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We consider the characterization of muscle fatigue through noninvasive sensing mechanism such as surface electromyo-
graphy (SEMG). While changes in the properties of SEMG signals with respect to muscle fatigue have been reported in
the literature, the large variation in these signals across different individuals makes the task of modeling and classification
of SEMG signals challenging. Indeed, the variation in SEMG parameters from subject to subject creates differences in the
data distribution. In this paper, we propose two transfer learning frameworks based on the multi-source domain adaptation
methodology for detecting different stages of fatigue using SEMG signals, that addresses the distribution differences. In the
proposed frameworks, the SEMG data of a subject represent a domain; data from multiple subjects in the training set form
the multiple source domains and the test subject data form the target domain. SEMG signals are predominantly different
in conditional probability distribution across subjects. The key feature of the first framework is a novel weighting scheme
that addresses the conditional probability distribution differences across multiple domains (subjects) and the key feature of
the second framework is a two-stage domain adaptation methodology which combines weighted data from multiple sources
based on marginal probability differences (first stage) as well as conditional probability differences (second stage), with
the target domain data. The weights for minimizing the marginal probability differences are estimated independently, while
the weights for minimizing conditional probability differences are computed simultaneously by exploiting the potential
interaction among multiple sources. We also provide a theoretical analysis on the generalization performance of the pro-
posed multi-source domain adaptation formulation using the weighted Rademacher complexity measure. We have validated
the proposed frameworks on Surface Electromyogram signals collected from 8 people during a fatigue-causing repetitive
gripping activity. Comprehensive experiments on the SEMG dataset demonstrate that the proposed method improves the
classification accuracy by 20% to 30% over the cases without any domain adaptation method and by 13% to 30% over the
existing state-of-the-art domain adaptation methods.

1. INTRODUCTION
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(a) Subject 1 (b) Subject 2 (c) Subject 4

Fig. 1. Three sample subjects (subjects 1, 2, 4) with four classes (four physiological stages) in our SEMG dataset: SEMG
signals are predominantly different in conditional probability distribution across subjects.

Daily life activities such as typing on the keyboard, dusting, brooming, ironing, as well as the use
of hand tools such as scissors and knives, repetitive work in assembly lines, repetitive lifting, involve
repetitive movements of the different parts of the body. It has been proved that repetitive task makes
work particularly hazardous, as it is the primary cause of muscle fatigue [Silverstein et al. 1986;
Higgs 1992; Young et al. 1995]. According to the US Bureau of Labor Statistics, in 2002, there
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were more than 345,000 on the job back injuries, due to muscle fatigue, which required time off
from work. According to the Bureau of Labor Statistics (2004), annual direct cost of occupational
injuries due to slip and fall caused due to muscle fatigue is expected to exceed $43.8 billion by the
year 2020 in the US.

These accidents and the consequential loss in work hours and lifes, besides the high medical cost,
can be avoided if one can intervene such fatigue inducing repetitive activities at an early stage by
intelligent devices having the capability for detecting different stages of fatigue. Technologies for
detecting muscle fatigue at an early stage can also be used to remove the cause of fatigue by altering
the environmental ergonomics where possible

There are a number of techniques that can be used to objectively determine the level of fatigue in
a subject. Electromyography (EMG) is a method for biosignal recording of skeletal muscle activ-
ity. Surface Electromyography (SEMG) allows for noninvasive recording of these biosignals. Re-
searchers have observed that certain aspects of SEMG signals change as a muscle becomes fatigued.
Localized muscle fatigue has been correlated with a shift in the power spectral density of SEMG sig-
nals, root mean square (rms), instantaneous frequency, zero crossing rate, mean-frequency, median-
frequency, etc. However, there is a large variation in the values of these measures across different
subjects, due to variances in their SEMG power spectrum and their shifts. These generally unpre-
dictable and wide variations make the task of modeling SEMG difficult, and the task of automating
the process of signal classification as a generalized tool challenging. The variation in SEMG pa-
rameters from subject to subject creates differences in the data distribution. Figure 1 shows the
distribution of the data over four stages of a fatigue-causing activity, done with varying speed, for
three different subjects (subjects 1, 2, 4). The data distribution shown in Figure 1 is of factor scores
obtained as a result of factor analysis applied on the twelve dimensional feature vectors derived
from raw SEMG signals1. The four physiological stages corresponding to four classes, shown in
the figure, are (l) low intensity of activity and low fatigue, (2) high intensity of activity and moder-
ate fatigue, (3) low intensity of activity and moderate fatigue and (4) high intensity of activity and
high fatigue. We observe that the data distribution during each stage or class varies from subject to
subject. This variation leads to predominantly conditional probability differences across subjects.

Traditional data mining algorithms assume that training data and test data are drawn from the
same distribution, and they may not be effective if the assumption is violated as in the case of
SEMG data over multiple subjects. One effective approach is domain adaptation which enables
transfer of knowledge between the source and target domains [Pan and Yang 2009]. It has been
applied successfully in various applications [Blitzer et al. 2007; Duan et al. 2009; Daumé III 2007;
Pan et al. 2008] including text classification (parts of speech tagging, webpage tagging, etc), video
concept detection across different TV channels, sentiment analysis (identifying positive and negative
reviews across domains), WiFi Localization (locating device location depending upon the signal
strengths from various access points.

In this paper we present a successful case study of application of multi-source domain adaptation
techniques for detecting different stages of fatigue based on the Surface Electromyogram signals
across multiple subjects. To the best of our knowledge, this is the first systematic analysis of subject
based variability in SEMG signals. The proposed frameworks address the subject based variability,
predominantly the distribution differences in conditional probabilities in Surface Electromyogram
signals. Specifically, a classifier is learnt to distinguish the four classes as shown in Figure 1 on the
basis of some labeled and unlabeled data from the target domain (or subject).

In the first proposed framework named as Conditional Probability based Multi-source Domain
Adaptation (CP-MDA) the unlabeled data are labeled using a weighting scheme that measures the
similarities in conditional probabilities between the source and target domain data; the key of this
proposed weighting scheme is a joint optimization framework based on smoothness assumption on
the probability distribution of the target domain data.

1More details on the twelve features derived, the factor analysis results and a real time deployment of fatigue grading
framework can be found in our earlier papers [Chattopadhyay et al. 2009; Chattopadhyay et al. 2010].
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The second multi-source domain adaptation framework, named as Two Stage Weighting Frame-
work for Multi-source Domain Adaptation (2SW-MDA) computes weights for the data samples
from multiple sources to reduce both marginal and conditional probability differences between the
source and target domains. In the first stage, we compute weights of the source domain data samples
to reduce the marginal probability differences, using Maximum Mean Discrepancy (MMD) [Borg-
wardt et al. 2006; Huang et al. 2007] as the measure. The second stage computes the weights of
multiple sources to reduce the conditional probability differences; the computation is based on the
smoothness assumption on the conditional probability distribution of the target domain data. Fi-
nally, a target classifier is learned on the re-weighted source domain data. A novel feature of our
weighting methodologies is that no labeled data is needed from the target domain, thus widening
the scope of their applicability. The proposed framework is easily extendable to the case where a
few labeled data may be available from the target domain.

In addition, we present a detailed theoretical analysis on the generalization performance of our
proposed framework. The error bound of the proposed target classifier is based on the weighted
Rademacher complexity measure of a class of functions or hypotheses, defined over a weighted
sample space [Bartlett and Mendelson 2002; Koltchinskii 2001]. The Rademacher complexity mea-
sures the ability of a class of functions to fit noise. The empirical Rademacher complexity is data-
dependent and can be measured from finite samples. It can lead to tighter bounds than those based
on other complexity measures such as the VC-dimension. Theoretical analysis of domain adaptation
has been studied in [Ben-David et al. 2010; Mansour et al. 2009a]. In [Ben-David et al. 2010], the
authors provided the generalization bound based on the VC dimension for both single-source and
multi-source domain adaptation. The results were extended in [Mansour et al. 2009a] to a broader
range of prediction problems based on the Rademacher complexity; however only the single-source
case was analyzed in [Mansour et al. 2009a]. We extend the analysis in [Ben-David et al. 2010; Man-
sour et al. 2009a] to provide the generalization bound for our proposed two-stage framework based
on the weighted Rademacher complexity; our generalization bound is tighter than the previous ones
in the multi-source case.

We have applied the proposed algorithms to Surface Electromyogram signals collected from 8
people during a fatigue-causing repetitive gripping activity. Our extensive experiments on the SEMG
dataset demonstrate that the proposed methods improves the subject independent classification ac-
curacy by 20% to 30% over the cases without any domain adaptation method and by 13% to 30%
over the existing state-of-the-art domain adaptation methods.

2. PROPOSED FRAMEWORKS
The proposed domain adaptation frameworks focuses on learning from multiple auxiliary sources
related to the target data, e.g., multiple subject data having different distributions, collected under
similar physiological conditions. Specifically, we consider the problem of detecting different stages
of fatigue in a subject for whom we have very few labeled samples available in the training data.
The training data also includes data from many other subjects collected under similar physiological
conditions. The test subject data forms target domain data and the multiple subject data in the
training domain form multiple auxiliary sources.

2.1. Problem Setting and Motivation
Assume that there are k subjects in the source domain. The s-th subject in the source domain is
characterized by a sample set Ds = (xsi , y

s
i )|

ns
i=1, where xsi is the feature vector, ysi is the corre-

sponding label, and ns is the total number of samples for the subject s. The target domain consists
of a few labeled data DT

l = (xTi , y
T
i )|nli=1 and plenty of unlabeled data DT

u = xTi |
nl+nu
i=nl+1 where nl

and nu are numbers of labeled and unlabeled target domain samples respectively,DT = DT
l

⋃
DT
u ,

and nT = nl + nu. The goal is to develop a target classifier fT that can predict the labels of the
unlabeled data in the target domain, using the multi-source domain data and a few labeled target
domain data.
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Table I. Some of the notations used in the paper.

Notation Explanation
k Total number of source domains
Ds s-th subject in source domain
DTl Labeled data from target domain
DTu Unlabeled data from target domain
DT Total data from target domain
nl Number of labeled target domain data
nu Number of unlabeled target domain data
nT Number of total target domain data
β k × 1 weight vector, based on conditional probability distribution difference
αsi Weight of i-th data in s-th source domain based on marginal probability distribution difference

ε̂α,β(h) Empirical error function on (α, β)-weighted source domain data
ε̂T (h) Empirical error function on target domain data
ÊSα,β(h) Empirical joint error function on (α, β)-weighted source and the target domain data
ESα,β(h) True joint error function
εT (ĥ) True error function on target domain data

One simple approach for predicting the labels of the target domain data is to combine the training
samples from all subjects and build a single classifier based on the pooled training samples. How-
ever, this simple approach will not work well in our application as there are significant conditional
probability differences across subjects in the SEMG data. A better alternative is to learn individual
models for each subject in the source domain, and then combine the hypothesis generated by each
of these source models, on the basis of some similarity measures between the source and target do-
mains. The similarity measures are commonly computed by considering each source domain data
separately. This procedure has two potential limitations. First, it minimizes the loss with respect
to the probability distribution Ps(x, y|Ds) on the source domain which will not generally coincide
with the minimal loss on the distribution PT (x, y|DT ) on the target domain. Second, it assumes all
sources are independent when computing the similarity measures, thus it does not fully exploit the
interaction among multiple sources.

Thus one of the important issues is to choose the right similarity measure between the source and
target domains depending upon the nature of differences in the distribution.

In this paper, we present two multi-source domain adaptation methodologies CP-MDA and 2SW-
MDA. CP-MDA addresses predominantly conditional probability differences between the source
and target domain, where as 2SW-MDA addresses both marginal and conditional probability differ-
ences.

We observe there are significant conditional probability differences in our multi-subject SEMG
data as shown in Figure 1. In addition, we observe from the figure that different classes vary differ-
ently over subjects. Hence we present here a conditional probability based weighting scheme that
computes the weights of each source in a joint optimization framework that takes care of mutual
dynamics between the subjects. Table I summarizes a few of the notations used in the paper.

2.2. Conditional Probability based Multi-source Domain Adaptation (CP-MDA)
We learn a classifier fT for the target domain data, using a few labeled samples and a large number
of unlabeled samples from the target domain. The key of this proposed approach is a novel weighting
scheme that integrates multiple source domain data using a set of weights, one for each source
domain. We use these weights to compute the labels of the unlabeled target domain data, called
“pseudo labels”. The target domain prediction model is then learned from both labeled and pseudo
labeled target domain samples in a regularized framework. Specifically, the proposed multi-source
domain adaptation framework is given as follows:

min
fT∈HK

γA‖fT ‖2K +
1

nl

nl∑
i=1

V (xi, yi, f
T ) + Ωr(f

T
u ) + Ωm(fT ) (1)
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The first term controls the complexity of the classifier fT in the Reproducing Kernel Hilbert Space
(RKHS) HK , γA controls the penalty factor, the second term is the empirical error of the target
classifier fT on the few labeled target domain data DT

l , and nl is the number of labeled target
domain data. The empirical error on the unlabeled target data, labeled using a conditional probability
based weighting scheme, forms the third term. This regularizer enforces the target classifier fT
to have similar decision values to the auxiliary source which has similar conditional probability
distribution, explained in detail in Subsection 2.2.1. The fourth term is a manifold based regularizer
based on the smoothness assumption [Belkin et al. 2006] on target domain data: if two points xi and
xj are close to each other in the intrinsic geometry of marginal distribution then they are most likely
to have similar conditional probabilities, i.e., fT (xi) should be similar to fT (xj). The manifold
based regularizer is defined as in [Belkin et al. 2006]:

Ωm(fT ) =
γI
n2
T

fT
′
LfT . (2)

where L is the graph Laplacian matrix constructed on DT , fT = [fT (x1), · · · , fT (xnT )], γI con-
trols the complexity of the function fT in the intrinsic geometry of the marginal probability of x and
the normalizing coefficient 1

n2
T

is the natural scale factor for the empirical estimate of the Laplace
operator, and the symbol ′ is used to represent the matrix or vector transpose operation.

2.2.1. Multi-Source Weighting. Let fTu = [fTnl+1
· · · fTnT ]′ be the decision values of the target

classifier fT for the unlabeled target domain data and let fsu = [fsnl+1
· · · fsnT ]′ be the decision

values of the s-th auxiliary classifier for the same unlabeled target domain data. Let βs be the
measure of relevance or similarity between the distributions of the s-th source and the target data,
and let fTj = fT (xj) be the decision value of target classifier on the target domain data xj and
fsj = fs(xj) be the decision value of the s-th auxiliary source classifier on xj . We use a weighted
combination of the k source domain classifiers fs to estimate the target classifier. Specifically, the
estimated label (ŷj) of the unlabeled target data xj based on the k source domain classifiers fs is
given by

ŷj =

k∑
s=1

βsfsj , (3)

where βs > 0 is the weight for the s-th source. We assume that the weights are normalized, that is,∑
s β

s = 1. The auxiliary classifier fs for the s-th source is pre-computed based on its respective
data. The auxiliary classifiers fs and the target classifier fT can be trained using different kernels
or even different learning methods. The resulting regularizer, Ωr(f

T
u ), named as relevance based

regularizer measures the difference between the target classifier decision value and the estimation
based on multiple source data, and is defined as follows:

Ωr(f
T
u ) =

θ

2

nT∑
j=nl+1

‖fTj −
k∑
s=1

βsfsj ‖2, (4)

where θ > 0 is a constant. θ is used to control the relative importance of true labels and psuedo
labels. The weight βs which provides a measure of relevance between the s-th auxiliary source
domain and the target domain is computed on the basis of a Conditional Probability based Weighting
Scheme, which evaluates the similarities in distributions between the source and target domains
predominantly based on conditional probability differences.

Next, we show how to estimate the weights βs’s. The proposed weighting scheme evaluates the
similarities between auxiliary source data and the target domain data considering the similarities in
their conditional probabilities.

Let FSi = [f1
i · · · fki ] be the 1× k vector of predicted labels of k auxiliary source models for the

i-th sample of target domain data. Let β = [β1 · · ·βk]T be the k × 1 weight vector, where βs is
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the weight corresponding to the s-th auxiliary source. Following (3), the predicted label for the i-th
sample of target domain data is

ŷi =

k∑
s=1

βsfsi = FSi β. (5)

This motivates us to estimate the weight vector β based on the smoothness assumption on the
conditional probability distribution: we compute the optimal weight vector β by minimizing the
difference in predicted labels between two nearby points in the target domain. Specifically, the
proposed weighting framework solves the following problem:

min
β:β′e=1,β≥0

nl+nu∑
i,j=nl+1

(FSi β − FSj β)2Wij (6)

where FSi β and FSj β are the predicted labels for i-th and j-th samples of target domain data and

Wij is the edge weight between the i-th and j-th samples given by e
−(xi−xj)

2

2σ2 . We can rewrite the
minimization problem as follows:

min
β:β′e=1,β≥0

β
′ (
FS
)′
LuF

Sβ (7)

where FS is an nu × k matrix with each row of FS being the 1 × k vector of k predicted labels
for a sample of target domain data and Lu is normalized graph Laplacian associated with the target
domain data DT

u , given by Lu = I −D−0.5WD−0.5, where I is the identity matrix of size nu, W
is the adjacency graph defining edge weights between the nu unlabled samples in the target domain
data, and D is the diagonal matrix given by Dii =

∑nu
j=1Wij .

The minimization problem in (7) is a standard quadratic problem and can be solved by applying
many existing solvers. We simply use the ‘quadprog’ function in MATLAB. With the computed
weights, the labels for the unlabeled target domain data, called psuedo labels, are computed using
(3), and are substituted into the regulariser in (4).

Intuitively, by enforcing that nearby points in the marginal distribution of the target data have
similar class labels (or conditional probability) via the optimization in (7), the proposed weighting
scheme is likely to give higher weights to those sources with the conditional probability distribution
similar to the target data. This is verified in our empirical study on both SEMG and synthetic data.
If a source has a conflicting conditional distribution as the target, it is likely to get a low or even zero
weight. In addition, different from many existing weight schemes which compute the weights by
considering each source independently, the proposed weighting scheme computes the optimal value
of β or the optimal weights of all the k sources simultaneously, thus taking the potential interaction
among multiple subjects in the source domain into account.

2.2.2. Proposed Algorithm. Using the least square error and substituting the regularizers we can
rewrite (1) as follows:

min
fT∈HK

γA‖fT ‖2K +
1

nl

nl∑
i=1

(fTi − yTi )2

+
θ

2

nT∑
j=nl+1

‖fTj −
k∑
s=1

βsfsj ‖2 +
γI
n2
T

fT
′
LfT (8)

By the Representer theorem [Schlkopf and Smola 2002], we can find an optimal solution of (8),
which is a linear expansion of the kernel function K, over both the labeled DT

l and the pseudo
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labeled target domain data DT
u given as follows:

fT (x) =

nl+nu∑
i=1

αiK(xi, x). (9)

Substituting this into (8), we can obtain the optimal α = [α1 · · · · · · · · ·αnl+nu ]T by solving the
following optimization problem:

min
α

1

nl + θnu
(Y −Kα)

′
J(Y −Kα)

+γAα
′
Kα+

γI

(nu + nl)
2α
′
KLKα (10)

where K is the (nl + nu) × (nl + nu) kernel Gram matrix over the target domain data, Y is the
label vector over labeled and pseudo labeled target domain data points given by:[

y1 · · · ynl
∑
s

βs(nl+1)f
s
(nl+1) · · ·

∑
s

βs(nl+nu)f
s
(nl+nu)

]
(11)

L is the graph Laplacian defined over labeled and pseudo labeled target domain data, and J is a
diagonal matrix of size (nl + nu) × (nl + nu) given by J = diag(1, · · · 1, θ, · · · θ) with the first
nl diagonal entries as 1 and the rest as θ. θ is assigned a number between 0 and 1, thus the pseudo
labels of the target domain data get smaller weights compared to the labels of the labeled target
domain data. From (10), the optimal α∗ is given by:

α∗ =

(
JK + γA(nl + θnu)I +

γI(nl + θnu)

(nu + nl)
2 LK

)−1

JY.

With the computed α∗, the prediction of any unseen test data x is given by:

fT (x) =

nl+nu∑
i=1

α∗iK(xi, x). (12)

Since the proposed domain adaptation framework is based on multiple sources whose similarities
to target domain data or weights are computed based on a conditional probability based weighting
scheme, we refer the proposed framework as Conditional Probability based Multi-Source Domain
Adaptation (CP-MDA).

2.3. Two Stage Weighting Framework for Multi-source Domain Adaptation (2SW-MDA)
The second proposed approach consists of two stages. In the first stage, we compute the weights of
source domain data based on the marginal probability difference; in the second stage, we compute
the weights of source domains based on the conditional probability difference, as described Section
2.2.1. A target domain classifier is learned on these re-weighted data.

2.3.1. Re-weighting data samples based on marginal probability differences. The difference be-
tween the means of two distributions after mapping onto a reproducing kernel Hilbert space, called
Maximum Mean Discrepancy, has been shown to be an effective measure of the differences in their
marginal probability distributions [Borgwardt et al. 2006]. We use this measure to compute the
weights αsi ’s of the s-th source domain data by solving the following optimization problem [Huang
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et al. 2007]:

min
αs

∥∥∥∥∥ 1

ns

ns∑
i=1

αsiΦ(xsi )−
1

nT

nT∑
i=1

Φ(xTi )

∥∥∥∥∥
2

H

s.t. αsi ≥ 0

(13)

where Φ(x) is a feature map onto a reproducing kernel Hilbert space H [Steinwart 2001], ns is the
number of samples in the s-th source domain, nT is the number of samples in the target domain, and
αs is the ns dimensional weight vector. The minimization problem is a standard quadratic problem
and can be solved by applying many existing solvers. We simply use the ‘quadprog’ function in
MATLAB.

2.3.2. Re-weighting Sources based on Conditional probability differences. In the second stage
the proposed framework modulates the αs weights of a source domain s obtained on the basis
of marginal probability differences in the first stage, with the weighting factor βs computed as
described in Section 2.2.1. The weight βs reflects the similarity of a particular source domain s to
the target domain with respect to conditional probability distributions.

To illustrate the proposed two-stage framework, we demonstrate the effect of re-weighting data
samples in source domains D1 and D2 of the toy dataset (shown in Figure 2), based on the computed
weights, in the appendix. Figure
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Fig. 2. Two source domains D1 and D2 and target domain data with different marginal and conditional probability differ-
ences, along with conflicting conditional probabilities (the red squares and blue triangles refer to the positive and negative
classes).

2.3.3. Learning the Target Classifier. The target classifier is learnt based on the re-weighted
source data and the few labeled target domain data (if available). We also incorporate an additional
weighting factor µ to provide a differential weight to the source domain data with respect to the
labeled target domain data. Mathematically, the target classifier ĥ is learnt by solving the following
optimization problem:

ĥ = argmin
h

µ

(
k∑
s=1

βs

ns

ns∑
i=1

αsiL(h(xsi ), y
s
i )

)
+

nl∑
j=1

1

nl
L(h(xTj ), yTj ) (14)

where nl is the number of labeled data from the target domain.
We refer to the proposed framework as 2-Stage Weighting framework for Multi-Source Domain

Adaptation (2SW-MDA). Algorithm 1 below summarizes the main steps involved in 2SW-MDA.
We now present a theoretical analysis of the joint loss function given in Equation 14 and present

an upper bound on the error of the target classifier h (learned by minimizing 14) on target domain
data. To do this, we first prove an upper bound on the empirical joint error with respect to the true
joint error and then prove an upper bound on the error on the target domain data only.
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ALGORITHM 1: 2SW-MDA
1: Input µ, k source domain data {Ds}ks=1, unlabeled target domain data DT

u and labeled target domain
data DT

l (if available)
2: Output Target classifier h
3: for s = 1, . . . ,k do
4: Compute αs by solving (13)
5: Learn a hypothesis hs on the αs weighted source data
6: end for
7: Form the nu × k prediction matrix HS as in Section 2.3.2
8: Compute matrices W , D and L using the unlabeled target data DT

u

9: Compute βs by solving (7)
10: Learn the target classifier ĥ by solving (14)

2.3.4. Theoretical Analysis. For convenience of presentation, we rewrite the empirical joint error
function on (α, β)-weighted source domain and the target domain defined in (14) as follows:

ÊSα,β(h) = µε̂α,β(h) + ε̂T (h) = µ

(
k∑
s=1

βs

ns

ns∑
i=1

αsiL(h(xsi ), fs(x
s
i ))

)
+

nl∑
i=1

1

nl
L(h(x0

i ), f0(x0
i ))

(15)
where ysi = fs(x

s
i ) and fs is the labeling function for source s, µ > 0, (x0

i ) are samples from the
target, yti = f0(x0

i ) and f0 is the labeling function for the target domain, and S = (xsi ) include all
samples from the target and source domains. The true (α, β)-weighted error εα,β(h) on weighted
source domain samples is defined analogously. Similarly, we define ESα,β(h) as the true joint error
function. For notational simplicity, denote n0 = nl as the number of labeled samples from the target,
m =

∑k
s=0 ns as the total number of samples from both source and target, and γis = µβsαsi/ns for

s ≥ 1 and γis = 1/n for s = 0. Then we can re-write the empirical joint error function in (15) as:

ÊSα,β(h) =

k∑
s=0

ns∑
i=1

γsiL(h(xsi ), fs(x
s
i )).

Next, we bound the difference between the true joint error function ESα,β(h) and its empirical
estimate ÊSα,β(h) using the weighted Rademacher complexity measure [Bartlett and Mendelson
2002; Koltchinskii 2001] defined as follows:

DEFINITION 1. (Weighted Rademacher Complexity) Let H be a set of real-valued functions
defined over a set X . Given a sample S ∈ Xm, the empirical weighted Rademacher complexity of
H is defined as follows:

<̂S(H) = Eσ

[
sup
h∈H
|
k∑
s=0

ns∑
i=1

γsi σ
s
i h(xsi )|

∣∣∣∣∣S = (xsi )

]
.

The expectation is taken over σ = {σsi } where {σsi } are independent uniform random variables
taking values in {−1,+1}. The weighted Rademacher complexity of a hypothesis set H is defined
as the expectation of <̂S(H) over all samples of size m:

<m(H) = ES

[
<̂S(H)

∣∣∣ |S| = m
]
.

Our main result is summarized in the following lemma, which involves the estimation of the
Rademacher complexity of the following class of functions:

G = {x 7→ L(h′(x), h(x)) : h, h′ ∈ H}.
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LEMMA 1. Let H be a family of functions taking values in {−1,+1}. Then, for any δ > 0, with
probability at least 1− δ, the following holds for h ∈ H:

∣∣∣ESα,β(h)− ÊSα,β(h)
∣∣∣ ≤ IRS(H) +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
.

Furthermore, if H has a VC dimension of d, then the following holds with probability at least 1− δ:

∣∣∣ESα,β(h)− ÊSα,β(h)
∣∣∣ ≤

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2

(√
2d log

em

d
+ 1

)
,

where e is the natural number.

The proof is provided in Section A of the supplemental material.

2.3.5. Error bound on target domain data . In the previous section we presented an upper bound
on the difference between the true joint error function and its empirical estimate and established its
relation to the weighting factors γsi . Next we present our main theoretical result, i.e., an upper bound
of the error function on target domain data, i.e., an upper bound of εT (ĥ). We need the following
definition of divergence for our main result:

DEFINITION 2. For a hypothesis space H, the symmetric difference hypothesis space dH∆H is
the set of hypotheses

g ∈ H∆H⇔ g(x) = h(x)⊕ h
′
(x) for some h, h

′
∈ H,

where⊕ is the XOR function. In other words, every hypothesis g ∈ H∆H is the set of disagreements
between two hypotheses inH.
The H∆H-divergence between any two distributions DS and DT is defined as

dH∆H (DS , DT )) = 2 sup
h,h′∈H

|PrxvDS [h(x) 6= h′(x)]− PrxvDT [h(x) 6= h′(x)]| .

THEOREM 1. Let ĥ ∈ H be an empirical minimizer of the joint error function on similarity
weighted source domain and the target domain:

ĥ = arg min
h∈H

Êα,β(h) ≡ µε̂α,β(h) + ε̂T (h)

for fixed weights µ, α, and β and let h∗T = minh∈H εT (h) be a target error minimizer. Then for any
δ ∈ (0, 1), the following holds with probability at least 1− δ:

εT (ĥ) ≤ εT (h∗T ) +
2<S(H)

1 + µ
+

2

1 + µ

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2

+
µ

1 + µ
(2λα,β + dH∆H (Dα,β ,DT )) , (16)

if H has a VC dimension of d, then the following holds with probability at least 1− δ:

εT (ĥ) ≤ εT (h∗T ) +
2

1 + µ


√√√√(∑k

s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2

(√
2d log

em

d
+ 1

)
+

µ

1 + µ
(2λα,β + dH∆H (Dα,β ,DT )) , (17)
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where λα,β = minh∈H{εT (h) + εα,β(h)}, and dH∆H (Dα,β ,DT )) is the symmetric difference hy-
pothesis space for (α, β)-weighted source and target domain data.

The proof as well as a comparison with the result in [Ben-David et al. 2010] is provided in the
supplemental material.

We observe that µ and the divergence between the weighted source and target data play signif-
icant roles in the generalization bound. Our proposed two-stage weighting scheme aims to reduce
the differences between the source and target domain hypothesis by learning the source domain
hypothesis based on re-weighted instances. The re-weighted instances tend to have a distribution
which is similar ti target domain both in marginal and conditional probability distributions. Next,
we analyze the effect of µ. When µ = 0, the bound reduces to the generalization bound using the nl
training samples in the target domain only. As µ increases, the effect of the source domain data in-
creases. Specifically, when µ is larger than a certain value, for the bound in (17), as µ increases, the
second term will reduce, while the last term capturing the divergence will increase. In the extreme
case when µ = ∞, the second term in (17) can be shown to be the generalization bound using the
weighted samples in the source domain only (the target data will not be effective in this case), and
the last term equals to 2λα,β + dH∆H (Dα,β ,DT ). Thus, effective transfer is possible in this case
only if the divergence is small. We also observed in our experiments that the target domain error
of the learned joint hypothesis follows a bell shaped curve; it has a different optimal point for each
dataset under certain similarity and divergence measures.

3. RELATED WORK
Most of the existing methods measure the similarity between a particular source and the target do-
main based on the similarity of their marginal probabilities. Shimodaira et al. [Shimodaira 2000]
biased the training samples by their test-to-training ratio to match the marginal distribution of the
test data. Sugiyama et al. [Sugiyama et al. 2008] proposed to reduce the gap in marginal probabilities
by minimizing the KL-divergence between test and weighted training data and Bickel et al. [Bickel
et al. 2009] discriminated training against test data with a probabilistic model that accounts for
the marginal probability difference between training and test distribution. There are several other
methods which are also based on marginal probability differences using Maximum Mean Discrep-
ancy [Borgwardt et al. 2006] as a measure such as Kernel Mean Matching [Huang et al. 2007] and
Transfer Component Analysis [Pan et al. 2008]. The proposed domain adaptation frameworks CP-
MDA and 2SW-MDA, differ from all these methods in two ways: (1) they are predominantly based
on conditional probability differences, with 2SW-MDA being marginal probability based as well
and (2) they are based on multiple source domains.

Several algorithms have been developed in past to combine knowledge from multiple sources.
Luo et al. used consensus maximization as the basis of combining multiple source data [Luo et al.
2008]. Mansour et al. based the transferability of knowledge on a distribution weighted combination
of the hypothesis generated by the independent sources [Mansour et al. 2009b]. The theoretical
proof of both frameworks are based on strong assumptions on the predictive power of the individual
source domains on the target domain data. In [Shi et al. 2009], a clustering based knowledge transfer
was proposed for applications with different class labels across source and target domains, unlike
the application addressed in this paper.

The proposed frameworks CP-MDA and 2SW-MDA are related to two multi-source domain adap-
tation frameworks including Domain Adaptation Machine (DAM) [Duan et al. 2009] and Locally
Weighted Ensemble (LWE) [Gao et al. 2008]. The proposed framework differs from DAM in the
way the weights are computed for different auxiliary sources. In DAM, the weight assigned to each
auxiliary source is obtained by measuring the marginal probability distribution difference between
the target domain and the particular auxiliary source only, using an empirical estimate of the dif-
ference based on the Maximum Mean Discrepancy measure [Borgwardt et al. 2006]. The proposed
frameworks however computes weights for the auxiliary source data considering predominantly
conditional probability distribution of the target data. The weights for all sources are computed in

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12

a joint optimization framework, which takes the interaction among multiple auxiliary sources into
account.

The proposed frameworks differ from LWE [Gao et al. 2008] in that in LWE, the label y of an
unlabeled target domain data x is computed using a local weighting ensemble (LWE) scheme:

P (y|x) =

k∑
i=1

wMi,xP (y|Mi, x) (18)

where P (y|Mi, x) is the prediction made by one of the k models Mi for target data point x and
wMi,x is the weight of the model Mi at point x computed by comparing the similarity graphs of
the source and target data around point x. Different from the proposed weighting scheme where
we compute all weights in a joint framework, the weight for each auxiliary classifier is computed
independently [Gao et al. 2008].

We also compare our frameworks with representative single-source domain adaptation algorithms
such as Kernel Mean Matching (KMM) proposed by Huang et al. [Huang et al. 2007], Transfer
Component Analysis (TCA) proposed by Pan et al. [Pan et al. 2009] and KMapEnsemble (KE)
proposed by Zhong et al. [Zhong et al. 2009]. KMM re-weights the samples in the source domain
so as to minimize the marginal probability difference between the source and target domain using
Maximum Mean Discrepancy (MMD) as the measure. TCA is based on feature mapping so as to
reduce the marginal probability differences between the source and target distributions again using
MMD as the measure. KE differs from the first two algorithms, in which it addresses the conditional
probability differences by sample selection after performing a feature mapping step to reduce the
marginal probability differences.

There was some classification work dealing with physiological signals using neural net-
works [leon et al. 2007] and linear discriminant analysis [Kim and Andre 2008]; they achieved
moderate generalization performance across subjects. To the best of our knowledge we report the
first systematic empirical analysis of domain adaptation methods to address the distribution differ-
ences due to the subject based variability in physiological signals.

4. EXPERIMENTS
The proposed algorithms have been evaluated on multi-dimensional feature vectors extracted from
SEMG (Surface electromyogram) signals collected from 8 subjects during a fatiguing exercise.

4.1. Experimental Setup
4.1.1. SEMG data. The SEMG data was collected during a repetitive gripping action performed

by the forearm. Figure 3 shows the subject with surface EMG differential electrodes on the extensor
carpi radialis muscle to record the SEMG signal. The subject performs a cycle of flexion-extension
of forearm as shown in Figure 3 at two different speeds, i.e., low speed (1 cycles/sec) and high speed
(2 cycles/sec) repetitively for about 4 minutes. The cycles of low and high speed are alternated after
every minute to form four phases (or classes) as discussed in the introduction.

The raw SEMG activity was recorded by Grass Model 8-16C at 1000Hz and passed through a
band pass filter of 20Hz to 500Hz. The data was collected and saved by the LabView software
(from National Instruments) running on a PC. Data of the order of 1.92 Million samples (1000 ×
4× 60× 8), was collected from 8 subjects including male and female of the age group of 25 years
to 45 years. A set of twelve amplitude and frequency domain features including mean frequency,
median frequency, spectral energy, spectral entropy, root mean square, number of zero crossings, to
mention a few are derived from running windows of 1000 time samples with 50% overlap [Knaflitz
and Bonato 1999].

Each subject data consists of around 280 to 400 samples of 12 dimensional feature vectors, be-
longing to four classes with around 70 to 100 samples per class (some subjects who got fatigued
sooner and hence could not maintain the required uniform speed for 1 minute the time period was
reduced to 30 to 45 secs per phase, hence the number of samples varies between different subjects).
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Fig. 3. SEMG data collection during a repetitive gripping activity

4.1.2. Experimental Procedure. To evaluate the effectiveness of the proposed methods, we com-
pare the results with four baseline methods, including SVM-C, SVM-M, SMA, and TSVM
(Transductive SVM), and two recently proposed multi-source learning methods, including Locally
Weighted Ensemble (LWE) [Gao et al. 2008] and Domain Adaptation Machine (DAM) [Duan et al.
2009].

SVM-C refers to all but one method where the training data comprises of data from seven subjects
and the test data is the data from the remaining subject. SVM-M, refers to the majority voting based
ensemble framework. The class y assigned to each unlabeled test data x is maxy NV (y|x) where
NV (y|x) is the number of votes given for class y for a particular test sample x by the seven auxiliary
sources. SMA refers to simple model averaging, which provides equal weight to all the classifiers
learned on each auxiliary source domain in an weighted ensemble framework used to generate the
label for the target domain data. TSVM refers to Transductive SVM [TSV ] implemented in the
svmlight package. It is a semi-supervised method where the training data consists of labeled data
from all seven subjects from the source domain and unlabeled data from the target subject.

We vary the number of labeled samples per class in the target domain. DAM(1) and DAM(7)
refer to the DAM framework with 1 and 7 target domain labeled samples per class respectively.
The proposed CP-MDA method is also implemented using 1 and 7 labeled data from target domain,
referred as CP-MDA(1) and CP-MDA(7) respectively. For both cases the unlabeled data from the
target domain, is fixed at 10% of the target domain data. The weights of the auxiliary sources
computed by the proposed method are also based on this 10% unlabeled target domain data. The
rest of the target domain data is treated as unseen target domain data. All the methods are tested
on the same pool of unseen unlabeled target domain data. The accuracies are computed in a subject
independent manner.

We mention here briefly some of the parameters used in implementing the existing and the pro-
posed methods. The values of γA and γI were kept as 0.014 and 0.01 respectively, as suggested
in [Belkin et al. 2006]. The Laplacian graph matrix used in calculating the weights was set as ‘bi-
nary’ type based on the N nearest neighbors with N = 10. The value of Θ was estimated via 5-fold
cross validation on the set {i10−2|i = 0, 1, · · · , 100}.

5. RESULTS AND ANALYSIS
We first present the comparative performance of CP-MDA and then compare the performance of CP-
MDA with 2SW-MDA, followed by a discussion on the relative performance of the two proposed
methods.

5.1. Comparative Performance of CP-MDA
We compare different methods including SVM-C, SVM-M, SMA, TSVM, LWE, DAM and the pro-
posed CP-MDA. The results are summarized in Table II. The first column of the table indicates the
subject data under test (target domain). The training data (source domain) consists of the data from
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Table II. Comparative performance of CP-MDA on SEMG data - Accuracy (%)

Test Sub SVM-C SVM-M SMA TSVM LWE DAM(1) DAM(7) CP-MDA(1) CP-MDA(7)
1 70.76 33.9 44.96 49.09 67.44 74.83 77.43 81.93 85.25
2 43.69 50.76 44.61 55.68 77.54 81.36 83.35 84.73 87.7
3 50.11 56.85 56.84 65.09 75.55 74.77 78.99 82.45 85.06
4 59.65 47.93 49.67 56.98 81.22 80.63 84.32 81.27 86.4
5 40.37 44.79 50.15 62.5 52.48 76.74 81.14 80.74 86.62
6 59.21 61.45 60.33 71.32 65.77 59.21 74.28 83.12 88.09
7 47.13 46.91 45.76 60.73 60.32 74.27 83.31 81.57 86.4
8 69.85 64.53 74.46 68.55 72.81 84.55 86.6 88.5 90.56

Average 55.09 50.85 53.34 61.24 69.14 75.79 81.18 83.04 87.01

Table III. Comparison of SVM-T, DAM, and CP-MDA on Subject
6 (top) and Subject 7 (bottom) in terms of accuracy (%) when the
number of labeled target domain data per class varies.

Number of labeled data per class
Method 1 2 3 4 6 7
SVM-T 4.26 4.26 49.09 73.63 84.69 85.67
DAM 59.12 59.21 59.35 59.59 65.03 74.28

CP-MDA 83.12 83.12 85.45 87.58 87.77 88.09
SVM-T 10.59 45.5 77.79 83.25 85.48 84.97
DAM 74.27 75.11 79.10 81.19 82.43 83.3

CP-MDA 81.57 83.99 85.81 86.24 86.32 86.4

the remaining seven subjects. Similar to the results obtained in the case of synthetic data we see that
SVM-C, SVM-M, SMA, and TSVM perform very poorly. We observe significant improvement in
classification accuracy when domain adaptation methodologies are employed. The proposed method
CP-MDA(1) provides a 20% to 30% improvement over the baseline methods including SVM-C,
SVM-M, SMA and TSVM. The classification accuracies of the proposed method are in average
13% higher than LWE. It is also observed as in the case of synthetic data that CP-MDA(1) performs
not only better than DAM(1) but also better than DAM(7) in 5 out of 8 cases. These results verify
the effectiveness of the proposed method.

Next, we evaluate the performance of CP-MDA when the number of labeled target domain data
varies. We compare CP-MDA with DAM and SVM-T. SVM-T refers to an SVM classifier trained
on the labeled target domain data. The results for two subjects are summarized in Table III; we
obtain similar results for the other six subjects and the results are omitted. We can observe from the
table that when the number of labeled target domain data per class is small, e.g., 1 to 4 samples per
class, both domain adaptation methods perform much better than SVM-T. But with an increasing
number of labeled data from the target domain the accuracies become comparable. However the
proposed method always performs better than the other two methods. This result demonstrates that
domain adaption is especially useful when the amount of labeled target domain data is small.

We also compare the performance of the weighting schemes used in LWE, DAM and CP-MDA.
Table IV summarizes the results for different test cases. We observe that CP-MDA-WE performs
better than the other methods in 6 out of 8 cases, and LWE performs better in the remaining 2 cases.
Recall that like CP-MDA-WE, LWE computes weights for the auxiliary source domain based on
the conditional probability differences between the source and target domains, while MMD-WE
computes the weights based on the marginal probability differences only. Since SEMG data has
significant conditional probability differences, CP-MDA-WE and LWE are expected to outperform
DAM-WE.

The proposed algorithm CP-MDA computes weights for each class for each of the auxiliary
source domain data, thus exploiting the similarities and dissimilarities at the class level. Table V
shows the weights for four different classes assigned to each training subject in the source domain
for test subject 1 in the target domain. We observe that the proposed weighting scheme assigns dif-
ferent weights to different auxiliary source domain data (subject data) for different classes. Subjects
5 and 8 get higher weights for class 1, subject 7 gets a higher weight for class 2, subject 5 gets a
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Fig. 4. The effect of the number of auxiliary source domains (horizontal axis) in the training set on the proposed CP-MDA
algorithm in terms of the classification error rates (%) for all eight subjects.

higher weight for class 3, and for class 4 subject 4 gets a higher weight. We observe from Figure 1
that the data distribution of class 4 of subject 1 is very similar to that of class 4 of subject 4.

One of the key advantage of the proposed algorithm is that it exploits the information from mul-
tiple source domains for classifying the target data. It will be interesting to study how the number
of sources used in the training set affects the classification. Figure 4 presents the error rates ob-
tained for each test subject when the number of subjects in the source domain varies (from 1 to 7);
we simply keep adding subjects to the training set in increasing order of the subject number. We
observe that for all subjects, the error rate decreases monotonically when the number of subjects in-
creases. These results demonstrate the effectiveness of the proposed algorithm for extracting useful
information from multiple sources.

To evaluate the benefit of a multi-source domain adaption framework for addressing subject
based variability, we compare the proposed algorithm with three representative single-source do-
main adaption algorithms Table VI summarizes the classification accuracies obtained by different

Table IV. Comparison of different weighting schemes
for different test subjects - Accuracy (%).

Test Sub LWE MMD-WE CP-MDA-WE
1 67.44 68.27 75.12
2 77.54 69.48 83.23
3 75.55 71.84 75.68
4 81.22 62.65 81.09
5 52.48 68.32 78.16
6 65.77 58.91 76.11
7 60.32 67.75 75.07
8 72.81 66.11 78.71

Average 69.14% 66.66% 77.89%

Table V. Weights computed by CP-MDA for four different
classes for each of the source domain subjects 2-8 for test
target subject 1.

Class Target subject
2 3 4 5 6 7 8

1 0 0 0.02 0.50 0.48 0 0
2 0 0.01 0.03 0 0.11 0.74 0.11
3 0 0.02 0.12 0.75 0 0.01 0.11
4 0.09 0.02 0.66 0.11 0.11 0.01 0
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Table VI. Comparison of CP-MDA with three single
source domain adaptation algorithms (KMM, TCA,
and KE) - Accuracy(%).

Test Sub CP-MDA(7) KMM TCA KE
1 85.25 65.15 45.15 71.85
2 87.7 46.96 68.93 74.62
3 85.06 59.55 56.78 74.79
4 86.4 73.38 52.68 69.35
5 86.62 45.31 60.15 73.44
6 88.09 70.62 76.92 83.92
7 86.4 51.13 55.64 77.97
8 90.56 42.79 67.24 79.48

Average 87.01 56.86 53.84 75.67

methods for each of the test subjects. The target data is from the subject shown in column 1 and the
source data consists of the combined data from the remaining seven subject. Classification results
were averaged over 10 runs with different sets of randomly selected 7 labeled samples per class
from the target domain data. We can observe from the table that combining all the subject data and
forming a single domain degrades the performance. We also observe that among the three single do-
main adaption algorithms, KMM [Huang et al. 2007] or TCA [Pan et al. 2008] which consider the
marginal probability differences only perform worse than KE [Zhong et al. 2009]. These results are
expected as SEMG data has significant conditional probability differences. Our results demonstrate
the effectiveness of the proposed multi-domain framework for dealing with subject based variability
in SEMG data.

5.2. Comparative Performance of CP-MDA and 2SW-MDA

Table VII. Comparison of different methods on SEMG dataset - Accuracy(%) (%).
Test Sub SVM-C LWE KE KMM TCA DAM CP-MDA 2SW-MDA

1 70.76% 67.44% 63.55% 64.94% 66.35% 74.83% 81.93% 83.03%
2 43.69% 77.54% 74.62% 63.63% 59.94% 81.36% 84.73% 87.96%
3 50.11% 75.55% 62.50% 64.06% 56.78% 74.77% 82.54% 88.96%
4 59.65% 81.22% 69.35% 52.68% 73.38% 80.63% 81.27% 88.49%
5 40.37% 52.48% 65.61% 49.77% 57.48% 76.74% 80.74% 86.14%
6 59.21% 65.77% 83.92% 70.62% 76.92% 59.21% 83.12% 87.10%
7 47.13% 60.32% 77.97% 51.13% 55.64% 74.27% 81.57% 87.08%
8 69.85% 72.81% 79.48% 67.24% 42.79% 84.55% 88.50% 93.01%

Toy data 60.05% 75.63% 81.40% 68.01% 64.97% 84.27% 93.21% 98.54%

Comparative Studies. Table VII shows the classification accuracies of different methods on the
SEMG and the toy datasets. We observe that SVM-C performs poorly for all cases. This may be
attributed to the distribution difference among the multiple source and target domains. The physio-
logical signals, such as SEMG are predominantly different in conditional probability distributions
due to the high subject based variability in the power spectrum of these signals and their variations
as fatigue sets in [Contessa et al. 2009; Georgakis et al. 2003; Gerdle et al. 2000]. We observe
that the proposed CP-MDA and 2SW-MDA methods outperform other domain adaptation methods
and achieve higher classification accuracies in most cases. However 2SW-MDA performs better
than CP-MDA, this can be attributed to the fact that 2SW-MDA addresses both marginal and condi-
tional probability differences, where as CP-MDA addresses only conditional probability differences.
Also the conditional probability based weights are computed with source hypothesis learned on re-
weighted source instances (as per marginal probability differences) , thus increasing the accuracy of
computed weights. An average unsupervised classification accuracy of 81.56% was obtained using
re-weighted instances versus 77.89% obtained using source instances without re-weighting (Table
IV).

The accuracies of an SVM classifier, on the toy dataset, when learned only on the source domains
D1, D2 individually and on the combined source domains, are 60.67% and 71.84% and 60.05%
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respectively, while 2SW-MDA achieves an accuracy of 98.54%. More results are provided in the
appendix.

6. CONCLUSIONS
Domain adaptation is an important problem that arises in a variety of modern applications where
limited or no labeled data is available for a target application. We presented here two novel multi-
source domain adaptation frameworks. The proposed frameworks are based on a weighting scheme
that computes the weights of each source in a joint optimization framework. CP-MDA predom-
inantly addresses conditional probability differences between the domains, where as 2SW-MDA
follows a two-step procedure in order to reduce both marginal and conditional probability distri-
bution differences between the source and target domain. Besides, 2SW-MDA is based on instance
re-weighting, where as CP-MDA is based on hypothesis weighting. The psuedo labels in CP-MDA
are computed based on hypothesis combination. Both the proposed methods perform better than
state-of-the-art single and multi-source domain adaptation methods on all three datasets. We also
presented a theoretical error bound on the target classifier learned on re-weighted data samples from
multiple sources as in 2SW-MDA framework. Empirical comparisons with existing state-of-the-art
domain adaptation methods demonstrate the effectiveness of the proposed approach. As a part of
the future work we plan to extend the proposed multi-source framework to applications involving
other types of physiological signals for developing generalized models across subjects for emotion
and health monitoring [leon et al. 2007; Kim and Andre 2008]. We would also like to extend our
framework to video and speech based applications, which are commonly affected by distribution
differences [Duan et al. 2009].
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APPENDIX

A: Proof of Lemma 1
PROOF. Define Φ(S) = suph∈HE

S
α,β(h)− ÊSα,β(h). Changing the i-th point in the s-th source

affects Φ(S) by at most γsi = µβsαsi , while changing a point in the target affects Φ(S) by at most
γsi = 1/n (s = 0). Applying McDiarmid’s inequality [McDiarmid 1989] to Φ(S), the following
holds with probability at least 1− δ/2:

Φ(S) ≤ ES [Φ(S)] +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
.

Next, using standard techniques used in [Bartlett and Mendelson 2002], we bound the expectation
as follows:

ES [Φ(S)] = ES

[
sup
h∈H

ESα,β(h)− ÊSα,β(h)

]
= ES

[
sup
h∈H

ES̄ [ÊS̄α,β(h)− ÊSα,β(h)]

]
≤ ES,S̄

[
sup
h∈H

ÊS̄α,β(h)− ÊSα,β(h)

]
= ES,S̄

[
sup
h∈H

k∑
s=0

ns∑
i=1

γsi
(
L(h(x̄si ), f̄s(x̄

s
i ))− L(h(xsi ), fs(x

s
i ))
)]

= Eσ,S,S̄

[
sup
h∈H

k∑
s=0

ns∑
i=1

σsi γ
s
i

(
L(h(x̄si ), f̄s(x̄

s
i ))− L(h(xsi ), fs(x

s
i ))
)]

≤ 2Eσ,S

[
sup
h∈H

k∑
s=0

ns∑
i=1

σsi γ
s
iL(h(xsi ), fs(x

s
i ))

]
≤ 2<S(G) = <S(H),

where the last step follows from the standard techniques for relating the Rademacher complexi-
ties [Kakade and Tewari 2008], and G is a class of functions given by:

G = {x 7→ L(h′(x), h(x)) : h, h′ ∈ H}.
Thus, for any h ∈ H, the following holds with probability at least 1− δ/2:

ESα,β(h) ≤ ÊSα,β(h) + <S(H) +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
.

Similarly, by defining Φ′(S) = suph∈H Ê
S
α,β(h)−ESα,β(h) and bounding the expectation of Φ′(S),

we can show that for any h ∈ H, the following holds with probability at least 1− δ/2:

ÊSα,β(h) ≤ ESα,β(h) + <S(H) +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
.

Thus, with probability at least 1− δ:

∣∣∣ÊSα,β(h)− ESα,β(h)
∣∣∣ ≤ <S(H) +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
.
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Next, we bound <S(H) as follows [Kakade and Tewari 2008]:

<S(H) = ES,σ

[
sup
h∈H
|
k∑
s=0

ns∑
i=1

γsi σ
s
i h(xsi )|

∣∣∣∣∣S = (xsi )

]

= ES,σ

[
sup
u∈H|S

|
k∑
s=0

ns∑
i=1

γsi σ
s
i u
s
i |

∣∣∣∣∣S = (xsi )

]

= ES,σ

[
sup
u∈H|S

|
k∑
s=0

ns∑
i=1

γsi σ
s
i u
s
i |

∣∣∣∣∣S = (xsi )

]

≤ ES

[
max
u∈H|S

||u||
√

2 log |H|S |
]

(Massart’s Lemma [Massart 2000])

≤

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
ES

[√
2 log |H|S |

]

≤

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2

√
2 log |

∏
H

(m)|

≤

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2

√
2d log

em

d
,

where H|S is the restriction of H on S,
∏

H(m) is the growth function for H given by the maximum
number of ways m points can be classified by H, and e is the natural number.

B: Proof of Theorem 1
PROOF. Let h∗ = arg minh∈H{εT (h) + εα,β(h)}. By the triangle inequality, we have

|εα,β(h)− εT (h)| ≤ |εα,β(h)− εα,β(h, h∗)|+ |εα,β(h, h∗)− εT (h, h∗)|+ |εT (h, h∗)− εT (h)|
≤ εα,β(h∗) + |εα,β(h, h∗)− εT (h, h∗)|+ εT (h∗)

≤ λα,β +
1

2
dH∆H (Dα,β ,DT ) .
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Next, we bound (1 + µ)εT (ĥ) as follows:

(1 + µ)εT (ĥ)

≤ µεα,β(ĥ) + εT (ĥ) + µ

(
λα,β +

1

2
dH∆H (Dα,β ,DT )

)

≤ µε̂α,β(ĥ) + ε̂T (ĥ) + <S(H) +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
+ µ

(
λα,β +

1

2
dH∆H (Dα,β ,DT )

)

≤ µε̂α,β(h∗T ) + ε̂T (h∗T ) + <S(H) +

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
+ µ

(
λα,β +

1

2
dH∆H (Dα,β ,DT )

)

≤ µεα,β(h∗T ) + εT (h∗T ) + 2<S(H) + 2

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
+ µ

(
λα,β +

1

2
dH∆H (Dα,β ,DT )

)

≤ (µ+ 1)εT (h∗T ) + 2<S(H) + 2

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
+ µ (2λα,β + dH∆H (Dα,β ,DT ))

Thus,

εT (ĥ) ≤ εT (h∗T )+
2<S(H)

1 + µ
+

2

1 + µ

√√√√(∑k
s=0

∑ns
i=1(γsi )2

)
log(2/δ)

2
+

µ

1 + µ
(2λα,β + dH∆H (Dα,β ,DT ))

(19)

Note that our proof follows a similar procedure in [Ben-David et al. 2010]. The main differences
include (1) we employ the weighted Rademacher complexity, which provides a tighter bound than
the one in [Ben-David et al. 2010] based on the VC dimension; (2) the empirical minimizer ĥ of
our joint error function includes two terms involving both source and target domain data with a
differential weight µ, while the one in [Ben-David et al. 2010] involves one term only. For the
special case when µ = 1 and αsi ’s are given a uniform weight, i.e., αsi = 1/ns, our bound in (17) is
strictly tighter than the one in [Ben-David et al. 2010] (due to the 1/2 factor in the last term). In the
general case with different choices of µ and αsi ’s, our bound can be further improved.

C: More details on parameters used for the implementation of different methods
A Gaussian kernel with σ = 10 was used to compute the α values for each source. The weighted
hypothesis for each source was learned using Support Vector Machines implemented in the LibSVM
package, with a linear kernel and a regularization penalty C = 10. The β weights were computed
based on a binary similarity matrix, i.e., Wij = 0 if the i-th data point is among the N nearest
neighbors of the j-th data point or the j-th data point is among the N nearest neighbors of the i-th
data point; we set N = 10. We implemented TCA with a linear kernel and KMM with a Gaussian
kernel as they gave the best results. All parameters were tuned using 10-fold cross-validation.

D: Additional empirical results
Figure 5 shows the α-weighted data samples in both source domain D1 and source domain D2 of
the toy data shown in Figure 2. We observe that data samples having similar marginal probabilities
in both the domains get higher weight, shown by the size of the points. The size of the points are
proportional to their weights. We also observe that since at this stage the source data is re-weighted
based only on marginal probability distribution difference, hence some of the data samples from
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source domain D1 having conflicting conditional probabilities with target domain data also get
higher weight as they share similar marginal probability distributions.
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Fig. 5. Data samples in source domains D1 and D2 re-weighted by αsi . We can observe that points from source domain D1
also get large weights due to the similarity in marginal probabilities (the size of a point is proportional to its weight).
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Fig. 6. Data samples in the source domains D1 and D2 re-weighted by both αsi and βs. We observe that the points with
conflicting conditional probabilities get moderated by βs (the size of a point is proportional to its weight).
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Fig. 7. Performance of proposed 2SW-MDA method on the toy dataset shown in Figure 2 with varying µ - Accuracy (%).
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Figure 6 shows the results of applying β-weights to the data samples in both source domain D1
and source domain D2 of the toy data. We observe that the data samples in source domain D1 with
conflicting conditional probabilities get reduced when moderated with β weights, as source domain
D2 is more similar to target data in conditional probability distribution than the source domain D1.

Figure 7 shows the performance of 2SW-MDA on toy dataset shown in Figure 2 with varying µ.
The result is consistent with the theoretical result established in this paper.
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Fig. 8. Results on another toy dataset: First row shows the original distribution of two source domains D1 and D2 and a
target domain. The second and third rows show the results of applying α and β weights, respectively. We observe that source
domain data samples with similar marginal and conditional probabilities get higher weight. The β values for D1 and D2 are
0.17 and 0.83 respectively, individual accuracies being 61.65% and 89.51% and proposed method gives 98.51%.

Figure 8 shows the results of applying the proposed 2SW-MDA method on another set of toy
dataset consisting of two source domains and a target domain with different marginal and condi-
tional probability differences. We observe that the distribution D1 which has conflicting conditional
probabilities with target domain data gets under-weighted by the proposed weighting scheme and
hence transfer happens mostly from the source distribution D2, which shares similar marginal and
conditional probability differences with the target domain. We get β value of 0.17 for D1 and 0.83
for D2, individual accuracies being 61.65% and 89.51% and proposed method gives 98.51%.
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