle on which to place the observation. Then every cluster other than A
exerts a force on an observation equal to how likely the observation belongs to that
cluster. The diredion of the forceis a straight line between the center of cluster A and
the center of the other cluster. The intersedion of the resultant vedor (sum of all
individual forces) and the drcle gives the final observation placement. We repest this
procedure for each observation.
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Figure 2: Placement of observation, x, where Pr(x | 83) > Pr(x | 6g) > Pr(x | 82). The
diredion of theresultant vedor is the sum of the mmponent vedors.

The computational efficiency of this dep is of order O(ks) where k is the number of
clusters and s is the number of observations with s >> k. The st of this dep scales
linearly with the number of observations.

Properties of the Visualization

Our method of placing the duster centers and particles produces a visualization with
these properties:
a) Thedistancebetween clustersisan indication of their simil arity.
b) Thedistance from an observation to a cluster refledsits degreeof membership.
c) A clugter's dape and opaqueness refleds the observation's degrees of
membership to the duster.
d) The duster center placement is gochastic, particle placementsis deterministic.
€) Adjacent observations have similar combinations of degrees of membership.
Thelast two points are worth further discusson. Point d) means that diff erent seeds of
the random number generator can produce different cluster center placements for the
same dustering solution. However, for a given clustering solution and set of cluster
center placements the positi ons of the particlesamongst the duster centerswill always be
the same. Point €) means that adjacent observations have very similar combinations of
degrees of membership to the dusters. Strictly speaking, it does not mean that those
observations attribute values will be similar, but they usually are. We did not use the
smpler approach of summing all component vedors to place the observations, as it
would result in a visuali zation with different properties. In such an approach the position
of particle x would be:
Zi1 xPr(x| 8) C;, Where Cjisthelocation of the center of cluster j. (1)

Properties b), c) and €) would not hold if we used this approach and would result in
the undesirable situation where adjacent observations have very little in common.
Consider three duster centers that are on a straight line of unit length. Their positions
aong thelineareat 0, 0.5 and 1 Let the degree of membership to the three ¢usters be
0.34, 0.33 and 0.33 respedively, then the position of the observation using this smpler
approach would be at approximately 0.5. However, if the degrees of membership became



0.5, 0, and 0.5 respectively, then the positi on of the observation would also be 0.5. Thisis
a common problem/property with visualization techniques guch as gtar-coordinates that
use the sum of component vedors to position an observation [11]. By placing an
observation aways around its most likely cluster, we introduce a constraint that
overcomes this problem.

Experimental M ethodology and Results

How users will act upon and interpret the visualization will vary making verification of
the usefulnessof this approach bath important and dfficult. We begin our experiments
by visualizing the dwurn data set using the previoudy described framework for the
purpose of segmentation. We daim that the visualization can easily convey much of the
information contained in a clustering solution. We verify this by showing that insights
from the visualizaion refled the quantitative properties of the dustering solution. We
also hope that the visualizaion will be able to convey information that is not evident
from the standard textual description or statistical summaries of the dustering results.

Next, we use the @rs data set (with the origin variable removed) to ill ustrate how a
small variation of the basic framework emphasizes outlier observations which is useful
for anomaly detedion. We show that although there are many anomalies, there are
clearly different classes/types of anomalies me that are more interesting than others.

Our basic method produces a placement of particles amongst the duster centersin a
unit cube. We @n display the results in a number of ways. We coose two popular
methods to display the results: density visualization and scatter visualization. In the
former, we visualize the density of the particles, in the later we represent each
observation as a sphere. The density visualization breaks the unit cube into a series of
very small regions. The number of observations located within a region determines its
opagueness Which type of visualization is used depends on the purpose of the
clustering exercise. For segmentation, where the major focus is the dusters, a density
plot is more appli cable. For anomaly detedion, where the individual observations are of
interest, a scatter visuali zaion is more useful.

We demonstrate our general-purpose framework using the UCI churn data set [12]
with the state, churned and telephore area code variables removed. Figure 3 and Figure
4 shows the density plot for the churn data set.



Figure 3: Density based visualization of churn data set with five dusters using the
general framework. The Cluster IDs are next to the dusters.

—
Figure 4: Zoom-in of clusters 1 and 2 centers

Interpretation, Verification and Uses

We @n attempt to verify the visualizaion accurately represents the dustering solution
by comparing important statistical metrics againgt insights derived from the
visuali zation. From the visuali zation we @an derive the foll owing insights:
a) Cluster 2 and Cluster 1 are more similar than Clusters 0 and 3 becuse they
are doser together.
b) Clusters 0, 3, and 4 are well-defined autonomous clusters due to their
compact representation.



¢) Cluster 2isthelargest cluster asit occupies alarge part of the @nvasandis
the most opague.

d) Clusters0and 4are similar but do not share many observations.

€) Clusters1and 2aresimilar and share many observationsthat mesh together.

f) Cluster 2 is more densely packed that cluster 1 asit is more opaque.

We @l culate the KL distancesin the higher dimensional instance/data spaceand the
Euclidean distances between cluster centers in the threedimensional space We exped
that the spacing between the duster centersin thethreedimensional spaceshould refled
the spacing in the higher dimensiona space We find:

EucldiDistance(0, 3)=0.69, MeanKLDistancg0, 3)=0.59
EuclidDistance(1, 2)=0.62, MeanKLDistance (1, 2)=0.54.

In bath the higher and lower dimensional spaces, D(Cluster O, Cluster 3) > D(Cluster
1, Cluster 2) thisill ustrates that insight a) is corred.

From Table 1 we seeobservations whose most likely cluster is0, 3 or 4 have degrees
of membership to their most likely cluster that are on average very high with low
standard deviations. These observations belong very strongly to their most likely cluster
and hence insight b) is corred. Cluster 2 (2608 observations) contains the most
observations, is the most “opague’ cluster and takes up a relatively large spacein the
visudli zation showing that insight c) is corred. Though cluster 1 occupies alarge part of
the @nvas, it is not as densely packed. The textual descriptions of what differentiates
clusters 0 and 4 ill ustrate that cluster 4 is a spedalizaion of cluster 0 and hence they
should be placed adjacent to each other showing that insight d) is corred.

Clust. |Mean Stdev What Differentiates the Churned Size
Id Cluster From the Population Percentage
0 0.99 0.001 voice_mail_plan:Different, 5% 996
#vmail_messages:Very High,
1 0.90 0.14 total_intl_minutes:Low, 18% 1070
total_intl_charge:Low
2 0.95 0.110 No Significant Difference 17% 2608
3 0.94 0.109 Voice_mail_plan:Different, 4% 186
number_vmail_messages:High,
4 0.95 0.102 Voice_mail_plan:Different, 7% 140
#vmail_messages:Very High,
total_eve_ minutes:Low,

Table 1: Summary statistics of the dusters. The mean and standard deviation are of the
degree of membership to the observations most likely cluster, 14.1% of the entire
population churned.

We @n seefrom Table 2 that for observations whose most likely cluster is 1 or 2,
the seaond most likely cluster is overwhelmingly cluster 2 and cluster 1 respedively,
thereby showing that insight €) is corred. Observations whose most likely cluster is
cluster 2 have a higher mean degree of membership and lower standard deviation than
cluster 1 showing that insight f) is corred.

Mean Mean Mean Mean Mean

DOM DOM DOM DOM DOM
Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Cluster 1 0.0001 0.8989 0.1010 0.0000 0.0000
Cluster 2 0.0000 0.0544 0.9456 0.0000 0.0000

Table 2: The mean degree of membership (DOM) to a cluster by observations whose
most likely cluster is1 or 2.



Using the Visualization to Go Beyond Verification

Cluster 2 and 4 look fundamentally different in the visualization, yet their summary
statistics (mean and standard deviation) are very similar (see Table 1). If we only had
these typical statistical summaries of the dusters, we would think the two clusters
distributions of degrees of membership are not different, but the visuali zation ill ustrates
they are. This adds the foll owing insight to investigate:

g) Cluster 2 and Cluster 4 have very similar statistical summaries, yet are
different, how?

Table 3 shows that observations whose most likely cluster is cluster 2 have a mean
entropy amongst their degrees of membership that is lessthan those observations whose
most likely cluster is cluster 4. The degree of belonging to clusters other than the most
likely cluster is more uniformly distributed for cluster 4 than cluster 2. This means the
shape of cluster 4 is more drcular than the dongated cluster 2 as the forces on the
particlesis more uniform. We oould infer this from the visuali zaion, but at the very least
the visualizaion tells us that the two clusters are somehow different and to perhaps
investigate these differences.

Clusterld | 0 1 2 3 4
Mean Entropy | 0.00 0.14 0.08 0.11 0.11
Table 3: Entropy of the degrees of membership by the observation’s most likely cluster
using base 10 logarithms

Uses of the Visualization

The visualizaion has potential uses in the different phases of a data mining projed. In
this example we ill ustrate how the model buil der can use the visualization, in our next
example we ill ustrate its use as a presentation tod to the end-user. Data mining is a
highly iterative and time-consuming processthat tries to producea final useful modd by
conducting a series of experiments with dightly different parameters and/or variables.
We @n use the visualizaion as a first contact point to the experiment results to quickly
and eadily seeinteresting insights and phenomenon to investigate. We beli eve this will
spead upthe model building process In this example, we seefrom Table 1 that over 630
of the 707 customers who churned are in clusters 1 and 2. From the visuali zaion we note
that these two clusters share many observations whil st the remaining clusters are quite
autonomous. A valid next step isto create afilter expresson that isolates the observations
in clusters 1 and 2 and then perform more dustering experiments on these observationsto
determine if this sub-population can justify more than two clusters. After we divide this
sub-population into autonomous clusters, we @uld then build predictive models for each
segment.

A Specialization for Anomaly Detection

Anomaly detedion has uses in many different applications: credit card fraud, data
cleaning, and identifying material flaws[5]. In most appli cations the basic stepsremain
the same:
1) Identify normality by calculating some “signature” of the data.
2) Determine some metric to calculate an observation’s degree of deviation from
the signature.
3) Set a criterion, which if excealed by an observation’s degree of deviation
makes the observation anomal ous.
In clustering-based anomaly detedion, the signatureisthe dustersfound in the data.
The measure of deviation from the signature is the degrees of membership of an
observation to the dusters. A typical criterion isthat if an observation does not bel ong to



any one duster with a degree of membership greater than the minimum degree of
membership it isanomalous.

Anomaly detedion applications are typicaly user intensive particularly in
appli cations li ke insurancefraud where the st of incorredly labeling a case anomalous
is great. Our aim is to convey information that aids the analyst user in exploring
anomal ous observations. We need to convey what observations are anomalous and why.
We eplain our variation of the general framework that achievesthis.

Thefirst step of placing the duster centersin thethreedimensional spaceisidentical
to aur general framework. However, for particle placement we adopt a spedali zation of
the general framework. We introduce the idea of the radius of gravitationd effed. The
radius of gravitational effed places a sphere around the duster centers. The other
clusters gravitational pull does not affed those observations falli ng within the sphere,
but affed those that fall outside the sphere. This has the desirable dfed of clearly
identifying those observations that belong very strongly to a cluster. Usually the radius
of gravitational effed is equal to (1- minimum degree of membership), so that
gravitational forces only affed anomalous observations. We dange the distance an
observation is placed from its most likely cluster to be (1 - degreeof membership)?. We
randomly place particles that fall within the radius of gravitational effed on the surface
of a sphere whose radius is proportional (1 - the degree of membership)? we show this
diagrammatically in Figure 5. With these danges to aur visualization, we dfedively
hide the non-anomal ous observations, clearly show the anomalies, and over-emphasize
the gravitational effed from clusters other than the most likely.
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Figure 5: Placement of observation x for anomaly detedion variation where Pr(x |
6x) > Pr(x| 6s) > Pr(x | 6c). If x had fall en within the radius of gravitational effed,
we randomly placeit on acircle of radius (1 - Pr(x | 64))°.

Figure 6 shows our scatter visualization of anomalies for the UCI cars data set for
four clusters that Table 4 describes. Note that the non-anomal ous observations obscure
each other due to the gravitational law in use. Thisis desirablein this application as our
focus is the outliers. Observations that belong strongly to a cluster are near its central
region. Anomalies do not belong strongly to any one duster and tend to be between the
cluster masses. The farther away an observation is from any of the duster centers, the
more anomalousit is.

We @n seethat there are many anomalies that lie between clusters 1 and 3 and
clusters 0 and 3. There are two very interesting anomali es, one that liesin the center of
the visuali zation and one anomaly that lies between clusters 2 and 3. We shall focus on
these anomali es to seewhat makes them spedal.
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Figure 6: Visualization of anomalies generated from the UCI cars data. Anomalies are
colored red (darker color). Cluster IDs are next to each cluster

Cluster  Cluster Description Size
ID

0 Larger, heavier and lessfuel efficient six cylinder cars 69
1 Small four cylinder cars, contains many Japanese @rs 144
2 Eight cylinder carsthat have large engines and are very heavy 102
3 Larger four cylinder and smaller six cylinder cars, containsmany 76

European cars

Table 4: A description of the typical observations found in each cluster for the UCI
Cars data s&t.

The seleded observation in Figure 6 is the most anomalous as it occupies the center
of the visualizaion, it is also the observation with the greatest entropy amongst its
degrees of membership. From the visualization we see it belongs most strongly to
clusters 0 (six cylinder cars), and 3, which contains many European cars. From Figure 7
we @n seethat the anomaly is a Volvo that is different to all other Volvos asit has $x
cylinders and is quite fuel inefficient. It is also unusual because it is a European six-
cylinder car but has many similar properties to the larger American six cylinder cars
found in cluster O.
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Figure 7: Description of Volvos in cars dataset. The anomaly seleded in Figure 6isin
row 274

By zooming-in and spinning the visualizaion, we an identify different anomalies
and ohtain an understanding why they are anomalous. The observation highlighted in
Figure 8 belongs most strongly to cluster 3 but also has properties smilar to
observationsin cluster 2.
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Figure 8: Visualizaion of anomali es generated from the UCI cars data. Anomalies are
colored red (darker color). Cluster IDs are next to each cluster. This is the same
visuali zation shown in Figure 6, but with the diagram spun around the z-axis 90 degrees
to the left. Cluster 1 obscures Cluster 0



We @n see from Figure 9 that the seleded observation is the only Oldsmobil e that
isanomalous. The newer, lessthan eight cylinders and more fuel-efficient (higher mpg)
Oldsmohil es typicall y belong to cluster 3. The Oldsmohil es assgned to cluster 2 have 8
cylinders with a very low mpg. This outlier Oldsmohil e fall s between the two types of
Oldsmobil e having the properties of bath clusters. It is an eight-cylinder car (cluster 2),
but is quite fud efficient/high mpg (cluster 3). It hasalarge aibicinch engine (cluster 2)
but has a horsepower similar to those Oldsmobil es found in cluster 3.
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360426.6 8 350 105 3,725 19| 1,982 | oldsmobile |FALSE 0 2
248119.9 8 260 1100 3,365 16| 1,979 oldsmobile |FALSE 0 2
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2211 17 8 260 1100 4,060 19| 1,978/ oldsmobile |FALSE 0 2
1241 11 8 350 180| 3,664 11| 1,974 |0ldsmobile |FALSE 0 2
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Figure 9: Description of Oldsmobilesin cars dataset. The anomaly seleded in Figure 8 is
in row 299,

Related Wor k

In this sedion we discussrelevant work in the field of visualizing clustering results. We
begin by highlighting what differentiates our work and then summarize relevant
previous work. We mnclude the sedion by describing the unsuitability, in their current
form, of general-purpose approaches like force direded graphs and perallel coordinates
to visualize large non-hierarchical clustering results.

Much of the work in the duster visualization field has been for visualizing
hierarchical (often-called agglomerative) clustering [13]. Hierarchical clustering is
typically battom-up clustering using exclusive assgnment. Sinceour visuali zation isfor
non-hierarchical clustering with multiple degrees of membership, it is not diredly
comparable to previous hierarchical clustering visualizations using exclusive
assgnment. Our approach could visualize a set of hierarchically clustered observations
if fractional assgnments to each cluster were somehow calculated, which to aur
knowledge has not been achieved.

However, several pieces of prior work use the idea of placing observations around
the duster centers at a distance eual to the degreeof membership to anly one duster.
What differentiates our work is:

1) We attempt to visualize an already established clustering solution, rather than
providing dedsion support to help in forming the dustering solution as others
have [14].

2) Our visualizaion is gedfically for non-hierarchical clustering and we place
our observations subjed to the mnstraint of multiple degrees of membership,
not just one.



3) The placement of cluster centers © that similar clusters are adjacent and
different clusters are far away

4) Our principled use of attractive laws to place observations around the duster
centers.

5) The scalahility of our approach to visuali ze large data sets.

We now survey related work. There are many examples of work that use
visualization to provide dedsion support for creating clustering solutions. In [15] the
authors use a scatterplot view of cluster centers that they obtain by hierarchical
clustering, with interactive @ntrol of the splitti ng criteria to increase or deaease the
number of visible dusters. There has been some work in visualizing non-hierarchical
exdusive assgnment clustering solutions in the text-processng field [16]. In this work
each cluster ocaupies a fixed size region and the documents, represented as points, are
placed at adistance proportional to their similarity to only asingle duster center. Leuski
and Allan [17] propose value adding to the results of an information retrieval query by
placing the documents, represented as pheres, in two a threedimensional space
acoording to their degreeof similarity. Thisisin principle similar to the way we place
cluster centers. The application of this idea to all observations in the data set would
ignore the results found by the dustering algorithms and would be cmputationall y very
expensive (in the order of O(s%)) where sis the number of observations.

We owuld visuaize non-hierarchical clustering results using genera-purpose
visuali zaion approaches sich as parallel coardinates [18], force direded graphs [19]
and MDS[9] (to position the observations, not just the duster centers). In forcedireded
graph techniques the nodes are physical objeds that are subjed to various forces. The
aim is to re-position the nodes to represent best these forces. While we wuld use these
threetechniques, they suffer from threeproblems that make them (in their current form)
unsuitable for large-scale data mining problems.

1) Scaleable @lculations for many observation positi ons.

2) Scaleable visualizaion of many observations.

3) Ignoring the model based nature of K-Means clustering and mixture modeling.

Most work in metric scaling MDS and force direded graphs are limited to at most
one hundred objeds of interest. Abowe this limit, the combinatorial nature of these
techniques and the @lculation of the “error” mean they become cmmputationaly very
expensive. Calculating the position for an observation in parald coordinates is
computationally very efficient, however visuali zing thousands of observations beammes
difficult as the lines merge into a blob. Finally and most importantly, our aim is to
visuali ze the dustering mode found. To use forcedireded graphs and MDS techniques
to position al observations would mean ignoring the model, as we would neel to
trandlate an observation’s degreeof membership to the duster to a measure of simil arity
to all other observations.

Conclusion and Further work

We have presented a general framework to visualize dustering results where we
represent the observations as particles affeded by gravitational forces. To aur
knowledge, visualizing clustering results as particles affeded by many gravitational
forcesis unique and naturally fits well with the non-hierarchical clustering phil osophy.
In our framework, we place the duster centers in a threedimensional cube such that
similar clusters are adjacent and dssmilar clusters are far apart. We then place the
observations amongst these centers to refled the degree of membership that each
observation has for the dusters. Our approach is computationally efficient; calculations
for a 50000bservation data set took less than ten sewnds on a desktop machine



(Pentium 1l 500MHz). The omputational efficiency of the approach is of order
O(k?)+O(ks) where k is the number of clusters and sis the number of observations with s
>> k. The time to generate the visualizaion is linear with resped to the number of
observations for a fixed number of clusters making it amenable to application to large
data sets.

We verified that the insights found from visualizetion are mnsistent with statistical
summaries of the dusters and that the visualizaion has desirable properties. Our
information visualizaion can present a lot of information and we propose a
spedali zaion for anomaly detedion that focuses on information useful for that purpose.
We believe that spedalizations of our framework can be aeated for other data-mining
uses of clustering and other uses of clustering such as information retrieval.

Our framework to place duster centers and observations has many potential usesand
we generally describe two. Firstly, when displayed as a density visualization it aids the
model buil der to quickly form insights into a clustering result. Data mining is typically
an iterative process of conducting experiments on a data set by applying a technique
(like dustering) with different parameters and variables/columns. Interpreting the result
of each experiment determines the next experiment to conduct. We believe use of our
visuali zaion may shorten the data mining processas the analyst can quickly interpret
the dustering solution. The anomaly detedion variation displayed as a scatter
visuali zation presents the results to the end user and all ows them to seethe different
types of anomali es and focus on those that are most interesting.

A natural extension to aur ideas would be to incorporate brushing between other
visuali zation tods such as parallel coardinates. We believe that linking our visualization
and parallel coordinates holds particular promise in the field of anomaly detedion. A
further extension to aur work would be to include the mation of the particles around the
cluster centers into the visualizaion. This could better convey the information in a
clustering solution. Our ideaisto esentially mode the particles as being affeded by the
gravitational laws of attraction, one @uld modify this idea to follow other
attraction/repulsion laws gich as those found in the fields of eledricity and magnetism.
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