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Abstract

A significant challenge to make learning techniques
more suitable for general purpose use in AI is to move
beyond i) complete supervision, ii) low dimensional
data and iii) a single label per instance. Solving this
challenge would allow making predictions for high di-
mensional large dataset with multiple (but possibly in-
complete) labelings. While other work has addressed
each of these problems separately, in this paper we show
how to address them together, namely the problem of
semi-supervised dimension reduction for multi-labeled
classification, SSDR-MC. To our knowledge this is the
first paper that attempts to address all challenges to-
gether. In this work, we study a novel joint learning
framework which performs optimization for dimension
reduction and multi-label inference in semi-supervised
setting. The experimental results validate the perfor-
mance of our approach, and demonstrate the effective-
ness of connecting dimension reduction and learning.

Introduction
Motivation. Typical learning algorithm assumes each in-
stance has exactly one label, unlabeled instances can be ig-
nored for training and the data is in low-dimensional space.
However, much data available today violates these assump-
tions. This is particularly true for complex objects such as
images, video and music which can have multiple labels that
are only partially filled in. The relaxation of each of these
assumptions gives rise to the fields of multi-label learning,
semi-supervised learning and dimension reduction respec-
tively. While each of these fields has been well studied pro-
ducing much excellent work, little work has looked at mul-
tiple relaxations simultaneously. The purpose of this work
is to address all three problems (semi-supervision, multi-
label and dimension reduction) simultaneously which to our
knowledge is the first paper to attempt this. We believe (and
will experimentally show) that this is advantageous as each
problem is best not solved independently of the others.

Consider this simple experiment to illustrate the weak-
ness of existing approaches. We collect 50 frontal and well
aligned face images of five people in ten different expres-
sions, each of which associated with four attributes, i.e.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

name, sex, bearded, glasses (see Figure 1, the face images
are projected into a 2D space by different dimension reduc-
tion techniques, where the five symbols denote five people,
and the three colors indicate the attributes associated to the
face images. “Red” stands for female, unbearded, and non-
glasses; “green” denotes male, unbearded, and non-glasses;
and “blue” indicates male, bearded, glasses. For Principal
Component Analysis (PCA) (Jolliffe 2002), an unsupervised
dimension reduction technique, we see that it finds a map-
ping of the images into a 2D space (Figure 2(a)) where the
people are not well separated. Though supervised dimen-
sion reduction is useful, it requires that each image has been
completely labeled which is often not the case if labeling is
expensive or not readily available. Thus we only label 30%
images for supervision, we see that PCA+LDA (Belhumeur
et al. 1997) performs only marginally better in Figure 2(b)
because the missing labels can not be inferred. Since di-
mension reduction and learning algorithm could benefit each
other, we establish the connection between them by our
SSDR-MC approach. As shown in Figure 2(c) to 2(e), our
algorithm allows the interaction between dimension reduc-
tion and label inference. This leads to accurate predictions
and improvement in the dimension reduction result, itera-
tion by iteration, until convergence. During the iterative
process, images belonging to the same person or associated
with similar attributes aggregate gradually while dissimilar
images move far apart. Note that green marks are nearer to
red marks than to blue marks, since they share more labels.

Figure 1: Sample face images

Related Works. Various dimension reduction methods have
been proposed to simplify learning problems, and can be cat-
egorized as unsupervised, supervised, and semi-supervised.
In contrast to traditional classification tasks where classes
are mutually exclusive, the classes in multi-label learning
are actually overlapped and correlated. Thus, two special-
ized multi-label dimension reduction algorithms have been
proposed in (Zhang and Zhou 2008) and (Yu, Yu, and Tresp
2005), both of which try to capture the correlations between
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(e) SSDR-MC Iteration 3

Figure 2: 2D projected faces from different methods. Symbols denote different people, and colors denote different attributes.
Best viewed in color.

multiple labels. However, the usefulness of these methods is
weakened by the lack of complete label knowledge, which
is very expensive to obtain and even impossible for those
extremely large dataset, e.g. web images annotation. In or-
der to utilize unlabeled data, there are many semi-supervised
multi-label learning algorithms (Chen et al. 2008) (Sun, Ji,
and Ye 2008) been proposed, which solve learning prob-
lem by optimizing the objective function over graph or hy-
pergraph. However, the performance of such approaches is
limited by the lack of connection between dimension reduc-
tion and learning. To the best of our knowledge, (Ji and Ye
2009) is the first attempt to establish the connection between
dimension reduction and multi-label learning, but it suffers
from the inability of utilizing unlabeled data.

Overview, Contribution and Claims. In this work, we
propose a general-purpose joint learning framework called
SSDR-MC. We exploit reconstruction error as the criterion
to measure how well a data point is represented by its near-
est neighbors, which will lead us to locate the intrinsic geo-
metric relations between data points, and provide helpful in-
formation for both dimension reduction and label inference.
We establish the connection between dimension reduction
and multi-label learning by an alternating optimization pro-
cedure. First we learn an optimal weight matrix (which de-
cides the resultant dimension reduction) from both feature
description and the available associated labels; then we in-
fer the missing labels based on the weight matrix and the
initial labels; repeat this procedure until the predicted la-
bels stabilize. The alternating optimization can be viewed
as a process during which the labeled data pointsgradually
propagate their labelsto those unlabeled data points along
the weighted edges in the neighborhood. The main contribu-
tion of our work is that we tightly connect the dimension re-
duction and multi-label learning, and also successfully intro-
duce semi-supervision. We show the SSDR-MC approach
has following benefits:1) It is a general-purpose multi-label
learning algorithm, especially for high dimensional data;2)
It incorporates the correlation between multiple labels; 3)
Simultaneously solving dimension reduction and multi-label
learning is beneficial; 4) Alternating optimization can avoid
the decay of label influence during the label propagation
process; 5) The iterative optimization procedure can con-
verge in a small number of steps; 6) The parameters in our
approach are easily tunable. In the following sections, we
validate these claims, and demonstrate the effectiveness and
efficiency of our algorithm.

Algorithm
In this section, we outline our algorithm starting from de-
scribing notations and the objective function. We then pro-
pose an alternating optimization approach where one un-
known is held constant and the other is optimally solved.
We summarize our algorithm in Table 1 and provide an ap-
proach for spectral embedding.

Notation
To deal with multi-label problem, we define a finite label
set C = (1, · · · , c), thus there are at mostc labels asso-
ciated with each data point. Given a data point setX =
(x1, · · · ,xl,xl+1, · · · ,xn) ⊂ R

m(l ≪ n), without loss of
generality, we let the firstl points be labeled and set a prior
label matrixY ∈ B

c×l, whereYij = 1 if xj ∈ Ci and
Yij = 0 otherwise. An asymmetrick-NN graphG(V,E)
can be constructed over then data points, in which an edge
eij is established only if nodevj is among thek nearest
neighbors of nodevi. We also define the weight matrix
for dimension reductionW ∈ R

n×n (we setWii = 0 to
avoid self-reinforcement), and the binary classification ma-
trix F = [f1, · · · fn] ∈ B

c×n of which fi ∈ B
c is the pre-

dicted label vector corresponding to instancexi. We letNi

denote the index set composed ofk nearest neighbors ofxi

(xNi,j
is thej-th nearest neighbor ofxi). The instancexi

with missing label will have its labels inferred from the set
Ni.

Objective Function
Our aim is to solve dimension reduction and transductive
inference for multi-label learning simultaneously. For this
task, a reasonable choice of cost function is reconstruction
error (Roweis and Saul 2000), which attempts to discover
nonlinear structure in high dimensional data by exploiting
the local symmetries of linear reconstructions. In this way,
both data vector and label vector can be represented by a
weighted linear combination of the correspondingk nearest
neighbor vectors, and the problem is to optimize the weight
matrixW and classification matrixF simultaneously. Thus
we formulate the objective function as:

Q(W,F ) = (1−α)
n
∑

i=1

‖xi−
∑

j∈Ni

Wijxj‖
2 +α

n
∑

i=1

‖fi −
∑

j∈Ni

Wijfj‖
2

(1)

where the first term is the data vector reconstruction error,
which measures the error between the position of a point
written as a linear combination of its nearest neighbors. The
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second term is the label vector reconstruction error, which
measures the error of writing the labels of a point as a linear
combination of the labels of its nearest neighbors. The tun-
ing parameter0 ≤ α ≤ 1 determines how much the weights
should be biased by the labels. It is worth to point out that
the weight matrixW is invariant torotations and rescal-
ings, which follows immediately from the form of eq. (1).
In order to guarantee the invariance totranslations, we en-
force the sum-to-one constraint upon each row ofW . We
use the same weight matrixW for both data vectors and
label vectors, and constrain the prior labels to be unchange-
able (Fl = Y ) so as to capture the label information. The
optimalW andF matrix can be obtained by minimizing the
reconstruction error function, and thus our problem can be
expressed as a constrained optimization:

min Q(W,F )

s.t. Fl = Y
∑

j∈Ni

Wij = 1, i = 1, · · · , n. (2)

Alternating Optimization
In our proposed joint learning framework, the cost function
involves two variables to be optimized. While simultane-
ously recovering both unknowns (the binaryF and the con-
tinuousW ) is intractable (the reduction is from the mixed
integer programming problem) instead we solve eq. (2) for
each unknown optimally (assuming the other unknown is a
constant) in closed form and create an iterative approach
based on these two steps. The minimization ofQ(W,F )
iterates between dimension reduction weights learning step
and transductive inference step untilF stabilized, which will
asymptotically lead to a reliable local optimal weighting and
labeling.

Learning Weights for Dimension Reduction In the
weight learning step, we assumeF is fixed, and we then
solve for the weight matrixW as a constrained least squares
problem in closed form. Since the optimal weights used to
reconstruct a particular point is computed only from its own
neighbor set, each row of theW can be obtained indepen-
dently. We let the column vectorwi be composed of the
non-zero entries in thei-th row ofW in the order of k near-
est neighbors, the problem turns to minimizing the following
function:

min
wi

(1 − α)‖xi −XN
i wi‖

2 + α‖fi − FN
i wi‖

2

s.t. w
T
i 1 = 1 (3)

whereXN
i = [xNi,1

, · · · ,xNi,k
] is the neighbor set of data

vectorxi, andFN
i = [fNi,1

, · · · fNi,k
] is the neighbor set of

label vectorfi. Note that we use the same index setNi for
both of them, which is determined only by the data vectors.
1 denotes ak×1 all-one-vector. Using a Lagrange multiplier
to enforce the constraintwT

i 1 = 1, the optimal solution can
be written in terms of the inverse local covariance matrix

wi =
[(1− α)Pi + αQi]

−1
1

1T [(1− α)Pi + αQi]
−1

1
(4)

wherePi = (xi1
T − XN

i )T (xi1
T − XN

i ) ∈ R
k×k de-

notes the local covariance matrix of data vectorxi, and
Qi = (fi1

T − FN
i )T (fi1

T − FN
i ) ∈ R

k×k indicates the
local covariance matrix of label vectorfi. As long as we
obtainwi of all the instances (i = 1, · · · , n), the optimal
weight matrixW can be constructed by simply placing each
weight to its corresponding coordinates in the matrix.

Since the weight matrixW is obtained by optimization
over both features and labels rather than calculating from a
certain distance metrics, the label matrixF can be viewed as
a supervisor, which guarantees theW partially (biased byα)
fit to the label information. Notice that eq. (4) can not guar-
antee all the weights are non-negative. After observing the
experiments, we found that negative weights are sparse and
relatively small (generally≪ 0.1). Therefore, a straight-
forward solution is to discard the negative weights which
we found does not affect the learning accuracy. However,
in our presented work we allow the weights to be negative.
The explanation is, if a positive weight means two points
are similar, then on the contrary, a negative weight indicates
they are dissimilar. Moreover, if a positive weight means the
corresponding neighbor constructively contributes to thela-
bel prediction, then a negative weight indicates destructive
contribution.

Transductive Inference In our multi-label inference step,
the goal is to fill in those missing labels based on the weight
matrixW . To recover the optimalF in closed form, we relax
the binary classification matrixF to be real-valued. Since
only the second term (label reconstruction error) in eq. (1)
are accessed in minimization, we rewrite it in matrix format:

min
F

Q(F ) =
1

2
tr
(

F (I −W )T (I −W )FT
)

s.t. Fl = Y (5)

The cost function above is convex allowing us to recover the
optimalF by setting the partial derivative∂Q

∂F
= 0

{

(I −W )FT = 0
Fl = Y

(6)

The optimization problem above yields a large, sparse sys-
tem of linear equations, which could be solved by a number
of standard methods. The most straightforward one is the
close-form solution via matrix inversion. To compute the
solution explicitly in terms of matrix operations, we split
the weight matrixW into 4 blocks after thel-th row and

columnW =

[

Wll Wlu

Wul Wuu

]

. LettingF =

[

Fl

Fu

]

where

Fu denotes the missing label vectors, the optimalFu can be
recovered in closed form via matrix inversion:

FT
u = (I −Wuu)

−1WulF
T
l = (I −Wuu)

−1WulY
T (7)

To complete the prediction at each iteration, we set up a
thresholdH where0 ≤ H ≤ 1. Then, ceil all the entries
in Fu ≥ H to 1, and floor all the entries inFu < H to 0.

3
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As we manipulate each multi-label vector as an entirety

throughout the computation, the correlation and overlap be-
tween labels have been incorporated into our approach in-
deed. The transductive inference step can be viewed as pro-
cess during which the labeled data points propagate labels
along the weighted edges to their neighbors. In other word,
each predicted label vector of a data point is actually the
weighted linear combination of its neighbors’ label vectors.
In the same sense, the alternating optimization can be inter-
preted as a progressive label propagation process, i.e. we
only make confident predictions at each iteration, and the
size of predicted labels gradually grows. In this way, the
label influence decay effect could be dramatically reduced.

Algorithm Summary
We summarize the SSDR-MC approach in Table 1.

Table 1: SSDR-MC Algorithm
Input X ∈ R

m×n, Y ∈ B
c×l, F ∈ B

c×n, Fl = Y ,
0 ≤ α ≤ 1, 0 ≤ H ≤ 1, k ≥ 1

Steps (i) givenF , solve weight matrixW by eq. (4)
(ii) givenW , recover matrixFu by eq. (7)
(iii) update predictions toF using thresholdH
repeat (i) (ii) (iii) untilF converges,△|F | = 0

Output weight matrixW , predicted label matrixFu

Spectral Embedding
Since weight matrixW completely captured the the intrin-
sic geometric relations between data points, we can use it to
perform dimension reduction. Now, we show how to com-
pute the dimension reduced data vector explicitly. Note we
do not need do this for learning only dimension reduction.
Let d denote the desired number of dimensions of the fea-
ture vector, the dimension reduced instancex

′
i minimizes

the embedding cost function:

Q(X ′) =

n
∑

i=1

‖x′
i −

n
∑

j=1

Wijx
′
j‖

2 (8)

whereX ′ ∈ R
d×n is the dimension reduced data matrix.

The embedding cost in eq. (8) defines a quadratic form in
the vectorx′

i. Subject to constraints that make the problem
well-posed, the minimization can be solved as a sparse eigen
decomposition problem

min Q(X ′) = tr
(

X ′MX ′T
)

(9)

whereM = (I −W )T (I −W ). We can find the optimal
embedding by computing the bottomd + 1 eigenvectors of
the matrixM , then discard the smallest eigenvector which
it is an unit vector with all equal components (represents a
free translation mode of eigenvalue zeros). The remainingd
eigenvectors are the optimal embedding coordinates.

Implementation Issues and Discussion
Solution for Weak Prior Knowledge
In order to extend the generality of our approach, we provide
another efficient solution to utilize the incomplete and noisy

labeled data. Since we enforced the initial labeled data to
be unchangeable previously, the solution provided in eq. (7)
suffers from two problems: i) in multi-label learning task,
the knowledge of labels for a certain labeled instance may
not be complete ii) there may be considerable noise scattered
in labeled data. A reasonable solution for the two problems
is to relax the constraint by adding a new term to the infer-
ence cost function, namely local fitting penalty (Zhou et al.
2004) allowing slight changes of the fixed/prior labels. We
extend the prior label matrixY to be ac × n matrix (fill
the missing labels with 0 for the first iteration), and the new
inference cost function can be written as

min
F

Q(F ) =
1

2
tr

{

F (I − W )T (I − W )FT + β(F − Y )(F − Y )T
}

(10)

where coefficientβ > 0 balances the reconstruction error
and local fitting penalty. If we setβ =∞, the cost function
will reduce to eq. (5). The minimization problem is straight-
forward since the cost function is convex and unconstrained

∂Q

∂F ∗

= 0 =⇒ (I −W )F ∗T + β(F ∗

− Y )T = 0 (11)

Thus, the optimalF ∗ can be recovered as:

F
∗T =

(

I −W

β
+ I

)

−1

Y
T (12)

After each iteration, we update confident predictions inF to
Y . When the prior label knowledge is weak, the optimalF
can be recovered by this relaxed solution instead of eq. (7).

Efficiency Improvement
Observing eq. (4), we see that the denominator of the frac-
tion is a constant which rescales the sum ofwi to 1. There-
fore, in practice, a more efficient way to recover the optimal
wi is simply to solve the linear system of equations, and then
rescale the sum of weights to 1. LetLi denote the mixed lo-
cal covariance matrix(1 − α)Pi + αQi. The linear system
of equations corresponding to instancexi can be written as:
Liwi = 1. The optimalwi can be recovered efficiently by
solving this linear system, and then rescale the sum ofwi to
1. When the local covariance matrices is singular (k > m or
k > c), the linear system of equations can be conditioned by
adding a small multiple of the identity matrix

Li ← Li +
ξtr(Li)

k
I (13)

whereξ is a very small value (ξ ≪ 0.1).

Convergence
For the solution ofF provided in eq. (12), there is a guaran-
teed convergence since we update the confident predictions
to Y after each iteration (adding the most confident predic-
tions to labeled set). However, the solution ofF provided in
eq. (7) cannot guarantee a convergence. Therefore, it is pos-
sible that the predictions of current iteration oscillate and
backtrack from predicted labelings in previous iterations. A
straightforward method to remove backtracking, inconsis-
tency and unstable oscillation is to set up a small tolerance
T . If the number of different entries between the current pre-
dictionFc the previous predictionFp is smaller than the tol-
eranceT , the iteration will be terminated and the last predic-
tion matrixF will be output as the final classification result.

4
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But the toleranceT is rarely useful, since our alternating op-
timization converges in a small number of iterations for most
cases in practice. Additionally, the co-occurrence of quick
convergence and high classification accuracy in experiments
implies that we can achieve both of them (will experimen-
tally show) by selecting appropriate parameters (α andH).

Experiment Evaluation
Dataset and Experiment Settings
To show the generality of our approach, we carry out experi-
ments on three different types of real world data (Chang and
Lin 2001). Yeast: gene dataset consists of 2,417 samples,
each of which belongs to one or more of 14 distinct func-
tional categories. The feature vector is in 103-dimensional
space, and associated with 4.24 labels averagely.Scene:
image dataset consists of 2,407 natural scene images, each
of which is represented as a 294-dimensional feature vector
and belongs to one or more (1.07 in average) of 6 categories:
“sunset”,“urban”,“fall foliage”,“field”,“mountain”,“beach”.
SIAM TMC 2007 : text dataset for SIAM Text Mining
Competition 2007 consisting of 28,596 text samples, each
of which belongs to one or more (2.21 in average) of
22 categories. In experiment, we only take a randomly
selected subset containing 3,000 samples from the origi-
nal dataset, then use binary term frequencies and normal-
ize each instance to unit length (30,438-dimensional fea-
ture vector). We compare our algorithm with three base-
line models: 1)RankSVM (Elisseeff and Weston 2001),
a state-of-the-art supervised multi-label classificationalgo-
rithm; 2)PCA+RankSVM, perform PCA dimension reduc-
tion as a separate step before RankSVM; 3)ML-GFHF , the
multi-label version (two-dimensional optimization) of har-
monic function (Chen et al. 2008). For fairness, we use
the same parameter setting throughout the experiment. For
RankSVM, we choose RBF kernel function (σ = the aver-
age of Euclidean distances between all pairs of data points),
and fix the penalty coefficientC = 1000. For ML-GFHF,
we construct ak-NN (k = 15) graph and also use the RBF
kernel (σ =

∑n
i=1 ‖ xi − xik ‖ /n, wherexik is thek-th

nearest neighbor ofxi) to recover the edge weights. For our
approach, we choose eq. (7) as the inference function, set the
number of neighborsk = 15, the tuning parameterα = 0.1,
the thresholdH = 0.3, and the toleranceT = 5. For the per-
formance evaluation purpose, we exploit the standard met-
rics: micro-average F1 score (F1 Micro) (Yang 1999).

Parameter Selection
To explore the parametrical stability of our approach, we
evaluate the performance of SSDR-MC on the two repre-
sentative datasets (Yeast, most samples have several labels;
Scene, most samples have only one label) under a series of
varying parameter settings. We randomly select 35% data
points from the dataset as the labeled data, and then increase
α andH gradually from 0.01 to 0.99 with a step size of
0.01. By observing the result shown in Figure 3, we see
that there is a large continuous region of parameter settings
(marked by the red boundary at the bottom of each figure),
in which the performance of our approach is excellent and

stable. Since the reliable region of parameter settings takes
a relatively large area (55.4% and 35.6% of total area for
Yeast and Scene respectively), we can conclude that the two
parameters in our framework are easily tunable. Based on
the experimental result, SSDR-MC can achieve an accurate
multi-label prediction by choosing0.05 6 α 6 0.25 and
0.2 6 H 6 0.6. Another interesting phenomenon we ob-
served is the co-occurrence of reliable region and quick con-
vergence. In the reliable parameter region, the alternating
optimization we proposed always converges in a small num-
ber (4 to 8) of steps, which means the convergent problem
could also be solved by choosing appropriate parameters.
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Figure 3: F1 Micro of SSDR-MC with respect toα andH .
Best viewed in color.

Performance Comparison
To comprehensively compare our algorithm with the three
base models, we apply the four algorithms on the three
datasets with a series of varying sized labeled data. In each
trial, we randomly select a portion of instances from the
dataset as the labeled set, and the rest of the data points will
be used as the testing set. The portion of labeled data grad-
ually increases from 2.5% to 50% with a step size of 2.5%,
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Figure 4: Performance comparison by F1 Micro score

and the result shown in Figure 4 is based onthe average
over 50 trials. For the three real-world datasets we explored
in our experiments, our approach performsstatistically sig-
nificantly better than the competitors at the 98.77% level
when all experimental results (regardless of step size) are
pooled together. We have shown that by choosing appro-
priate parameters, our framework is expected to achieve a
quick convergence. We evaluate the efficiency of the pro-
posed alternating optimization by comparing the time con-
sumptions with the three competitors. Although the opti-
mization is iterative, statistically, SSDR-MC is comparably
efficient as the others, and even more efficient if the data is
in high-dimensional space. The reason is that the weights
in our approach are recovered by solving a linear system of
equations (eq. (13)) while others need to explicitly calcu-
late all pairwise distances. We observe from Figure 4(c)
that PCA+RankSVM does not outperform RankSVM on
the high-dimensional data SIAM TMC 2007, which indi-
cates the lack of connection between dimension reduction
and learning algorithm will limit the usefulness of dimen-
sion reduction dramatically. As the superior performance
of our algorithm, we demonstrated the the effectiveness of
connecting them together, especially when the data is high-
dimensional. Also, we see from the result that the perfor-
mance of the proposed algorithm improves monotonically
as the size of the labeled data increase.

Conclusion
As applications in data mining and machine learning move
towards demanding domains, they must move beyond the
restrictions of complete supervision, single-labels and low-
dimensional data. The SSDR-MC algorithm is to our knowl-
edge the only work that attempts to address all three limita-
tions simultaneously. SSDR-MC can be viewed as simul-
taneously solving for two sets of unknowns: filling in the
missing labels and identifying the projection vectors that
make points with similar labels close together and points
with different labels far apart. The superior experimental
performance of our approach demonstrates the usefulness of
connecting dimension reduction and learning, as well as the
effective use of both labeled and unlabeled data.
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