
Making Existing Clusterings Fairer: Algorithms, Complexity Results and Insights

Ian Davidson1 S. S. Ravi2
1 Computer Science Department, University of California, Davis
2 Biocomplexity Institute & Initiative, University of Virginia and
Computer Science Department, University at Albany – SUNY

davidson@cs.ucdavis.edu, ssravi0@gmail.com

Abstract

We explore the area of fairness in clustering from the different
perspective of modifying clusterings from existing algorithms
to make them fairer whilst retaining their quality. We formu-
late the minimal cluster modification for fairness (MCMF)
problem where the input is a given partitional clustering and
the goal is to minimally change it so that the clustering is still
of good quality and fairer. We show using an intricate case
analysis that for a single protected variable, the problem is
efficiently solvable (i.e., in the class P) by proving that the
constraint matrix for an integer linear programming (ILP) for-
mulation is totally unimodular (TU). Interestingly, we show
that even for a single protected variable, the addition of sim-
ple pairwise guidance (to say ensure individual level fairness)
makes the MCMF problem computationally intractable (i.e.,
NP-hard). Experimental results on Twitter, Census and NYT
data sets show that our methods can modify existing cluster-
ings for data sets in excess of 100,000 instances within minutes
on laptops and find as fair but higher quality clusterings than
fair by design clustering algorithms.

1 Introduction
Existing work on clustering and fairness takes a known clus-
tering algorithm and modifies it produce fair results. The
seminal work of Chierichetti et al. (2017) looked at k-center
and k-median style algorithms whilst later work has explored
other formulations such as spectral clustering (Kleindessner
et al. 2019). However, there is a plethora of different cluster-
ing algorithms, with this decade old survey (Xu and Wunsch
2005) listing over 15 popular partitional clustering algorithms
with a variety of settings, formulations and followings by end
user communities. It is unlikely that fair versions of all these
algorithms or new clustering algorithms will be developed.
Furthermore, often clusterings results are already deployed.
In these circumstances, one research direction is to modify an
existing clustering to make it fairer whilst not unduly chang-
ing its quality. This paper considers this precise situation,
where one already has a good clustering ⇧ and the goal is
to modify ⇧ to improve its fairness with respect to a set P
of protected variables. We focus on the simplest but most

Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

common type of protected variables, namely binary variables
such as gender.
A Flexible Efficient Approach To Ensure Fairness. Our
approach places upper and lower bounds on the number of
protected status individuals in each cluster which can be any
constant expression and these bounds may even be different
for each cluster. For example, if a data set D has N spe-
cial items and D has been partitioned into k clusters, then
the number of special data items per cluster could be set
to be approximately N

k , effectively balancing the protected
status instances uniformly across all clusters. Alternatively,
we could require each cluster to have approximately N.|Ci|

|D|
(where |Ci| is the size of cluster i) protected status individu-
als, this would require that the ratio of the number of special
items to the size of the cluster be (approximately) the same
for all clusters. We now provide two fairness definitions. The
first is useful to prove total unimodularity (TU) but in prac-
tice the second is more pragmatic and also gives rise to a TU
constraint matrix (see Theorem 3.2):
Definition 1.1. Let D be a dataset where each data item

has a single binary protected attribute x. Let Nx denote the

number of special data items in D. A partition of D into

k � 2 is strongly fair with respect to x if in each cluster, the

number of special items is either bNx/kc or dNx/ke.

This is useful in our intractability results and algorithm
design. However, it is a strong requirement; hence we define
a relaxed notion called ↵-fairness as follows:
Definition 1.2. Consider a dataset D where each data item

has a single binary protected attribute x. Let Dx ✓ D denote

the subset of special data items and let Nx = |Dx|. Let ↵ be a

positive integer < dNx/ke. A partition of D into k � 2 clus-

ters is ↵-fair wrt. x, if in each cluster, the number of elements

from Dx is in the range [dNx/ke � ↵ .. dNx/ke+ ↵].

ILP Formulations for the Minimal Cluster Modifica-
tion for Fairness (MCMF) Problem. A natural way to for-
mulate the MCMF problem is as a discrete optimization
problem where the goal is to minimize the effect of modi-
fying the clusters (see Section 3 for a precise formulation).
Here, the effect can be in terms of the number of instances
moved or even changes in the quality of the clustering. While
solving an ILP is, in general, computationally intractable, for

our formulation of the MCMF problem, we show that (see
Theorem 3.2) the constraint matrix our fairness requirements
introduce are totally unimodular (TU) (Schrijver 1998). This
proof involves an intricate case analysis so is presented in
(Davidson and Ravi 2019). As a consequence, one can use
any polynomial time linear programming (LP) algorithm to
obtain integer solutions to MCMF.
Summary of Main contributions.
(1) We define a novel minimal modification problem to pro-
duce fair clustering which can post-process the results of
any partitional clustering method to make them fairer whilst
ensuring their clustering quality is not affected significantly.
This is different from existing work that attempts to take an
existing clustering algorithm and produce a fair variant of it.
(2) We formulate the MCMF problem as an ILP and show that
under our definitions of fairness, the formulation produces a
constraint matrix that is totally unimodular (see Section 3).
This constraint matrix can be paired with a variety of objec-
tives to ensure clustering quality is not affected significantly
(see Table 1). This leads to algorithms capable of modifying
clusterings with millions of instances since there are well
known LP solvers that run in polynomial time. Some varia-
tions to ensure fairness such as allowing overlapping clusters
also have the TU property (see Section 4).
(3) If even larger clusterings are studied, in (Davidson and
Ravi 2019) we show an algorithm whose worst-case run time
is better than an LP solver (see Section 3).
(4) Interestingly, we show that though finding a feasible
strong fair clustering (an example of group level fairness
(Barocas and Selbst 2016)) is in P or finding a feasible cluster-
ing to satisfy commonly using popular must-link constraints
(Basu, Davidson, and Wagstaff 2008) which can encode in-
dividual level fairness (Barocas and Selbst 2016) is in P,
finding a feasible clustering to satisfy both requirements is
computationally intractable (see Section 5, Theorem 5.1).
(5) Experimental results show that our method is compu-
tationally efficient (as expected) and our objectives useful
for post-processing the results from k-means, k-medians and
spectral clustering algorithms. The experiments are for Cen-
sus/Adult (48K), NYT (300K) and Twitter Healthcare (58K)
datasets. We show that our method of post-processing can
produce similar fairness results as jointly finding a good but
fair clustering (Chierichetti et al. 2017).

Organization. We begin by discussing related work in
section Section 2. We then formulate the minimal clustering
modification for fairness (MCMF) problem in Section 3 as
an ILP and show that its constraint matrix is totally unimodu-
lar. We establish the complexity of achieving fairness while
satisfying instance-level constraints in Section 5. We then
present results from our experiments in Section 6. Conclu-
sions and directions for future work are provided in Section 7.
Reference (Davidson and Ravi 2019) contains a linear time
algorithm the the MCMF problem.

2 Related Work
We briefly review two related work areas, namely fairness
in machine learning (ML) and minimal modification of clus-
tering. Fairness in ML is an emerging area that has received

much attention in the context of supervised learning, often
under different names such as algorithmic bias (Thanh, Rug-
gieri, and Turini 2011). More recently, in clustering (i.e.,
unsupervised learning), the issue of fairness generally aims
at balancing protected individuals across clusters as we have.

All of the work below uses a similar fairness
measure (shown below) and focuses on simple k-
means/medians/centers algorithms with the exception of
(Kleindessner et al. 2019) which explores spectral cluster-
ing. The idea of balancing protected individuals aims to ad-
dress the disparate impact doctrine (Feldman et al. 2015;
Friedler, Scheidegger, and Venkatasubramanian 2016) and
was formalized in the seminal work of Chierichetti et al.
(2017). They assumed that each object has one of two colors
(red or blue). Letting the number of instances of each type in
cluster i be Ri and Bi respectively, the fairness of a clustering
is min(min[R1

B1
,
B1
R1

], . . . ,min[Rk
Bk

,
Bk
Rk

]). Their work creates
fairlets (groups of instances) which when post processed by
k-center and k-medians are guaranteed to produce a specified
level of fairness and achieve a constant factor approximation
with respect to cluster quality. As seen in Table 4, by ensuring
that cluster sizes are not unduly changed, the Chierichetti et
al. (2017) measure of fairness and our measure can yield
similar results. However, a stronger statement regarding their
equivalence is left to future work.

The work of Backurs et al. (2019) showed how a fairlet
decomposition algorithm can be implemented to run in nearly
linear time. The work of Rösner and Schmidt (2018) extended
the work of (Chierichetti et al. 2017) by allowing objects with
more than two colors (i.e., three or more protected attributes)
but assume that each object has only one color. Bera et al.
(2019) also consider three or more colors and allow an object
to have more than one color. They also allow users to specify
upper and lower bounds on fairness measures for each cluster
and develop clustering algorithms under any `p norm.

In this paper we take an alternative path of improving
fairness by post-processing (i.e., by minimal modification
of) clustering results produced by existing methods. The idea
of minimal modification of clustering solutions has been
explored before by ourselves (Kuo et al. 2017); however,
that focus is on human-in-the-loop style settings where the
domain expert can choose to adjust geometric properties of
the cluster such as diameter. Hence, the theorems and results
these two papers are fundamentally different. Further, the
focus of this earlier work was on improving cluster quality by
moving a small number of instances between clusters; it did
not take fairness into consideration. Further, due to the use of
the constraint programming, this earlier work scales only to
data sets of size at most 1000. In contrast, our modification
algorithm for improving fairness scales to very large data
sets (hundreds of thousands of points) even on a laptop (see
Section 6).

3 An ILP Formulation and Proof of Total
Unimodularity

Here we show an ILP formulation of the MCMF problem
which can find fairer clusters. The reader may also refer
to (Davidson and Ravi 2019) for implementation details.

Measure Meaning of Objective
Function

w = 1 The number of instances
moved.

wi =
P

j
d(i,Cj)

k �
d(i, C⇤)

The increase in mean L2
(distortion) or L1 (me-
dian) distances (average dis-
tance from i to cluster j:
d(i, Cj)).

wi =
P

j E(i, j) : (i, j) 2
⇧a

The increase in external de-
gree by moving instance i

away from cluster ⇧a.

Table 1: Several penalty schemes and their meaning when
used in Equation (1). Each measures the increase if i is moved
away from the cluster (C⇤) to which it is assigned in Z

⇤. We
assume that Z⇤ is optimal for the given objective.

We then show the resultant constraint matrix is totally uni-
modular (TU) and hence the ILP is efficiently solvable. Our
formulation can be used to ensure any upper and lower bound
on the number of protected variables in a cluster. These
bounds need not be the same for each cluster and most impor-
tantly, since TU depends on the constraint matrix coefficients
and not on the right-hand side of the constraints, these formu-
lations are also efficiently solvable.

Our aim is the following: given a desirable existing cluster-
ing (defined in an k⇥n allocation matrix Z

⇤), find a minimal
modification that makes the clustering fairer with respected
to the single protected variable P . In our experiments, we
consider a formulation to allow many protected variables.
We also discuss other settings which lead to TU constraint
matrices.

Objective. We wish to find another allocation matrix Z

that is fairer but similar to Z
⇤. As z⇤i and zi are both binary

column vectors indicating what single cluster the ith instance
belongs to,

P
i(z

⇤
i)

T ⇥(zi) counts the number of agreements
between Z and Z

⇤ which forms the basis of useful objec-
tives. We can easily encode preferences/importance amongst
instances by having a penalty (wi) (see Equation (1)) if in-
stance i is moved which can take on a variety of semantic
meanings. See Table 1 for some examples. The first simply
minimizes the number of instances moved, the second is
useful for centroid based methods such as k-means since it
minimizes the increase in distortion (assuming that the exist-
ing solution minimizes the distortion) and the last is useful
for graph based formulations since it minimizes increase in
cut cost (again assuming that the existing solution minimizes
the mincut). Of course, domain experts can easily encode
their own preference schemes.

argminZ

X

i

wi[1� (z⇤i)
T ⇥ (zi)] (1)

Adding Constraints With Slack Variables. The aim of
the constraints are two-fold, to balance the protected vari-
able whilst also restricting Z to be a legal cluster allocation
matrix. Note that we use the encoding where indicator vec-
tors are stacked column-wise, that is zi,j = 1 iff instance

j is assigned to cluster i. We encoded the protected status
as a vector P of length n with an entry of 1 if the instance
has the status otherwise 0. Our first two constraints require
that the distribution of the protected variable be upper and
lower bounded. For example, to follow our definition of strict
fairness (see Definition 1.1) we would have the constraint
b |P |

k c 
P

j pizi,j  d |P |
k e 8i with u (upper) and l (lower)

being the slack variables. In the following equation we gen-
eralize this to any upper and lower bounds and note they
can vary depending on the cluster. (We use |P | to denote the
number of non-zero entries in the vector P .) The last set of
constraints below (i.e.,

P
i zi,j = 1 8 j) simply require that

Z is a valid allocation matrix. Note again that the instances
are stacked column-wise in Z.

X

j

pjzi,j + ui = Ui, 8i (2)

�
X

j

pj .zi,j + li = �Li, 8i (3)

X

i

zi,j = 1, 8j (4)

Note that when Ui = d|P |/ke and Li = b|P |/kc, for
1  i  k, Lemma 3.2 points out that there is always
a solution to the above set of constraints. We will make a
similar observation regarding a relaxed version of the fairness
requirement later.

Total Unimodularity of Constraint Matrix. It is well
known (Schrijver 1998) that if the constraint matrix of an
ILP is totally unimodular (TU) then we can solve the prob-
lem using an LP (linear program) solver and the solution will
still be integral. Further, linear programming problems can
be solved in O(n (n + d)1.5 L) time, where n is the num-
ber of variables, d is the number of constraints and L is the
total number of bits needed to encode all the constants spec-
ified in the LP (Vaidya 1989). This running time is clearly
polynomial in the input size.

In the above equations, there are kn regular variables
(namely, z11, z12, . . ., z1n, . . ., zk1, zk2, . . ., zkn) and 2k
slack variables (namely u1, . . ., uk and l1, . . ., lk). For the
purpose of constructing the constraint matrix C, we will use
the following order of these kn+2k variables: hz11, z12, . . .,
z1n, . . ., zk1, zk2, . . ., zkn, u1, . . ., uk, l1, . . ., lki. Matrix
C has 2k + n rows (one corresponding to each constraint)
and nk + 2k columns (one corresponding to each variable).
In C, we will list the 2k constraints corresponding to Equa-
tions (2) and (3) in the order specified by those equations.
This is followed by the n constraints in the order specified by
Equation (4). Note that each entry of C is from {�1, 0,+1}.
In each row of C (which specifies one constraint), we will
list the coefficients of the kn + 2k variables in the order
specified above. We refer to the first kn columns of C as
regular variable columns and the last 2k columns as slack
variable columns. Using this terminology, we can prove the
following lemma.
Lemma 3.1. (a) In any regular variable column of C, there

are at most three non-zero elements. (b) In any slack variable

column of C, there is exactly one element with value 1; the

other entries in that column are 0.

Proof: See (Davidson and Ravi 2019).
To prove the TU property of the constraint matrix C, we

will use the following result, which is Theorem 19.3 in (Schri-
jver 1998).
Theorem 3.1. TU Identity (Schrijver 1998) Let C be a ma-

trix such that all its entries are from {0,+1,�1}. Then C

is totally unimodular, i.e., each square submatrix of C has

determinant 0, +1, or �1 if every subset of rows of C can be

split into two parts A and B so that the sum of the rows in

A minus the sum of the rows in B produces a vector all of

whose entries are from {0,+1,�1}.

Theorem 3.2. The matrix C formed by the coefficients of
the constraints used to encode Equations (2) through (4) is
totally unimodular.

Proof: See (Davidson and Ravi 2019).
An Alternative More Efficient Algorithm Only For Strict
Fairness. It is also possible to obtain another efficient al-
gorithm for MCMF using the following idea. Given an ar-
bitrary distribution of the special items into k clusters, we
use Lemma 3.2 (below) to identify which clusters have an
“excess” amount of special items and which ones are “de-
ficient” with respect to special items. It can be seen using
Lemma 3.2, the total number of excess items gives the lower
bound on the number of special items that must be moved to
achieve strong fairness. The algorithm provides an optimal
solution by ensuring that the number of special items moved
between clusters is equal to the lower bound. As the details of
the algorithm involve many cases, a description of the algo-
rithm is given in (Davidson and Ravi 2019). This algorithm’s
worst-case running time is better than that of an LP solver.

The following result shows that there exists a distribution
of special items into clusters that is a necessary and sufficient
condition for a strongly fair clustering of D.
Lemma 3.2. [A necessary and sufficient condition for
Strong Fairness.] Let D be a data set with one binary pro-

tected attribute x. Let Dx ✓ D denote the subset of special

data items and let Nx = |Dx|. Let q and r be non-negative

integers such that Nx = qk + r with k being the number of

clusters and 0  r  k � 1. A partition of D into k clusters

is strongly fair with respect to x if and only if it has exactly

r clusters each with dNx/ke special data items and k � r

clusters each with bNx/kc special data items.

Proof: See (Davidson and Ravi 2019).

4 Other Variations that Are and Are Not TU
Here we discuss variations some of which lead to constraint
matrices with the TU property while others do not. It is
important to bear in mind that the proof of TU only depends
on the coefficients of the constraint matrix. It does not depend
on the objective function (which is why we can have the
variations such as those in Table 1); nor does it depend on
the right hand side of the constraints.
Allowing Overlapping Clusters. A desirable situation to
enforce fairer cluster is to allow an instance to belong to
multiple (s) clusters. Our slack variable formulations easily
facilitates an instance belongs to at most s clusters. This has
the benefit of spreading the protected individuals to multiple

clusters, that is we have
P

i zi,j = s, 8j but since this does
not change the coefficients of the constraint matrix (only the
constant in the equality) this formulation is also TU.
Multiple Protected Variables. When there are r � 2 pro-
tected variables, r� 1 additional sets of constraints similar to
Equations (2) and (3) must be added. Since the same data item
may have many protected attributes, it is not clear whether
the resulting constraint matrix satisfies the TU property. De-
termining if this case satisfies the TU property will be left for
future work.
Weighted or Continuous Protected Variables. The proofs
of TU require the constraint matrix to contain entries of only
{�1, 0,+1}. In general, any work that requires degrees of
protection (i.e., age) even if encoded in ordinal form cannot
be encoded as TU matrix to our knowledge.

5 Difficulty of Satisfying Group and
Individual Level Fairness

Our measure of strong fairness (Definition 1.1) is a group
(cluster) level measure (Barocas and Selbst 2016). An al-
ternative measure of fairness is individual level (Barocas
and Selbst 2016) where we require similar individuals to be
treated/clustered the same. This can be encoded as the popu-
lar must-link (ML) constraints (Wagstaff and Cardie 2000;
Basu, Davidson, and Wagstaff 2008) where the constraint
ML(a, b) requires data items a and b to be in the same cluster.

As shown in Theorem 3.2 satisfying strong fairness is com-
putationally tractable. Similarly the feasibility problem with
respect to ML constraints (i.e., given a data set D, an inte-
ger k and a set S of ML constraints, can D be partitioned
into k clusters so that all the ML constraints in S are sat-
isfied?) can also be solved efficiently (Davidson and Ravi
2007). However, we now show satisfying both requirements
is computationally intractable (Theorem 5.1). We start with a
definition of the corresponding feasibility problem.
Feasibility of Strongly Fair Clustering under ML Con-
straints (FSFC-ML)
Instance: A dataset D where each item has a set of at-
tributes, a protected attribute x, an integer k  |D|, a set S
of ML constraints.
Question: Can D be partitioned into k clusters so that the
resulting clustering (i) is strongly fair with respect to x and
(ii) satisfies all the ML constraints in S?

The following result points out that FSFC-ML is computa-
tionally intractable.
Theorem 5.1. Problem FSFC-ML is NP-complete.

Proof: We use a reduction from the 3-PARTITION problem
(Garey and Johnson 1979). The details are in (Davidson and
Ravi 2019).

A consequence of Theorem 5.1 is that the minimum mod-
ification problem where the goal is to achieve group level
fairness (as per our definition) and individual level fairness is
computationally intractable.

6 Experimental Results
To illustrate the usefulness of our method we explore several
large data sets (Adult/Census, Twitter Healthcare and NYT)

on both k-means, k-medians and spectral clustering algo-
rithms. Since no other work attempts to post process results
to make them fairer we do not present the standard “Us vs
Them” tables of results but instead attempt to illustrate our
work’s uses, limitations and comparisons to fair-by-design
clustering algorithms. We attempt to answer the following:
Q1. What is the impact of our modification approach on real
world data sets? Can our objectives in Table 1 find fairer
clusters whilst also retaining high quality clustering?
Q2. How does making existing clusterings fairer compare
to approaches that find fair clusterings to begin with (e.g.,
Chierichetti et al. (2017))?
Q3. What is the approximate run time of our method and the
impact of increasing the number of instances and clusters?

We begin with an illustrative data set (⇡ 50k instances)
used by many previous fairness papers and the move onto a
larger collection of data sets (⇡ 58K and 300k instances).

6.1 Q1 - Effects of Post-Processing
Here we first analyze the well studied Adult dataset (e.g.,
(Chierichetti et al. 2017; Backurs et al. 2019)) that consists
of 48,842 individuals (males 66.8%, females 33.2%) from
the UCI repository (Dheeru and Karra Taniskidou 2017).
Case Study: Post-Processing Results of k-Means. The best
clustering result of partitioning this data into 5 clusters using
k-means is shown in Table 2. We immediately see that the
first two clusters are desirable from a marketing perspective
as they consist of highly educated individuals with high gains
(related to income) who can be targeted for better loans, credit
cards, ads etc. to them. However, they are overwhelmingly
male, with no more than 21% of the total population per
cluster being female. Note the proportion of females in this
data set is 33.2%.

To make these first two clusters fairer we apply our method
by placing bounds on the first and second cluster’s protected
status ratios to be 0.5 ±0.05 with the remaining clusters’
proportion of females to be their current values as reported
in Table 2 ±0.15. This is achieved by setting the Ui and Li

bounds in Equations (2) and (3). We then applied the minimal
modification method with the second objective in Table 1
as it is compatible with the k-means objective. The results
are shown in Table 3. Since we used k-means clustering we
measure the impact of our modified clustering in terms of
the increase of the distortion (the objective function used by
k-means). We found that female instances from Cluster 4
were placed in Cluster 1 and Cluster 2.

The results show several interesting insights:
1. We find that when only modifying to make clusters fairer,
the distortion only increased by 2%. This indicates our objec-
tive function in Table 1 is useful at ensuring the clustering
quality is not diminished.
2. However, the description and sizes of the clusters do
change (highlighted by bold in Table 3) sometimes adversely.
For example, the second cluster now becomes less desirable
from a marketing perspective as it contains less educated
individuals who are not married. This motivates our next
experiments on multiple protected attributes.
Experiments with multiple protected attributes to over-
come challenges. The last item in the above list is a chal-

Cluster 1 2 3 4 5
Female 21% 12% 25% 51% 14%
Size 5352 2776 15180 20182 5352
age 42 47 43 31 46
educ. Bachelors Bachelors HS-grad Some-

college
Some-
college

status Married Married Married Never Married

occup. Prof Sales Craft Prof Exec
gain 3910 2887 353 233 2556

Table 2: For k-means and census dataset. A description of
the best clustering found using k = 5 (minimized distortion
over 1000 random restarts) and the fraction of the protected
variable (females) per cluster. The distortion of the solution
is 110402.48. This is the given clustering we shall minimally
modify to obtain results in Tables 3 and 4.

Cluster 1 2 3 4 5
Female 45% 45% 34% 25% 28%
Size 5923 6321 10231 14001 12366
age 41 43 44 35 45
educ. Bachelors HS-

grad
HS-grad Some-

college
Bachelors

status Married Never Married Never Married

occup. Prof Sales Craft Prof Sales
gain 2834 2532 1431 452 2641

Table 3: For k-means, census dataset and our method. A
description of the clusters found using our method (using
second objective in Table 1) by minimally modifying the clus-
tering described in in Table 2. The distortion of this solution
increased approximately 2% to 112400.68. Compare with
Table 2. Interesting changes between that table are bolded.

Attribute Focus Distortion
Increase

Fairness
Decrease per
(Chierichetti et
al. 2017)

Education 2.1% 1.3%
Marital Status 1.8% 2.5%
Education +
Marital Status

8.0% 3.6%

Keep Cluster Sizes ±0.05% 15.4% 0.1%
Education + Keep Cluster
Sizes ±0.05%

19.8% 0.8%

Marital Status + Keep Cluster
Sizes ±0.05%

20.3% 0.9%

Education + Marital Status +
Keep Cluster Sizes ±0.05% 23.6% 0.8%

Table 4: k-means, census dataset and our method with mul-
tiple constraints on variables. The distortion increase of the
modified to be fairer (for gender) clustering over the cluster-
ing in Table 2 but we now require other properties in Table 2
to be retained.

lenge with just balancing a single protected variable. To ad-
dress this, we can constrain other variables, even though they
are not protected. It is important to realize that we can con-
strain the size of the clusters by creating a dummy protected

variable that every instance possesses. Thus to better ensure
fairness (wrt to gender) across the clusters whilst retaining
other properties of the two desirable clusters we also con-
strain education, marital-status. The increase in
distortion for these more complex experiments is shown in
Table 4. Not surprisingly, the requirement of keeping clus-
ter sizes similar to their previous values produces a greater
increase in distortion. Next we measure the fairness of our
clusterings using the classic fairness measure of (Chierichetti
et al. 2017). As expected we find (Table 4 last column) no
large difference as both measures are based on cardinality. In
question Q2 we explore whether the two methods produce
different results.
More Data Sets and Experiments With k-Means and
Spectral Clustering. We now explore two larger data sets: (i)
the NYT Articles Bags of Words Data Set (300,000 instances)
and (ii) Twitter Data of Health News (58,000 instances). Each
data set is represented by the 1000 most frequent words in-
cluding gender (male, female), race (black, hispanic, white)
and age (elderly, young). The former data set is already pro-
cessed whilst we processed the latter using the BOW toolkit
(https://www.cs.cmu.edu/⇠mccallum/bow/). For each data
set we find the best k = 10 clustering using plain k-means
and spectral clustering + k-means (both from 1000 random
restarts). We then reported the increase in distortion and cut
cost by ensuring fairness across all clusters for a variety of
key words mentioned in Table 5 and Table 6. For spectral
clustering (von Luxburg 2006) we created a fully connected
graph based on the cosine distance between bags of words
vectors and then created a spectral embedding into 10 dimen-
sional space and used k-means to find 10 clusters. We used
our third objective function in Table 1 which is in principle
similar to the spectral clustering objective function (from a
graph cut perspective); see Tables 5 and 6.

As before we found that modifying a clustering to ensure
fairness for a single protected attribute can be achieved by
minimally increasing the objective function of the algorithm.
However, balancing multiple protected attributes produces a
greater increase than for the sum of the increase for the same
two variables. For example in Table 5 balancing Female
and Black produced a distortion increase of 5.9% but just
Female or just Black produces increases of 1.3% and 1.9%
respectively.

6.2 Q2 - Direct Fair Clustering Comparison
Here we answer the important question of how post-
processing an existing clustering to make it fairer compares
to finding fair clusters to begin with. In Table 4 we showed
that the classic measure of fairness (Chierichetti et al. 2017)
(see section 2) is similar to our own as they are both car-
dinality based. However, this is different from the question
of does post-processing to increase fairness find the same,
better or worse clusterings as attempting to find a fair clus-
tering to begin with. To explore this question, we used the
scalable version of (Chierichetti et al. 2017), that is, the work

Word Focus Distortion
Increase

Cut Cost
Increase

Base Clustering Method 0 0
Female 1.3% 1.8%
Black 1.9% 2.3%
Elderly 2.3% 3.1%
Female, Black 5.9 % 7.2%
Female, Elderly 6.8% 8.3%
Black, Elderly 7.1% 8.9%
Female, Black, Elderly 13.9% 17.3%
Female + Cluster Sizes ± 5% 18.1% 20.3%

Table 5: k-means, spectral clustering and our method for NYT
data set. The increase in distortion if we minimally modify
the clustering of the NYT Articles Bag of Words Data Set
with 10 groups using k-means and spectral clustering. Each
row shows the increase in distortion and cut-cost caused by a
fairness requirement.

of (Backurs et al. 2019) which implements fair k-medians.
The work on fair spectral clustering (Kleindessner, Awasthi,
and Morgenstern 2019) could be a suitable comparison but
for our data sets of 48k, 58k and 300k instances it was not
scalable as the resultant affinity matrices were nearly 300Gb
large (i.e., to encode a 300k x 300k matrix of short integers).

We performed two experiments. Firstly, we ran both meth-
ods (k-medians1 plus ours (objective function 2 with L2
distance in Table 1) and (Backurs et al. 2019) for k-medians)
on the same collection of bootstrapped samples (50% of the
original data set size) for our three data sets and measured the
normalized Rand Index between the clusterings found by the
two methods. If the Rand Index were 1 the clusterings found
are identical. Table 7 (2nd column) shows our methods do not
find the exact same clustering. However, if we post-process
(using our method and a constraint to retain cluster sizes) the
result of the (Backurs et al. 2019) method it does not unduly
change the resultant clustering (column 3 Table 7).

We next explored how the output of the two methods are
different. To achieve this we plot the census data experiments
in a 2D scatter plot where one dimensions is the objective
of the k-medians algorithm whilst the other is the fairness
criterion used by the algorithms. Since the two notions of
fairness used are similar but not identical we have two plots
in Figure 1. We find that as expected each method is better at
optimizing its own measure of fairness but our method is on
average better at finding more compact clusters (according
to the objective of k-medians). This is not unexpected as the
work of (Backurs et al. 2019) guarantees fairness but has a
weaker approximation bound than MATLAB’s k-medians
implementation.

6.3 Q3 - Scalability
The TU proof ensures that an ILP formulation can be solved
by an LP solver, but this can still take polynomial time. For
our previous data sets we found that instances of the Adult

1The theory and applied literature use different terms for the
same algorithm. We use the k-medoid MATLAB algorithm which
is referred to the k-medians algorithm in the theory literature.

Word Focus Distortion
Increase

Cut Cost
Increase

Base Clustering Method 0 0
Female 2.4% 2.1%
Elderly 3.2% 3.8%
Female, Elderly 7.4% 8.8%
Female + Cluster Sizes ± 5% 17.3% 19.4%

Table 6: k-means and spectral clustering and our method for
Healthcare Data Set. The increase in distortion if we mini-
mally modify the clustering of the Twitter Healthcare Data
Set with 10 groups using k-means and spectral clustering.
Each row shows the increase in distortion and cut-cost caused
by adding a fairness requirement.

Data Set Adjusted
RI

Change in Fairness (number
of instances moved) after post-
processing results from (Back-
urs et al. 2019).

Adult/Census 0.95 0.18% (0.05%)
NYT 0.75 1.1% (0.13%)
Healthcare 0.85 1.3% (0.11%)

Table 7: Comparison of post-processing for fairness versus
searching for fair clusterings for 350 bootstrap samples each
of the Census, NYT and Twitter data sets. The second col-
umn shows the Rand Index (RI) between the clustering each
method finds averaged over 100 bootstrap samples. The third
column shows how applying our method after finding a fair
clustering decreases the fairness.

Figure 1: For 350 boostraps of the Census data set, the com-
parison of our method (crosses) vs Chierichetti et al. (2017)
(circles) of the k-medians loss versus our measure of fairness
(left) and Chierichetti et al. measure (right).

k run-time
2 3.8s/4.3s
4 6.1s/6.5s
8 8.3s/9.1s

16 27.30s/23.1s
32 75.43s/85.1s

n run-time
1000 0.20s/0.29s
2000 0.81s/0.95s
4000 1.11s/1.45s
8000 3.23s/4.93s

16000 16.41s/18.55s
32000 69.32s/73.81s

Table 8: Scalability and NYT (left) and Twitter Health care
(right) data sets. The mean run time over 100 experiments
on a single core of a MacBook Pro laptop (i5 processor)
for a randomly created subset of the data sets. Left: 10,000
instances data set and varying numbers of clusters. Right: 5
clusters and varying sized data set.

data set took under one minute to run on a single core of
a MacBook laptop. For the larger NYT data set time was
under 5 minutes and for the Twitter data set it was 4 minutes.
Here we wish to see how the run time of our algorithm is
affected by increasing the number of clusters and number of
instances. We explore the laptop run time for the NYT and
Twitter Healthcare data sets in Table 8 of various samples. We
averaged results over 100 experiments with 25 experiments
each balancing Female, Black, Elderly and Hispanic to match
the population ratios.

7 Discussion and Conclusions
We explored the novel idea of post-processing the results of
existing clustering algorithms to make them fairer. We for-
mulated the problem as an ILP and showed using an intricate
case analysis that the resultant constraint matrix is totally uni-
modular (TU). This means that we can solve the ILP using
an LP solver and thus obtain a polynomial time algorithm.
We showed some variations such as a relaxed condition for
fairness, overlapping clusters and importance penalty func-
tions also have TU constraint matrices. However, the TU
requirement means that interesting settings such as continu-
ous protected variables may not be efficiently solvable.

Our complexity results showed an interesting conundrum.
Though finding a strictly fair clustering for a single protected
status variable (a type of group level fairness) is tractable
and though finding a clustering to satisfy popular must-link
constraints (which can encode individual-level fairness) is
also tractable, satisfying both is intractable.

Our experiments aimed to shed light on the strengths and
limitations of the approach and the general problem of mak-
ing clusterings fairer. We found that though we were able to
improve the fairness of large data sets efficiently on standard
laptops some as big as 300K instances in 5 minutes or under,
we observed several interesting phenomena when attempting
to find fair clusters. Firstly, making existing clusterings fair
for a single protected variable can be achieved with minimal
decrease in the clustering quality for a variety of clusterings
produced by fundamentally different algorithms (k-means
and spectral clustering). But this could have the effect of
unduly influencing the composition of the clustering (e.g.,
cluster 2 in Table 3). We showed how this could be addressed
by using our formulation to balance multiple variables (even
though they are not protected) including the cluster sizes.
However, balancing multiple protected variables can decrease
the cluster quality substantially. We show that our measure of
fairness does not produce fundamentally different results than
that of the seminal work in the field (Chierichetti et al. 2017)
by showing (for example) that post-processing the results of
their output minimally changes the clustering. However, our
method does have the benefit of not being tied to a particular
clustering algorithm and is scalable due to our TU result.

Acknowledgments: We thank the referees for helpful com-
ments. This work was supported in part by NSF Grants IIS-
1908530 and IIS-1910306 titled: “Explaining Unsupervised
Learning: Combinatorial Optimization Formulations, Meth-
ods and Applications”.

References
Backurs, A.; Indyk, P.; Onak, K.; Schieber, B.; Vakilian, A.;
and Wagner, T. 2019. Scalable fair clustering. To Appear in

ICML.
Barocas, S., and Selbst, A. D. 2016. Big data’s disparate
impact. California Law Review 671:671–732.
Basu, S.; Davidson, I.; and Wagstaff, K. 2008. Constrained

clustering: Advances in algorithms, theory, and applications.
CRC Press.
Bera, S. K.; Chakrabarty, D.; and Negahbani, M. 2019. Fair
algorithms for clustering. arXiv preprint arXiv:1901.02393.
Chierichetti, F.; Kumar, R.; Lattanzi, S.; and Vassilvitskii,
S. 2017. Fair clustering through fairlets. In Proc. NeurIPS,
5036–5044.
Davidson, I., and Ravi, S. S. 2007. The complexity of
non-hierarchical clustering with instance and cluster level
constraints. Data Min. Knowl. Discov. 14(1):25–61.
Davidson, I., and Ravi, S. S. 2019. Making existing
clusterings fairer: Algorithms, complexity results and in-
sights. Technical report, University of California, Davis,
CA . https://web.cs.ucdavis.edu/⇠davidson/Publications/
TR AAAI2020.pdf.
Dheeru, D., and Karra Taniskidou, E. 2017. UCI machine
learning repository.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and removing
disparate impact. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, Sydney, NSW, Australia, August 10-13, 2015, 259–
268.
Friedler, S. A.; Scheidegger, C.; and Venkatasubramanian,
S. 2016. On the (im)possibility of fairness. CoRR

abs/1609.07236.
Garey, M. R., and Johnson, D. S. 1979. Computers and

Intractability: A Guide to the Theory of NP-completeness.
San Francisco: W. H. Freeman & Co.
Kleindessner, M.; Awasthi, P.; and Morgenstern, J. 2019.
Fair k-center clustering for data summarization. To Appear

in ICML.
Kleindessner, M.; Samadi, S.; Awasthi, P.; and Morgenstern,
J. 2019. Guarantees for spectral clustering with fairness
constraints. To Appear in ICML.
Kuo, C.-T.; Ravi, S.; Dao, T.-B.-H.; Vrain, C.; and Davidson,
I. 2017. A framework for minimal clustering modification
via constraint programming. In AAAI, 1389–1395.
Rösner, C., and Schmidt, M. 2018. Privacy preserving clus-
tering with constraints. arXiv preprint arXiv:1802.02497.
Schrijver, A. 1998. Theory of linear and integer program-

ming. John Wiley & Sons.
Thanh, B. L.; Ruggieri, S.; and Turini, F. 2011. k-NN
as an implementation of situation testing for discrimination
discovery and prevention. In Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Diego, CA, USA, August 21-24, 2011,
502–510.

Vaidya, P. M. 1989. Speeding-up linear programming us-
ing fast matrix multiplication (extended abstract). In 30th

Annual Symposium on Foundations of Computer Science, Re-

search Triangle Park, North Carolina, USA, 30 October - 1

November 1989, 332–337.
von Luxburg, U. 2006. A tutorial on spectral clustering.
Technical Report TR-149, Max Planck Institute for Biologi-
cal Cybernetics, Germany.
Wagstaff, K., and Cardie, C. 2000. Clustering with instance-
level constraints. In Proceedings of the Seventeenth National

Conference on Artificial Intelligence and Twelfth Conference

on on Innovative Applications of Artificial Intelligence, July

30 - August 3, 2000, Austin, Texas, USA., 1097–1192.
Xu, R., and Wunsch, D. C. 2005. Survey of clustering algo-
rithms. IEEE Transactions on Neural Networks 16(3):645–
678.

Part 1: Proofs of Results in the Main Part of the Paper

8 Statement and Proof of Lemma 3.1

Before the statement and proof of this Lemma, we introduce some terminology which is also used in the proof of Theorem 3.2 in
the next section.

We note that the total number of constraints resulting from Equations (2)–(4) is 2k+n. This is because there are two equations
for each of the k clusters (Equations (2) and (3)) and there is one equation (Equation (4)) for each of the n data items. We
refer to the first 2k equations as Type 1 constraints and the last n equations as Type 2 constraints. Further, among the Type 1
constraints, we will refer to the ones corresponding to upper bounds (i.e., the constraints in which slack variables u1, . . ., uk

appear) as positive Type 1 constraints since the coefficients p1, . . ., pn appear with a ‘+’ sign. Likewise, among the Type 1
constraints, we will refer to the ones corresponding to lower bounds (i.e., the constraints in which slack variables l1, . . ., lk
appear) as negative Type 1 constraints. For each positive Type 1 constraint, note that there is a corresponding negative Type 1
constraint; such constraints are referred to as companion pairs.

Further, in the above equations, there are kn regular variables (namely, z11, z12, . . ., z1n, . . ., zk1, zk2, . . ., zkn) and 2k
slack variables (namely u1, . . ., uk and l1, . . ., lk). For the purpose of constructing the constraint matrix C, we will use the
following order of these kn + 2k variables: hz11, z12, . . ., z1n, . . ., zk1, zk2, . . ., zkn, u1, . . ., uk, l1, . . ., lki. Matrix C has
2k+n rows (one corresponding to each constraint) and nk+2k columns (one corresponding to each variable). In C, we will list
the 2k Type 1 constraints first (in the order specified by Equations (2) and (3)) followed by the n Type 2 constraints (in the order
specified by Equation (4)). Rows of C corresponding to Type 1 and Type 2 constraints will be referred to as Type 1 rows and
Type 2 rows respectively. Note that each entry of C is from {�1, 0,+1}. In each row of C (which specifies one constraint), we
will list the coefficients of the kn+ 2k variables in the order specified above. We refer to the first kn columns of C as regular
variable columns and the last 2k columns as slack variable columns.

We are now ready to state and prove the following the lemma.
Statement of Lemma 3.1: (a) In any regular variable column of C, there are at most three non-zero elements. (b) In any slack
variable column of C, there is exactly one element with value 1; the other entries in that column are 0.
Proof: (a) Consider any regular variable column and suppose it corresponds to variable zij . In Type 1 rows of that column, the
variable zij appears with coefficient pj or �pj which may both be non-zero. In Type 2 rows, variable zij appears with coefficient
+1 in the row corresponding to data item j. Thus, there are at most three non-zero elements in the column.
(b) Each slack variable appears in exactly one Type 1 row; in that row, its coefficient is +1. No slack variable appears in any
Type 2 row. Thus, in any column corresponding to a slack variable, there is exactly one non-zero element (namely, a +1).

9 Statement and Proof of Lemma 3.2
Statement of Lemma 3.2: Let D be a data set with one binary protected attribute x. Let Dx ✓ D denote the subset of special
data items and let Nx = |Dx|. Let q and r be non-negative integers such that Nx = qk + r with k being the number of clusters
and 0  r  k � 1. A partition of D into k clusters is strongly fair with respect to x if and only if it has exactly r clusters each
with dNx/ke special data items and k � r clusters each with bNx/kc special data items.
Proof: The “if” part of the theorem is obvious since each cluster has either dNx/ke or bNx/kc special items. We now prove the
“only if” part. Since Nx = qk + r and 0  r  k � 1, we have q = bNx/kc. If r = 0, then dNx/ke = bNx/kc = q. If r � 1,
then bNx/kc = q and dNx/ke = q + 1. The reader should keep these observations in mind throughout the proof.

We will first prove that in any clustering that is strongly fair with respect to x, there are exactly r clusters that have dNx/ke
special data items. We do this by considering two cases based on the value of r.
Case 1: r = 0.

In this case, Nx = qk and q = bNx/kc = Nx/k. Thus, the strong fairness condition requires that each cluster must have
exactly q = Nx/k special data items. We can think of this as having exactly k clusters each with q = bNx/kc special data items
and r = 0 clusters each with dNx/ke special data items.
Case 2: r � 1.

In this case, q = bNx/kc and since r � 1, dNx/ke = q + 1. Thus, the strong fairness condition requires that each of the k

clusters must have either q or q+1 special data items. Let ↵ clusters have q+1 special data items. We must show that ↵ = r. To
see this, note that there are ↵ clusters with q + 1 special items and k � ↵ clusters with q special items. Hence, the total number
of special items in all the clusters is ↵(q+1)+ (k�↵)q = qk+↵. Since the total number of special items is exactly qk+ r, we
have qk + r = qk + ↵; that is, ↵ = r as required. This completes the proof that exactly r clusters have dNx/ke special items.

It is now easy to show that the remaining k � r clusters must have exactly bNx/kc special items each. This follows from the
facts that exactly r clusters have dNx/ke special items and each cluster must have either dNx/ke or bNx/kc special items. This
completes our proof of Lemma 3.2.

10 Encoding Scheme and Proof of Total Unimodularity
Encoding Scheme Used for ILP. The allocation matrix Z is encoded as nk variables and n constraints. The upper and lower
bounds constraints have k variables. Table 9 shows the various ways we encode the constraints. For the counting constraints
(Equations (2) and (3)) there are k constraints (one for each cluster) and n equations (one for each data item). It is important to
realize all equations are essentially counting constraints then the coefficient to these will be either: i) identity matrices or ii)
matrices of all zeros. For example, pi is encoded as an k ⇥ k identity matrix if instance i has the protected status otherwise it is a
k ⇥ k matrix of all zeros, thus the encoding of pi (and �pi) consists of n vertically concatenated matrices of size k ⇥ k since
these constraints are for all clusters. This allows us to effectively count the number of protected instances in each cluster.

Constraint Size Coefficients (Encoding
Mechanism)

PZ  U (Eqn. 2) k ⇥ kn n matrices size k ⇥ k horizon-
tally concatenated. I encodes
protected status.

�PZ � P
(Eqn, 3)

k ⇥ kn As above but �I used instead
of I .P

i zi,j = 1 8j
(Eqn. 4)

n⇥ kn For row i only column entries
(i� 1) ⇤ k + 1 . . . (i) ⇤ k
set to 1.

Slack U (Eqn. 2) k ⇥ k Identity matrix
Slack L (Eqn. 3) k ⇥ k Identity matrix

Table 9: The encoding details for the variables in Equations (2), (3) and (4).

Statement of Theorem 3.2: The matrix C formed by the coefficients of the constraints used to encode Equations (2) through
(4) is totally unimodular.

Proof: In proving the result, we use the terminology regarding the constraints and variables introduced in the previous section.
As mentioned earlier, each entry of C is from {�1, 0,+1}. Consider any subset X of rows of C. We will show that X can be

partitioned into two sets A and B to satisfy the condition mentioned in Theorem 3.1. Our partitioning scheme is as follows.
1. All positive Type 1 rows of X are put into A.
2. If a negative Type 1 row appears along with its companion positive Type 1 row in X , then the negative Type 1 row is also put
into A.
3. If a negative Type 1 row appears in X without its companion positive Type 1 row, then the negative Type 1 row is put into B.
4. All Type 2 rows of X are put into B.

It is possible that the above construction causes one of A or B to be empty; in that case, the sum of the rows in that part is a
row vector with all zeros.

Let row vectors S(A) and S(B) denote the sums of the rows in sets A and B respectively. Our goal is to show that all the
elements of the row vector Q = S(A)� S(B) are from {�1, 0,+1}. To prove this, consider any entry ↵ of the vector Q. There
are two main cases depending on the type of column corresponding to ↵.
Case 1: Entry ↵ corresponds to a slack variable (ui or li) column. In this case, from Lemma 3.1, we know that only one element
in the corresponding column of C has the value 1 and the rest have the value 0. So, if the row corresponding that element appears
in A, then the value of ↵ will be +1; otherwise, it will be �1.
Case 2: Entry ↵ corresponds to a regular variable zij . In this case, from Lemma 3.1, we know that in the matrix C, there are at
most three non-zero elements in the column corresponding to zij . There are four subcases since the number of non-zero entries
in this column corresponding to the given set of rows X can be 0, 1, 2 or 3.
Case 2.1: Among the rows in X , there are no non-zero elements in the column corresponding to ↵. In this case, the corresponding
entries in S(A) and S(B) are both 0 and hence the value of ↵ is 0.
Case 2.2: Among the rows in X , there is only one non-zero element in the column corresponding to ↵. In this case, the non-zero
element (+1 or �1) appears in exactly one of S(A) and S(B), so the the value of ↵ is +1 or �1.
Case 2.3: Among the rows in X , there are two non-zero elements in the column corresponding to the entry ↵. There are three
possible subcases here.
Case 2.3.1: The non-zero elements are from two Type 2 rows. From Lemma 3.1, we know that in any column of a Type 2 row,
there is at most one non-zero entry. So, this case cannot arise.
Case 2.3.2: The non-zero elements are from two Type 1 rows. Here, the non-zero elements must be from two companion Type 1
rows (since rows that are not companions don’t have a non-zero entry in the same column). Here, our construction adds them both
to A and hence the corresponding entry of S(A) is 0. Since there are no other non-zero entries in that column, the corresponding
entry of S(B) is also 0; that is, the value of ↵ is zero.

Case 2.3.3: Suppose the non-zero elements correspond to a Type 1 row and a Type 2 row. Note that our construction placed the
Type 2 row in B. Hence the corresponding entry in S(B) is +1. If the other row is a positive Type 1 row, it was placed in A and
the corresponding entry in S(A) is also +1, thus making the value of ↵ to be 0. If the other row is a negative Type 1 row, it was
also placed in A (since its companion is not in X), and the corresponding entry in S(B) is 0, thus again making the value of ↵ to
be 0. This completes all the subcases of Case 2.3.
Case 2.4: Among the rows in X , there are three non-zero elements in the column corresponding to the entry ↵. In this case,
X must contain two Type 1 companion rows and a Type 2 row which contains a 1 in the column corresponding to ↵. By
our construction, the two companion rows were placed in A and the elements of those rows in the column corresponding
to ↵ are +1 and �1; thus, the corresponding entry of S(A) is 0. Since the Type 2 row is in B and has the element 1 in the
column corresponding to ↵, the corresponding entry of S(B) is +1. Hence, the value of ↵ is �1. This completes the proof of
Theorem 3.2.

11 An Alternative Algorithm for MCMF

Idea behind the algorithm. Given an arbitrary distribution of the special items into k clusters, we use Lemma 3.2 to identify
which clusters have an “excess” amount of special items. We move the excess items into a temporary container and appropriately
distribute the items in the container to other clusters which are “deficient” with respect to special items. As will be shown using
Lemma 3.2, the total number of excess items gives the lower bound on the number of special items that must be moved to achieve
strong fairness. The algorithm provides an optimal solution by ensuring that the number of special items moved between clusters
is equal to the lower bound. The identification of clusters which have excess items and those that are deficient depend on the
initial distribution of the special items in the k clusters.

Notation used in the description of the algorithm: In specifying this algorithm, we assume that we need to only deal with
special data items. (Data items that are not special play no role in determining fairness.) Thus, the input to the algorithm is
an arbitrary partition ⇧ of Dx have k � 1 clusters denoted by C1, C2, . . ., Ck, with cluster Cj containing �j special items,
1  j  k. We also assume that the clusters are numbered 1 through k so that �1 � �2 � · · · � �k. (This can be ensured
in O(k log k) time by sorting the clusters.) The output of the algorithm is a partition ⇧0 of Dx into k clusters such that ⇧0 is
strongly fair with respect to the protected attribute x. The algorithm constructs ⇧0 by moving the minimum number of special
items between clusters. The steps of our algorithm (which we call OPT-Modification) for the minimal modification problem are
described below.

Steps of Algorithm OPT-Modification:

1. For each cluster Cj in ⇡ if �j = dNx/ke or �j = bNx/kc, then output “⇡ is strongly fair” and stop.

2. Let Nx = qk + r, where q � 0 and 0  r  k � 1. Use Case 1 or Case 2 depending upon the value of r.

Case 1: r = 0. Here, Nx = qk. (In this case, the algorithm must ensure that each cluster has exactly Nx/k special items.)
(a) Let clusters C1, . . ., Ct have > Nx/k special items. (Other clusters have  Nx/k special items.)
(b) From each cluster Cj , 1  j  t, move �j �Nx/k special items into a temporary container T .
(c) For each cluster Cp such that �p < Nx/k, move Nx/k � �p special items from T into Cp.

Case 2: r > 0. Here, Nx = qk + r. (In this case, as required by Lemma 3.2, the algorithm must ensure that exactly r

clusters have dNx/ke special items and r � k clusters have bNx/kc special items.)
(a) Partition the clusters into 4 groups �1, �2, �3 and �4 as follows. (Some of the groups may be empty.)

• Let �1 consist of clusters C1, . . ., Ct with > dNx/ke special items.
• Let �2 consist of clusters Ct+1, . . ., Cp with exactly dNx/ke special items. (Thus, groups �1 and �2 together have p

clusters.)
• Let �3 consist of clusters Cp+1, . . ., Cm with exactly bNx/kc special items.
• Let �4 consist of the remaining clusters, that is, Cm+1, . . ., Ck with < bNx/kc special items.

(b) Use one of Cases 2.1, 2.2 or 2.3 depending upon the comparison between p and r.
Case 2.1: p < r (i.e., Groups �1 and �2 together have < r clusters).

(i) From each cluster Cj in �1, move �j � dNx/ke special items into a temporary container T .
(ii) For each of the first r � p clusters Cj in �3 [�4, move �j � dNx/ke special items from T into Cj .
(iii) For each of the other clusters Cj in �3 [G4, move �j � bNx/kc special items from T into Cj .

Case 2.2: p = r (i.e., Groups �1 and �2 together have exactly r clusters).
(i) From each cluster Cj in �1, move �j � dNx/ke special items into a temporary container T .
(ii) For each of the clusters Cj in �4, move �j � bNx/kc special items from T into Cj .

Case 2.3: p > r (i.e., Groups �1 and �2 together have > r clusters). Use one of the subcases 2.3.1, 2.3.2 or 2.3.3
depending on how t compares with r.
Case 2.3.1: t > r (i.e., group �1 has more than r clusters).

(i) From each cluster Cj in �1, move �j � dNx/ke special items into a temporary container T .
(ii) From each cluster Cj , r  j  p, move �j � bNx/kc special items into T .
(iii) For each cluster Cj 2 �4 move �j � bNx/kc special items from T into Cj .

Case 2.3.2: t = r (i.e., group �1 has exactly r clusters).
(i) From each cluster Cj 2 �1, move �j � dNx/ke special items into the temporary container T .
(ii) From each cluster Cj 2 �2, move �j � bNx/kc = 1 special item into T .
(iii) For each cluster Cj 2 �4, move �j � bNx/kc special items from T into Cj .

Case 2.3.3: t < r (i.e., group �1 has < r clusters).
(i) From each cluster Cj 2 �1, move �j � dNx/ke special items into the temporary container T .
(ii) From each cluster Cj , r � t+ 1  j  p, move �j � bNx/kc = 1 special item into T .
(iii) For each cluster Cj 2 �4, move �j � bNx/kc special items from T into Cj .

3. Output the modified partition ⇧0 = hC1, C2, . . . , Cki.

12 Statement and Proof of Theorem 5.1
Statement of Theorem 5.1: Problem FSFC-ML is NP-complete.
Proof: It is easy to see that FSFC-ML is in NP since one can guess a clustering C of D into k clusters and verify that it satisfies
the two required conditions.

To prove NP-hardness, we use a reduction from the 3-PARTITION problem (Garey and Johnson 1979). An instance of the
3-PARTITION problem is specified by two positive integers m and B, a set A = {a1, a2, . . . , a3m} of positive integers such
that B/4 < ai < B/2, 1  i  3m and

P3m
i=1 ai = mB. The question is whether A can be partitioned into m subsets such

that the sum of each subset is equal to B. It is known that 3-PARTITION is strongly NP-complete; that is, the number of bits
needed to represent B and each integer in ai are polynomial functions of logm, the number of bits needed to represent m. Also
note that the condition B/4 < ai < B/2 implies that whenever there is a solution to a 3-PARTITION instance, each of the m

subsets in the partition has exactly three integers from A.
The reduction from 3-PARTITION to FSFC-ML is as follows.

(a) For each integer ai 2 A, we create a set Si containing ai data items, 1  i  m. For each pair of data items p and q in Si, we
create the ML constraint ML(p, q), 1  i  m. (These constraints ensure that in any feasible solution to the FSFC-ML instance,
all the data items in Si must be in the same cluster.)
(b) The data set D for the FSFC-ML instance is given by D = [m

i=1Si. There is one protected attribute x and for each data item
in D, the value of the protected attribute is 1. Thus, the number of special data items is mB.
(c) The number of clusters is set to m.

Using the fact that the numbers of bits needed to represent B and each integer in ai (1  i  m) are polynomial functions of
log2 m (the number of bits needed to represent m), it can be seen that the above construction can be carried out in polynomial
time. We now show that there is a solution to the FSFC-ML instance if and only if there is a solution to the 3-PARTITION
instance.

Suppose there is a solution to the 3-PARTITION instance. Let X1, X2, . . ., Xm denote the partition of the set A into m

subsets. As mentioned earlier, each subset Xj has exactly three integers from A, 1  j  m. Let block Xj contain integers aj1 ,
aj2 and aj3 . Then for 1  j  m, cluster Cj in the solution to the FSFC-ML instance consists of the data items Sj1 [Sj2 [Sj3 .
Clearly, this satisfies all the ML constraints since for each set Si (1  i  3m), all the elements of Si are in the same cluster. To
show that the resulting clustering is strongly fair with respect to the protected attribute x, we start by noting that the number of
special data items is mB. Since there are m clusters, we have bmB/mc = dmB/me = B. Thus, the strong fairness condition
requires that each cluster should have exactly B data items that are special. Since the sum of the integers in each subset Xj is B,
each cluster contains exactly B data items. Since each data item is special, it follows that each cluster has exactly B data items
that are special. In other words, the clustering is strongly fair with respect to x and satisfies all the ML constraints. Thus, we have
a solution to the FSFC-ML instance.

For the converse, assume that we have a solution to the FSFC-ML instance. Let the m clusters be denotes by C1, C2, . . ., Cm.
As argued above, the strong fairness condition requires that each cluster must have exactly B data items that are special. Since
each data item in D is special, it follows that each cluster has exactly B data items. Further, the ML constraints require that for
each Si, 1  i  3m, all the data items in Si must be in the same cluster. Since B/4 < |Si| < B/2 and each cluster has exactly
B data items, it follows that each cluster has all the data items from exactly three of the data sets from S1, S2, . . ., S3m. Suppose
cluster Cj contain the sets Sj1 , Sj2 and Sj3 , 1  j  m. From the cluster Cj , we construct the subset Aj consisting of the
integers aj1 , aj2 and aj3 that correspond to the three sets Sj1 , Sj2 and Sj3 . Since each cluster has exactly B data items, it follows
that the sum of the three integers in Aj is exactly B, 1  j  m. In other words, we have a solution to the 3-PARTITION
instance, and this completes our proof of Theorem 5.1.

