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Abstract. Outlier detection (OD) is a widely studied problem
whose goal is to identify points from a data set that are considered
anomalous. Among all methods used in AI and data science, OD is
perhaps the most controversial as common applications such as credit
card fraud, cyber-intrusion and terrorist activity all involve suggest-
ing that someone is committing a serious crime. However, there is
little work on fair outlier detection. We show how to determine if an
outlier detection algorithm’s output is fair with respect to multiple
protected status variables (PSVs) by formulating various combinato-
rial problems which attempt to find an explanation (using the PSVs)
that differentiates the outlier group from the normal group. We argue
that if there is no solution for these explanation problems, then the
output of an algorithm can be considered fair, and give a probabilistic
interpretation of our work. Since we prove that the underlying com-
binatorial problems are computationally intractable (i.e., NP-hard),
our approaches cannot be efficiently gamed/side-stepped.

1 Introduction & Motivation

Given a collection of points, the goal of outlier detection (OD)
The notion of fairness has recently received much attention in su-

pervised learning (see e.g., [27]) with only recent work exploring
unsupervised learning such as clustering (see e.g., [25, 7, 18, 13]).
To our knowledge, there is no work on fairness in the context of
OD. The fairness of an algorithm’s output is typically measured with
respect to a single protected status variable (PSV) such as gender,
age, marital status, sexual-orientation, etc., which is not given to the
algorithm. Measures of fairness can be divided at a high-level into
two types [8]: (i) group-level fairness where we ensure that the PSV
values are uniformly divided across both the normal points and the
outlier points and (ii) individual-level fairness where we require two
points which are very similar but with different protected status to be
treated the same (i.e., both identified as normal or outlier).
A Motivating Example For Considering Multiple PSVs. Consider
the simple example of an outlier detection method which outputs four
people (Persons 1-4) as outliers and four people (Persons 5-8) as
normal as shown in Table 1. Studying each PSV3 individually, we
see that the collection of outliers is group-wise fair: there are 50%
Females and 50% Males and there are 50% Unmarried peo-
ple and 50% Married people which is the same as the population

1 Department of Computer Science, University of California - Davis, CA,
USA. Email: davidson@cs.ucdavis.edu

2 Biocomplexity Institute & Initiative, University of Virginia, Charlottesville,
VA, USA. Email: ssravi0@gmail.com

3 Throughout the technical discussion in this paper, we assume for simplicity
that PSVs such as Gender, Martial Status, etc. are binary. But in
our experiments we show that our method can handle multi-state PSVs by
using one-hot encoding.

Person Gender Status
1 Male Married
2 Female Unmarried
3 Male Married
4 Female Unmarried

5 Male Unmarried
6 Female Married
7 Male Unmarried
8 Female Married

Table 1. An illustrative collection of four points identified as outliers
(Persons 1–4) and four points identified as normal (Persons 5–8).

averages and the normal group’s averages. However, analyzing the
two PSVs together, we see an indication of unfairness: all Male and
Married individuals and all Female and Unmarried individuals
are in the outlier group and none in the normal group. Our combina-
torial optimization formulations attempt to find combinations of PSV
values that are more probable in the outlier group than the population
or normal group. How more probable they are is defined by the pa-
rameters set by the domain expert.

In this paper we explore a method to check whether an OD algo-
rithm’s output is fair. We take a combinatorial optimization approach
to make the method general purpose and independent of the outlier
detection algorithm. While presenting our analytical results, we limit
our attention to binary PSVs. However, when conducting our exper-
iments, we use one-hot encoding to convert non-binary PSVs to a
binary encoding.

Core Idea and Role of the Human. Withm PSVs, there are 2m−1
combinations (nonempty subsets) of them. In our work, an explana-
tion is comprised of a combination of PSVs. We define a computa-
tionally intractable (i.e., NP-hard) combinatorial problem which at-
tempts to find explanations under different constraints on how many
of the outlier and normal group are explained/covered. If the prob-
lem has a solution, then the OD algorithm’s output can be regarded
as unfair and our method gives the explanation why. If there is no
solution, then the output can be deemed fair, given the constraints
we imposed on the optimization problem. For example, we may say
that the OD algorithm’s output is unfair if the probability of a PSV
combination (an explanation) occurring in the outlier group is greater
than 50% or the population average. Most importantly, the use of a
computationally intractable problem for assessing the fairness means
that no OD algorithm can efficiently overcome/game the assessment
method, under the common assumption that the complexity classes
P and NP are different [16]. The human plays a pivotal role in our
work, they set the parameters of our algorithms to determine what is
“unfair” and interpret the explanation to determine if it is indeed a
case of unfairness.



We begin this paper in Section 2 by formalizing the notions of ex-
planation and coverage used throughout our work. We then formulate
our approach of determining whether an OD algorithm’s output is fair
as an integer linear programs in Section 3 and how a human expert
can use them in Section 4. In Section 5 we establish the complexity
of our formulations to show that efficient OD methods cannot readily
game or sidestep our approach (under a commonly used assumptions
in complexity theory). Section 6 shows experimental results to com-
plement our theoretical contributions after which we conclude.

2 Notation and Definitions

2.1 Cover and Anti-Cover

Let O and N denote the set of outlier and normal points so that D =
O∪N denotes the set of all data points. It is assumed that sets N and
O are disjoint and produced by an OD algorithm. Let P denote the set
of PSVs. Each PSV p ∈ P is assumed to take on a value from {0,1}.
As mentioned earlier and as we do in our experiments, multi-state
PSVs which can take on one of r values can be encoded as r binary
PSVs. For any point x ∈ D and any PSV p ∈ P, let x(p) denote the
value of p for x.

Definition 2.1 (Cover)
(a) Given a point x ∈ D, a PSV p ∈ P covers x if x(p) = 1.
(b) A subset P ′ of P forms a cover for a set S ⊆ D of points if
for each point x ∈ S, there is a PSV p ∈ P ′ that covers x (i.e.,
x(p) = 1).

Definition 2.2 (Anti-cover)
A subset P ′ of P forms an anti-cover for a set S ⊆ D of points if for
each point x ∈ S and every PSV p ∈ P ′, x(p) = 0 (i.e., no PSV in
P ′ covers any point in S).

One can visualize a cover and anti-cover in a Venn diagram as
follows and shown in Figure 1. If Y is a region representing a set of
points, then a cover for Y is a region which contains all of Y . Further,
an anti-cover for Y is a region which has no overlap with Y .

Y	

A	Cover	for	Y	 An	Anti-Cover		
for	Y	

Y	

A	f-cover	for	Y	 An	g-anti-Cover		
for	Y	

At	least	f		
fraction	of	y	

At	most	g		
fraction	of	y	

Figure 1. A Venn diagram view of the notion of cover, anti-cover, f -cover
and g-anti-cover for a set of points Y .

We can relax the definition of cover via the notion of an f -cover
which only requires that at least a fraction f of a set of points are
covered. Similarly, a g-anti-cover is a relaxation of the notion of anti-
cove; a g-anti-cover permits at most a fraction g of a set points to be
covered.

2.2 A Vector-Based Notation

For convenience in formulating integer linear programs (ILPs) of our
combinatorial problems, we introduce a vector based notation. All
vectors are assumed to be column vectors. Recall that any OD al-
gorithm effectively partitions the given data set D into two subsets,
namely O and N. Let P = {p1, p2, . . . , pm}, wherem = |P|, denote
the set of PSVs. For fairness considerations, each point in x ∈ D is

described by a binary vector with m components, with the kth com-
ponent giving the value x(pk), 1 ≤ k ≤ m. We use Oi to denote
the binary vector corresponding to the ith point in O. Similarly, we
use Nj to denote the binary vector corresponding to the jth point in
N. Any subset P ′ of P can also be represented by a Boolean vector
x with m components, where the kth component is 1 if pk ∈ P ′ and
0 otherwise, 1 ≤ k ≤ m. For a vector x, we use xT to denote its
transpose.

Under this notation, if a subset P ′ of PSVs, represented by the
vector x, forms a cover for O and anti-cover for N, then it can be
seen that the following conditions hold:

xT Oi ≥ 1 ∀i, 1 ≤ i ≤ |O| and
xT Nj = 0 ∀j, 1 ≤ j ≤ |N|.

3 ILP Formulations and Probabilistic
Interpretation

3.1 Overview
The previous section outlined constraints for a subset of PSVs to
form a cover or an anti-cover. Here we use those to construct sev-
eral optimization problems with each being a test of fairness. In each
case, the optimization problem tries to find an explanation (using the
PSVs) that differentiates the outlier points from the normal points. If
such an explanation exists, then the OD algorithm’s output is unfair
and our method produces the explanation why. If there is no expla-
nation then the output is fair, given the constraints used.
High Level Description. We now outline the three optimization
problems explored in this paper descending from most strict to least
strict. The most strict version, called valid outlier description (or
VOD), is only for illustrative purposes and not used in our ex-
perimental results. It can be seen that each is a variant of the other.
The objectives of these three problems are shown diagrammatically
in Figure 2. That figure shows a Venn diagram where the points are
divided into two groups (normal and outliers) and the coverage of
the explanation (x) is denoted by a black dashed rectangle. This en-
ables one to easily understand the three objectives of our optimiza-
tion problems:

• VOD-Unfairness. (Left panel in Figure 2). Here we require find-
ing an explanation to cover only the outlier points and none of the
normal points; that is, it is an anti-cover for them. This is included
for illustrative purposes.

• α-VOD Unfairness. (Middle panel in Figure 2). Here we require
finding an explanation to cover all the outlier points; however,
such an explanation may cover some (at most α) of the normal
points and hence is an (α/|N|)-anti-cover for them.

• (α, β)-VOD-Unfairness. (Right panel in Figure 2). Here we re-
quire simultaneously finding a subset O′ of the outliers obtained
by removing at most β points from O and an α-VOD for the set N
and O′. In other words, the chosen descriptor must cover at least
|O| − β points of O and at most α points of N; in other words, it
is a (1− β/|O|)-cover for O and an (α/|N|)-anti-cover for N.

3.2 A Probabilistic Interpretation
We explore a probabilistic interpretation of our work when an ex-
planation is found; that is, the OD algorithm output is deemed to be
unfair.
VOD. Suppose we apply the VOD problem formulation to a data
set. For VOD-unfairness, when there is no solution to the problem,



we can conclude that for every descriptor (i.e., subset of PSVs) that
occurs in the outlier group, there is at least one point in the normal
group for which the descriptor is true. Conversely, if the problem has
a solution such as X = female OR poor, then it means every-
one who is ¬(female OR poor) must be in the normal group
(due to the anti-cover requirement for N ). Hence, the output is un-
fair to anyone who is either female OR poor because there exists
an X such that: P (Outlier|X) = 1 and P (Normal|X) = 0.

α-VOD. Suppose we apply the α-VOD problem formulation. Sup-
pose (for simplicity) the same explanation (X= female OR poor)
was found (because the dataset has changed) for α-VOD where
α = |O|. Thus, the number of people satisfying the condition
female OR poor in O is |O| and the number of people satisfy-
ing the same condition in N is some integer α′ ≤ α = |O|. Hence,
P (Outlier|X) = |O|/(|O|+α′) ≥ 0.5 since α′ ≤ |O|. This makes
the output of the OD algorithm unfair since there is a PSV combina-
tion that is more probable in the outlier group than the normal group.

(α, β)-VOD. A limitation with the previous two formulations is that
they assumes an explanation for all points in O. This precludes iden-
tifying the situation where a small fraction of individuals with a rare
PSV combination are discriminated against. (α, β)-VOD addresses
this situation. The (α, β)-VOD formulation searches for an explana-
tion for at least |O| −β instances from O but also explains at most α
instances from N. Suppose we set α = |O|−β and there is a solution
X . Then the number of points covered in O is at least |O| − β and
the number α′ of points covered in N is at most α = |O| − β. Thus,
P (Outlier|X)≥ (|O|−β)/[(|O|−β)+(|O|−β)]≥ 0.5 if there is
a solution. If there is no solution, then no subset of PSV values exist
that are more probable in the outlier group than in the normal group.

Normal	Points	 Normal	Points	

α-VOD	Unfairness		
Criterion	

α,β-VOD	Unfairness		
Criterion	

Normal	Points	

Outlier	Points	

VOD	Unfairness	
Criterion	

Outlier	Points	 	
Outlier	Points	

α	α	

β	

Figure 2. A Venn diagram view of the three optimization problems we
address in this paper and formalize in Section 3. The explanation of the

instances found is shown by the black dashed line.

3.3 An ILP for the VOD-Unfairness Detection
Problem

Using the concepts in Section 2 we can construct an optimization
problem to determine if a VOD exists. As mentioned earlier, our
method can handle single and multiple variable unfairness using one-
hot encoding. Here argmax finds the most specific combination
whilst argmin finds the most general. For the remainder of this pa-
per, we use ||x|| to denote the number of 1’s in the vector x.

Definition 3.1 The VOD-Unfairness Detection.

{argmin, argmax}x ||x|| such that

xT Oi ≥ 1 ∀i
xT Nj = 0 ∀j

When there is a solution, the output of the above optimization
problem is be a subset of PSVs (encoded in the vector x) that can
be used to differentiate outliers from normal points. If no solution
exists, then the OD algorithm’s output can be regarded as fair under
the strict definition of fairness.

We show in Section 5 that the argmax version of the above prob-
lem can be solved efficiently while the argmin version is NP-hard.

3.4 An ILP for the α-VOD-Unfairness Detection
Problem

Definition 3.1 is quite a strict definition of unfairness. If just one point
in the normal group satisfies the description corresponding to x for
the outlier points, the output would be deemed fair. Thus, it is useful
to relax this condition by requiring that of the |N| normal points, at
most α of them also be covered by x, for some integer α.

Let m = |P| be the number of PSVs. To develop an ILP for this
version, in addition to the {0,1}-valued variables in x, we introduce
γ = |N| additional {0,1}-valued variables, denoted by y1, y2, . . .,
yγ , one corresponding to each point in N. We will create constraints
so that yj = 1 if a chosen vector x covers the jth point in N; oth-
erwise, yj = 0, 1 ≤ j ≤ γ. In this manner,

∑γ
j=1 yj will give us

the number of points of N covered by the vector x. The ILP is given
below.

Definition 3.2 α-VOD-Unfairness Detection.

{argmin, argmax}x ||x|| such that

xT Oi ≥ 1 ∀i
yj ≤ xT Nj ∀j
myj ≥ xT Nj ∀j∑
j yj ≤ α

In the above ILP, all the variables in x and all the auxiliary variables
y1, y2, . . ., yγ take on values from {0,1}.

We now explain how the above ILP correctly models the α-VOD-
Unfairness Detection Problem. The constraint on O ensures that
each point of O is covered by the chosen vector x. The constraint
yj ≤ xT Nj (∀j) ensures that when the right hand side of this con-
straint is 0, yj must be set to 0. (In other words, if x does not cover the
jth point in N, then yj = 0.) Similarly, the constraintmyj ≥ xT Nj
(∀j) ensures that when the right hand side is≥ 1, yj must be set to 1.
(Thus, if x does cover the jth point in N, then yj = 1.) It may help
the reader to recall that the size of x is m so the maximum value of
the RHS of this constraint is m. Hence, these constraints ensure that
the value of yj correctly indicates whether or not the corresponding
point of N is covered by x. Finally, the constraint

∑
j yj ≤ α en-

sures that at most α normal points are covered, as required by the
problem specification.
Setting the Parameter α. If α = |N| and no solution is found, this
can be interpreted that any explanation that covers all |O| outliers
also explains at least that many normal points, making the output
fair. This naturally gives us a quantitative measure of fairness: the
larger the value of α for which there is no solution for a given data
set, the fairer is the output.



In Section 5, we will show that even the problem of determining
whether there is a solution x that satisfies all the constraints of α-
VOD-Unfairness Detection problem is NP-complete. Thus, the prob-
lem is computationally intractable even without any optimization ob-
jective for ||x||.

3.5 An ILP for the (α, β)-VOD-Unfairness
Detection Problem

Our previous formulations require coverage of all outlier detection
points. However, there maybe situations where we wish to just iden-
tify a very precise subset of outliers which are unfair. We formulate
this problem as a combinatorial optimization problem that involves
explaining at most α points in N as before (i.e., at most α points in
N may be covered) but now require ignoring/not-explaining β points
in O. The ILP formulation for this problem, discussed below, is sim-
ilar to that for the α-VOD-Unfairness Detection problem discussed
in the previous subsection.

Recall that m = ||P| denotes the number of PSVs. To develop an
ILP for this version, in addition to the {0,1}-valued variables in x, as
above we introduce (i) γ = |N| additional {0,1}-valued variables,
denoted by y1, y2, . . ., yγ , one corresponding to each point in N, and
(ii) τ = |O| additional {0,1}-valued variables, denoted by z1, z2,
. . ., zτ , one corresponding to each point in O. As done previously,
we create the constraints so that yj = 1 (zi = 1) if a chosen vector
x covers the jth (ith) point in N (O); otherwise, yj = 0, 1 ≤ j ≤ γ
(zi = 0, 1 ≤ i ≤ τ ). In this manner,

∑γ
j=1 yj

∑τ
i=1 zi will give us

the number of points of N and O covered by the vector x respectively.
The ILP is given below.

Definition 3.3 (α, β)-Unfairness Detection.

{argmin, argmax}x ||x|| such that

yj ≤ xT Nj ∀j
myj ≥ xT Nj ∀j
zi ≤ xT Oi ∀i
m zi ≥ xT Oi ∀i∑
j yj ≤ α∑
i zi ≥ |O| − β

In the above ILP, all the variables in x and all the auxiliary variables
yj (1 ≤ j ≤ γ) and zi (1 ≤ i ≤ τ ) take on values from {0,1}.
The constraints on

∑
j yj and

∑
i zi ensure that at most α normal

points are covered and at most β outlier points are not covered. The
rest of the argument to show that the above ILP correctly represents
the (α, β) Unfairness Detection Problem is similar to the one given
for the α-VOD-Unfairness Detection problem.

In Section 5, we will show a complexity result for this problem
similar to that for the α-VOD-Unfairness Detection problem.

4 Using Our Work In Practice and the Role of the
Domain Expert

We have presented in the prior sections the fundamentals of our ap-
proach. Here we discuss how a domain expert can use them in prac-
tice. We omit discussion of VOD as it is only an illustrative setting.
We first overview how a user can set the parameters α and β and then
how to use our method systemically.
Setting Parameters. Each domain will have different thresholds for
identifying unfairness and these can naturally be modeled using the
parameters α and β.

The α VOD approach is a method of detecting systemic (or
global/wide-scale) bias in the identified outliers. This is because
all instances in the outlier group must be covered by the explana-
tion X (e.g., everyone flagged as an outlier satisfies the condition
unmarried OR female. The parameter α determines how many
people in the normal group are also covered byX . How we set α can
determine what threshold we use to determine unfairness. Several
possible examples are given below.

• Outlier/Normal ratio unfairness: Here if a pattern is more probable
in the outlier group than in the normal group, then it is deemed
unfair. For example, suppose we set α = |O| (as describe earlier).
Then if an explanationX is found, we have thenP (Outlier|X) >
0.5.

• Outlier/Population ratio unfairness: Here if a pattern is more prob-
able in the outlier group than in the entire population, then it
is deemed unfair. Suppose we set α = (|O|/|D|) ∗ |N|. Then
if an explanation X is found, we have then P (Outlier|X) >
P (Normal|X). That is, the probability of finding the X in the
outlier group is greater than finding X in the normal group.

The (α, β)-VOD approach is useful for finding specific (or local,
fine-grained) bias. It allows a small subset of the outlier group (no
less than |O| − β) to be explained/identified using X . This approach
has several benefits.

• It can model the classic disparate impact unfairness [3]. The
80% rule of disparate impact requires that if for example 4 men
are identified as outliers then no more than 5 woman should be
identified as outliers. To enforce this, we can simply require that
β = 0.55555 ∗ |O|. If a solution X is found, then the ratio of X
found in O must be ≥ 0.55555

0.44444
≥ 0.8.

• It can model Outlier/Population ratio unfairness described above
but now for a subset of the outliers. Suppose we set α = ((|O| −
β)/|D|) ∗ |N|. Then, if an explanation X is found, we have
P (Outlier|X) > P (Normal|X).

Human in the Loop Extensions. The identification of unfairness
in an OD algorithm’s output can be used as a filter for further hu-
man examination. Here we describe a Test→Exclude→Test Loop
that allows our work and results to be used together. Let there be
m binary PSVs. There are 2m − 1 possible (nonempty) subsets (i.e.,
disjunctions) of the PSVs. All our methods will discover if any of
these 2m − 1 disjunctions is unfair given various definitions of fair-
ness (whose probabilistic interpretation was discussed above). The
domain expert can then examine the explanation (X) found to de-
termine if it is a true example of unfairness. If it is, then the loop
is terminated and the output of the OD algorithms is deemed unfair.
If not, then X can be excluded from future searches with a simple
constraint, namely X 6= XOld.

Having a human verify that the discovered combinatorial unfair-
ness is an actual case of unfairness is the only “iron-clad” way to
determine fairness in this context.

5 Complexity of Unfairness Detection

5.1 Overview

This section outlines the complexity of the three unfairness detection
problems defined by ILPs in Section 3. The results presented in this
section include the following.



1. We show that the argmax version of the strict VOD-unfairness
problem can be solved efficiently, while the argmin version of
the same problem (formulated suitably as a decision problem) is
NP-complete.

2. For the α-VOD-Unfairness Detection and (α, β)-VOD-
Unfairness problems, we show that even determining whether a
solution exists is NP-complete. Thus, these problems are compu-
tationally intractable even without any optimization requirement
on the number of PSVs chosen in the descriptor.

To prove complexity results, we need to reformulate each of the
problems defined in the previous section as a decision problem.
These reformulations are presented in the ensuing subsections. It is
straightforward to verify that these decision versions indeed correctly
represent the corresponding unfairness problems.

5.2 Results for VOD-Unfairness Detection
We begin with the basic decision problem corresponding to the VOD-
Unfairness Detection problem.

(a) Valid Outlier Descriptor Existence (VODE)

Given: Sets O and N of outlier and normal points and the set P of
PSVs.

Question: Is there a subset P ′ ⊆ P such that P ′ is a valid outlier
descriptor for O and N (i.e., P ′ covers O and is an anti-cover for N)?

Algorithm 1: An algorithm for VODE

1 Set P1 = P.
2 for each p ∈ P do
3 If p covers some point in N, then remove p from P1.
4 end
5 if P1 is a cover for O then
6 output P1 as the solution.
7 else
8 output “No solution”.
9 end

Theorem 1 The VODE problem can be solved efficiently. If a valid
outlier descriptor exists, then such a descriptor of maximum size can
also be found efficiently.

Proof: A simple algorithm for VODE is given in Algorithm 1. The
idea is to find a subset P1 of P such that P1 contains only those
PSVs which do not cover any point in N. The algorithm then checks
whether P1 forms a cover for O. If so, the algorithm outputs P1 as
the solution; otherwise, the algorithm outputs the message “No solu-
tion”. We now prove the correctness of the algorithm. We also show
that if P1 is a solution, then it has the largest cardinality among all
the solutions.
Part 1: Suppose P1 is a cover for O. Since P1 does not contain any
PSV which covers a point in N, P1 is also an anti-cover for N. Hence,
P1 is a valid outlier descriptor.
Part 2: Suppose P1 does not cover all the points in O. We will prove
by contradiction that there is no VOD for the given VODE problem
instance. So, assume that Q is a solution and consider any variable
q ∈ Q. Since Q is an anti-cover for N, q cannot cover any point in
N. Thus, the iterative procedure that constructs P1 would not have
eliminated q. In other words, q ∈ P1 and thus, Q ⊆ P1. Now, since

P1 does not cover all the points in O and Q ⊆ P1, Q also cannot
cover all the points in O. This contradicts the assumption that Q is
a solution. Thus, if P1 cannot cover all the points in O, there is no
solution.

We now observe that if the setP1 constructed above is a solution to
the VODE problem instance, then no other solution can have a larger
cardinality. This follows from the argument presented in Part 2 above
where it is shown that if Q is another solution, then Q ⊆ P1.

We will present a simple running time analysis to show that Algo-
rithm 1 runs in polynomial time. Assume that N is represented by a
|N| × |P| matrix MN such that the entry MN [i, j] gives the value of
the PSV pj ∈ P for the ith point in N. In a similar fashion, assume
that O is represented by a |O|× |P|matrixMO . Each iteration of the
loop in Step 2 can be implemented to run in O(|N|) time using the
matrix MN . Thus, Step 2 runs in O(|N| |P|) time. To check whether
P1 covers O (Step 5) we again need to check that each point in O
is covered by some PSV in P ′. This can be done in O(|O| |P ′|) =
O(|O| |P|) time using the matrixMO . So, the overall running time is
O(|P| (|N|+ |O|)).

As shown above, one can efficiently check whether there is a valid
outlier descriptor, and if so, find one of maximum size. It is of interest
to investigate whether one can find such a descriptor of minimum
size (i.e., a descriptor with the smallest number of PSVs). We now
show that this minimization version is NP-complete. We begin with
a formulation the corresponding decision problem.

(b) Minimum Valid Outlier Descriptor (MVOD)

Given: Sets O and N of outlier and normal points, the set P of PSVs
and an integer k ≤ |P|.
Question: Is there a subset P ′ ⊆ P such that |P ′| ≤ k and P ′ is a
valid outlier descriptor for O and N?

Theorem 2 The MVOD problem is NP-complete.

Proof: It is easy to see that MVOD is in NP since given a subset P ′

of PSVs one can efficiently check that P ′ forms a cover for O and an
anti-cover for N.

To prove NP-hardness, we use a reduction from the Minimum Set
Cover (MSC) problem: given a universe U = {u1, u2, . . . , un}, a
collection C = {C1, C2, . . . , Cm}, where each Cj is a subset of U
(1 ≤ j ≤ m) and an integer k ≤ m, is there is a subcollection C′ of
C such that |C′| ≤ k and the union of the sets in C′ is equal to U?
It is well known that MSC is NP-complete [16]. The reduction from
MSC to MVOD is as follows.

1. The set O = {o1, o2, . . . , on} of outliers is in one-to-one corre-
spondence with the set U = {u1, u2, . . . , un}.

2. The set N = {ν1, ν2, . . . , νn} has n normal points. (The size of
N doesn’t play any role in the reduction.)

3. The set of PSVs P = {p1, p2, . . . , pm} is in one-to-one corre-
spondence with the collection C = {C1, C2, . . ., Cm}.

4. Suppose the element ui, 1 ≤ i ≤ n, appears in subsets Ci1 , Ci2 ,
. . ., Cir for some r ≥ 1. Then, for the outlier point oi, PSVs pi1 ,
pi2 , . . ., pir have the value 1 and the remaining PSVs have the
value 0.

5. The limit k on the size of the required subset of PSVs is the same
as the parameter k for the MSC problem.

This completes the polynomial time reduction. We now prove that
there is a solution to the MVOD problem iff there is a solution to the
MSC problem.



Suppose C′ = {Cj1 , Cj2 , . . . , Cj`}, where ` ≤ k, is a so-
lution to the MSC problem. We claim that the subset P ′ =
{pj1 , pj2 , . . . , pj`} is a solution to the MVOD problem. Since ` ≤ k,
the constraint on |P ′| is satisfied. To see that P ′ forms a cover for O,
consider any element oi ∈ O. Since C′ is a solution to MSC, the ele-
ment ui ∈ U corresponding to oi appears in some set, sayCjy ∈ C′.
By our construction of P ′, the PSV pjy is in P ′ and oi is covered by
pjy . Thus, P ′ forms a cover for O. Moreover, for each variable p
in P ′, the value of p is 0 for each point in N. Thus, P ′ also forms
an anti-cover for N. In other words, P ′ is a solution to the MVOD
problem.

Suppose P ′ = {pj1 , pj2 , . . . , pj`}, where ` ≤ k, is a solution
to the MVOD problem. We claim that the subcollection C′ defined
by C′ = {Cj1 , Cj2 , . . . , Cj`} is a solution to the MSC problem.
Since ` ≤ k, the constraint on |C′| is satisfied. To see that C′ forms
a solution to MSC, consider any element ui ∈ U . Since P ′ is a
solution to MVOD, there is a variable, say pjy ∈ P ′, that covers oi,
the point corresponding to ui ∈ U . By our construction of C′, the
element ui is covered by the setCjy ∈ C′. Thus,C′ forms a solution
to the MSC problem, and this completes our proof of Theorem 2.

5.3 Complexity of α-VOD-Unfairness
Here, we consider the α-VOD-Unfairness problem and show that the
problem of determining whether a descriptor exists (with no con-
straint on the number of PSVs in the descriptor) is NP-complete. It
follows that both argmin and argmax versions of the problem (as
formulated in Section 3) are NP-hard. The decision version of the
problem is as follows.

α-VOD-Unfairness (α-VOD)

Given: Sets O and N of outlier and normal points, the set P of PSVs
and an integer α ≤ |N|.
Question: Is there a subset P ′ ⊆ P of PSVs such that P ′ covers O
and at most α points in N?

Note that this decision problem is a generalization of the VODE
problem considered earlier; if we set α = 0, we obtain exactly the
VODE problem. However, unlike the VODE problem, this problem
is NP-complete as shown below.

Theorem 3 The α-VOD problem is NP-complete.

Proof: It is easy to see that α-VOD is in NP. We prove the NP-
hardness is through the following reduction from Minimum Set
Cover (MSC).

1. The set O = {o1, o2, . . . , on} of outliers is in one-to-one corre-
spondence with the set U = {u1, u2, . . . , un}.

2. The set N = {ν1, ν2, . . . , νγ} has γ = 1 + max{n2, 2m} nor-
mal points. Of these, the subset N′ = {ν1, ν2, . . . , νm} consisting
of the first m elements is in one-to-one correspondence with the
collection C = {C1, C2, . . ., Cm}. (The choice of γ ensures that
|N| > |O|.)

3. The set of PSVs P = {p1, p2, . . . , pm, pm+1} hasm+1 elements.
Of these, the subset P1 = {p1, p2, . . . , pm} consisting of the first
m PSVs is in one-to-one correspondence with the collection C =
{C1, C2, . . ., Cm}.

4. Suppose the element ui, 1 ≤ i ≤ n, appears in subsets Ci1 , Ci2 ,
. . ., Cir for some r ≥ 1. Then, for the outlier point oi, the PSVs
pi1 , pi2 , . . ., pir have the value 1 and the remaining PSVs have
value 0. For each normal point νj ∈ N′, 1 ≤ j ≤ m, the PSV

pj has the value 1 and the remaining PSVs (including pm+1) have
the value 0. For each normal point νj ∈ N, m + 1 ≤ j ≤ γ, the
PSV pm+1 has the value 1 and all the remaining PSVs have the
value 0.

5. The upper bound α on the number of normal points that can be
covered is set to k (from the MSC problem).

This completes the polynomial time reduction. We now prove that
there is a solution to the α-VOD problem iff there is a solution to the
MSC problem.

Suppose C′ = {Cj1 , Cj2 , . . . , Cj`}, where ` ≤ k, is a so-
lution to the MSC problem. We claim that the subset P ′ =
{pj1 , pj2 , . . . , pj`} is a solution to the α-VOD problem. We first
show that P ′ forms a cover for O. To see this, consider any ele-
ment oi ∈ O. Since C′ is a solution to MSC, the element ui ∈ U
corresponding to oi appears in some set, say Cjy ∈ C′. By our con-
struction of P ′, the variable pjy is in P ′ and oi is covered by pjy .
Thus, P ′ forms a cover for O. We now argue that P ′ covers at most
` ≤ k = α elements in N. To see this, notice that in the subset
N′ = {ν1, ν2, . . . , νm}, each point νj can be covered by only one
PSV, namely pj , 1 ≤ j ≤ m. Since |P ′| = `, only ` points in N′ can
be covered by P ′. Since P ′ does not contain pm+1 and each point in
N−N′ can only be covered by pm+1, we see that P ′ does not cover
any point of N − N′. Thus, P ′ covers only ` ≤ α points of N. In
other words, P ′ is a solution to the α-VOD problem.

Suppose P ′ = {pj1 , pj2 , . . . , pj`} is a solution to the α-VOD
problem. We first show by contradiction that pm+1 6∈ P ′. To see
this, suppose pm+1 ∈ P ′. Then, all the points in N − N′ would be
covered by P ′. Since |N − N′| ≥ m + 1 > k = α, P ′ would
cover more than α points of N; in other words, P ′ cannot be a valid
solution to α-VOD problem. This is a contradiction and we conclude
that pm+1 6∈ P ′. We also claim that |P ′| = ` ≤ α = k. To see this,
if |P ′| > α+ 1, then since each PSV in P ′ covers one normal point
in N′, the number of normal points covered by P ′ would exceed α.
Thus, P ′ ⊆ {p1, p2, . . . , pm} and |P ′| ≤ α = k. Now, it is easy to
verify that the subcollection C′ = {Cj1 , Cj2 , . . . , Cj`} is a solution
to the MSC problem.

5.4 Complexity of (α, β)-VOD-Unfairness

Recall that the goal of (α, β)-VOD-Unfairness is to determine
whether there is a subset of PSVs that can cover at least |O| − β
points of O while covering at most α points of N. A formal state-
ment of this decision problem is as follows.

(α, β)-VOD-Unfairness ((α, β)-VOD)

Given: Sets O and N of outlier and normal points, the set P of PSVs
and positive integers α and β.

Question: Is there a subset P ′ ⊆ P such that P ′ covers at least
|O| − β points in O and at most α points in N?

Theorem 4 The (α, β)-VOD-Unfairness problem is NP-complete.

Proof: It is easy to see that (α, β)-VOD is in NP. The reduction
from MSC to VODE is as follows.

1. We set β = |U | = n. The set O = {o1, o2, . . . , o2n} has 2n
points. Of these, the subset O′ = {o1, o2, . . . , on} consisting of
the first n points is in one-to-one correspondence with the universe
U = {u1, u2, . . . , un}.



2. The set N = {ν1, ν2, . . . , νγ} has γ = 1 + max{n2, 2m} nor-
mal points. Of these, the subset N′ = {ν1, ν2, . . . , νm} consisting
of the first m elements is in one-to-one correspondence with the
collection C = {C1, C2, . . ., Cm}.

3. The set of PSVs P = {p1, p2, . . . , pm, pm+1} hasm+1 elements.
Of these, the subset P1 = {p1, p2, . . . , pm} consisting of the first
m PSVs is in one-to-one correspondence with the collection C =
{C1, C2, . . ., Cm}.

4. Suppose the element ui, 1 ≤ i ≤ n, appears in subsets Ci1 ,
Ci2 , . . ., Cir for some r ≥ 1. Then, for the outlier point oi, the
PSVs pi1 , pi2 , . . ., pir have the value 1 and the remaining PSVs
have value 0. For each outlier point oi ∈ N−N′, the value of PSV
pm+1 is 1 and the values of the other PSVs are 0, n+1 ≤ i ≤ 2n.
For each normal point νj ∈ N′, 1 ≤ j ≤ m, the PSV pj has the
value 1 and the remaining PSVs (including pm+1) have the value
0. For each normal point νj ∈ N, m+1 ≤ j ≤ γ, the PSV pm+1

has the value 1 and all the remaining PSVs have the value 0.
5. The upper bound α on the number of normal points that can be

covered is set to the value k in the MSC problem.

This completes our polynomial time reduction. We will now prove
that there is a solution to the (α, β)-VOD problem iff there is a solu-
tion to the MSC problem.

Suppose C′ = {Cj1 , Cj2 , . . . , Cj`}, where ` ≤ k, is a solu-
tion to the MSC problem. It can be verified that the subset P ′ =
{pj1 , pj2 , . . . , pj`} covers the subset O′ consisting of n = |O| − β
points. The proof that P ′ covers at most α points in N is similar to
that presented in the proof of Theorem 3. Thus, P ′ is a solution to
the (α, β)-VOD problem.

Suppose P ′ = {pj1 , pj2 , . . . , pj`} is a solution to the α-VOD
problem. As in the proof of Theorem 3, it can be seen that pm+1 6∈
P ′ and that |P ′| ≤ α = k. Thus, P ′ ⊆ {p1, p2, . . . , pm}. Let
C′ = {Cj1 , Cj2 , . . . , Cj`} be the subcollection of C constructed
from P ′. Since ` ≤ α = k, the constraint on |C′| is satisfied. To see
thatC′ forms a solution to MSC, consider any element ui ∈ U . Since
P ′ is a solution to (α, β)-VOD, there is a variable, say pjy ∈ P ′,
that covers oi ∈ O′, the point corresponding to ui ∈ U . By our
construction of C′, the element ui is covered by the set Cjy ∈ C′.
Thus, C′ forms a solution to the MSC problem, and this completes
our proof of Theorem 4.

6 Experimental Results
Our experiments attempt to address several questions that comple-
ment our theoretical results in the previous section.

• How fair are existing OD algorithm’s output according to α-VOD
Definition 3.2 and (α, β)-VOD (Definition 3.3)? (Tables 3, 4)

• Can existing rule discovery methods be used to detect fairness (Ta-
ble 6)? This forms a series of baselines for comparison albeit for
method not designed for the OD output fairness evaluation.

• What is the typical runtime of our algorithm on a variety of data
sets where the outliers are already given? (Table 5).

Fairness of Existing OD Algorithm’s Output. We begin our ex-
periments using a classic dataset used in many fairness papers
(see e.g., [7]), namely Census. This data set consists of census
information along continuous dimensions such as age, wage,
hours worked, etc. and contains many PSVs. We experiment
with the following PSVs: Education, Married-status,
Relationship, Race, Sex. For non-binary PSVs, we use a

one-hot encoding; the encoded values are shown in Table 2. Thus,
the vector x that we solve for is not simply of length equal to the
number of PSVs.

PSV Possible Values
Education Bachelors, Some-college, 11th, HS-grad,

Prof-school, Assoc-acdm, Assoc-voc, 9th,
7th-8th, 12th, Masters, 1st-4th, 10th, Doctor-
ate, 5th-6th, Preschool

Marital-status Married-civ-spouse, Divorced, Never-
married, Separated, Widowed, Married-
spouse-absent, Married-AF-spouse

Relationship Wife, Own-child, Husband, Not-in-family,
Other-relative, Unmarried

Race White, Asian-Pac-Islander, Amer-Indian-
Eskimo, Other, Black

Sex Female, Male

Table 2. The PSVs Used in our Experiments on the Census Data. In total,
the length of x is 36.

We then apply several standard outlier detection methods from the
classic styles of outlier detection [20] (which are given in paren-
theses): i) Oddball [1] (graph-based), ii) DB(ε, π) [19] (distance-
based), iii) LOF [5] (density-based), iv) ISODepth [24] (depth-
based), v) Model [2] (deviation-based). We then apply our two tests
of unfairness as per Definitions 3.1 and 3.2 with results reported in
Table 3. Unsurprisingly, all methods were found to be fair according
to strict illustrative test in Definition 3.1 and it is omitted from future
experiments.

For Definition 3.2 we report the smallest value of α that yield no
feasible solution and hence makes the OD algorithm output fair. This
value of the smallest α to obtain fairness can be interpreted as a mea-
sure of how fair is the algorithm’s outputs; the larger the value, the
more fair is the method.

OD Algorithm VOD Unfair?
(Definition 3.1)

Smallest α-VOD En-
suring Fairness (Defi-
nition 3.2)

Graph-Based [1] 10:No, 0:Yes 0.63
Distance-Based [19] 10:No, 0:Yes 0.41
Density-Based [5] 10:No, 0:Yes 0.53
Depth-Based [24] 10:No, 0:Yes 0.61
Deviation-Based [2] 10:No, 0:Yes 0.54

Table 3. The results of our two tests of fairness. Results are averaged over
10 trials as some algorithms are randomly seeded. Note the α value is

reported as a fraction of total number of outliers identified by the method.
This allows direct comparison as each OD method returns a different number

of outliers. The larger the number the more fairer the output.

We then applied our fine grain approach (Definition 3.3) that ig-
nores up to β outlier instances until no α-VOD solution is found.
Here we set α so as to require as many normal points as there are
outlier points to be covered by the explanation. Results are shown in
Table 4. Again we search for the smallest β value to obtain fairness
and here the smaller the value of β the better (as it means we have
to ignore fewer outliers). Overall we found that OD methods that
construct data structures (i.e. graph-based and depth-based) covered
more normal points (α) and ignored fewer outlier points (β).
Tests On More Datasets and Scalability. Previously we measured
the fairness of standard outlier detection algorithms. Here we re-



OD Algorithm Smallest β for (Definition 3.3) for α = |O|
fairness

Graph-Based 0.31
Distance-Based 0.53
Density-Based 0.41
Depth-Based 0.33
Deviation-Based 0.39

Table 4. The results of our fine grained approach to ensure fairness as
defined in Definition 3.3 and averaged over 10 runs. For all experiments α is
set to equal the number of outliers the method generated. Note the β value is

reported as a fraction of total number of outliers identified by the method.
The smaller the value of β the more fairer the algorithm.

port further results and test the scalability of our method on stan-
dard outlier detection data sets. For a number of outlier data sets
where the outliers are already given (see http://odds.cs.
stonybrook.edu/), we applied our method using only the dis-
crete/categorical variables in those data sets as the PSVs. Note that
these variables would not always be considered PSVs but the main
aim here is to test scalability. We see that our approach overall is quite
efficient but becomes less efficient as the number of outliers grows.
This is as we need to find a cover for all outlier points. Results are
shown in Table 5. For all the data sets, we find that our α-VOD test
of unfairness identify the results as being unfair.

Data Set: |N|/|O| Run Time (α-
VOD Unfair?)

Lympho 142/6 0.5 (Yes)
Glass 205/9 0.3 (Yes)
Thyroid 3670/93 18.8 (Yes)
Satimage-2 5732/71 (No) 32.7 (Yes)
Pima 500/268 4.2 (Yes)
Shuttle 45586/3511 195.7 (Yes)
Http (KDDCUP99) 56226/2211 221.3 (Yes)
Smtp (KDDCUP99) 95126/30 1.6 (Yes)

Table 5. The data set and number of normal (N) and outlier (O) points.
The run time in seconds using Gurobi on a 4 CPU Xeon Machine for our two
measures of fairness. We report in parentheses if a solution is found (i.e., the

output is unfair). For α-VOD we set α = |O|.

Baseline Comparison Results. Creating baselines for comparison is
challenging since to our knowledge, our method is the first one for
assessing fairness for outlier detection. We create baseline methods
from rule generation methods, which attempt to find a set of rules
that differentiate between the two classes Normal and Outlier. The
reasoning here is similar to our own method but without the guaran-
tees that our computational intractability results give, namely that if a
non-null model exists that can differentiate the outlier points from the
normal points using the PSVs, then the OD algorithm’s output can be
regarded as unfair. Results are shown in Table 6. All rule generation
methods are in the Weka package: J48 (equivalent of C4.5 [22]), Rip-
per [10], Bayesian Rule Induction - cn2 (BRI) [9]. We find that these
methods are remarkably consistent with each other and predict fair-
ness (only the null model was found) for most data sets where as our
methods indicate that they are unfair. For many large data sets, the
output is also said to be fair by these methods (Thyroid, Satimage,
Pima, Shuttle, Http (KDDCUP99)). This may seem counter-intuitive,
but it is important to realize we limit ourselves to only the categorical
variables (the PSVs) when building these models.

The failure of these methods is not unexpected as their aim is to
generate a predictive model to maximize accuracy and not an ex-
planation. Hence for data sets with a small number of outlier points
and/or small number of PSVs, they are more likely to predict the null
model (i.e., always predict the normal class) as it has a very large
accuracy.

Data Set: |N|/|O| J48 Ripper BRI
Lympho 142/6 No No No
Glass 205/9 No No No
Thyroid 3670/93 No Yes No
Satimage-2 5732/71 No No No
Pima 500/268 Yes No No
Shuttle 45586/3511 No Yes No
Http (KDDCUP99) 56226/2211 No Yes No
Smtp (KDDCUP99) 95126/30 No No No

Table 6. Baseline tests of unfairness by determining if rule-based methods
can differentiate N and O using the PSVs with a non null-model. The data
set and number of normal (|N|) and outlier (|O|) points are given. Compare

with our results in Table 5.

7 Conclusions, Limitations & Future Work
We propose novel tests of fairness for the output of outlier detection
algorithms based on on combinatorial optimization problems. The
optimization problems attempt to find the shortest explanation (using
protected state variables) that differentiates the outlier class from the
normal class. If such an explanation exists then the output is deemed
unfair. Our tests have the benefit of having a user tunable parameters
that can encode the user’s tolerance to fairness. Ourα-VOD approach
can find global unfairness by identifying a subset of PSVs (X) that
all individuals in the outlier group have and that at most α people in
the normal group have. If α is set to be the number of outliers then
the criteria for unfairness is then simply P (Outlier|X) > 0.5. Our
(α, β)-VOD allows finding local (finer-grained) unfairness by iden-
tifying a subset of outlier points that exhibit α-VOD unfairness. Our
empirical results show that not surprisingly the output of five clas-
sic outlier detection methods are unfair (see Table 5) whilst baseline
rule-based methods are easily misled into concluding that their out-
puts are fair, especially when the number of outliers is small and the
number of PSVs is small. (see Table 6). This is not surprising as these
baselines were created for predictive purposes.

We now point out some limitations of our work. Because our com-
putational problems are intractable they cannot be easily game/side-
stepped. However, our computational intractability results are most
useful when the number of PSVs is not small. (Formally, the un-
fairness detection problems defined in Section 3 are fixed parameter
tractable [21] with respect to the parameter |P|, that is, the number
of PSVs.) If |P| = m is small, one can try all the 2m subsets of P
to check if any of them is a solution. (Even for m = 20, the number
of subsets is only about a million.) Likewise, our intractability re-
sults are not as useful when the number of outliers is very small. For
example, if |O| ≤ c log |N| for some constant c > 0, the combinato-
rial problems formulated in the paper can be solved efficiently. This
is because in such a case, one can find a subset P ′ of PSVs, where
|P ′| ≤ |O|, to cover all the outliers. Thus, the number of subsets of
P ′ to be tried is 2c log |N| = Nc, which is a polynomial since c is a
constant.

In this paper we limited ourselves to studying traditional OD meth-
ods that just identify the outliers. We leave to future work the study of



other styles of OD detection such as group, collective and contextual
[6].
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