
Active Spectral Clustering

Xiang Wang
Department of Computer Science
University of California, Davis

Davis, CA 95616
xiang@ucdavis.edu

Ian Davidson
Department of Computer Science
University of California, Davis

Davis, CA 95616
davidson@cs.ucdavis.edu

Abstract—The technique of spectral clustering is widely used
to segment a range of data from graphs to images. Our
work marks a natural progression of spectral clustering from
the original passive unsupervised formulation to our active
semi-supervised formulation. We follow the widely used area
of constrained clustering and allow supervision in the form
of pairwise relations between two nodes: Must-Link and
Cannot-Link. Unlike most previous constrained clustering
work, our constraints are specified incrementally by querying
an oracle (domain expert). Since in practice, each query comes
with a cost, our goal is to maximally improve the result with
as few queries as possible. The advantages of our approach
include: 1) it is principled by querying the constraints which
maximally reduce the expected error; 2) it can incorporate
both hard and soft constraints which are prevalent in practice.
We empirically show that our method significantly outperforms
the baseline approach, namely constrained spectral clustering
with randomly selected constraints, on UCI benchmark data
sets.

Keywords-spectral clustering; active learning; constrained
clustering

I. INTRODUCTION

Many real-world applications, such as image segmenta-
tion, social network analysis and data clustering can be
abstracted into a graph partition problem: finding the nor-
malized min-cut (Ncut) of a given graph. Although the
Ncut problem is generally intractable, it is well-known
that its relaxed form can be solved by spectral clustering.
The seminal work by Shi and Malik [1] represents the
first incarnation of spectral clustering which was passive
and unsupervised. However, in many application domains,
considerable domain expertise exists and encoding domain
knowledge into clustering algorithms is important if the
results are to be novel and actionable. To address this
issue, user supervision in the form of pairwise relations
between two nodes of the graph have been proposed [2]:
Must-Link (they belong to the same side of the cut) and
Cannot-Link (they belong to different sides of the cut)
constraints. Constrained clustering, including constrained
spectral clustering, has been extensively studied [2] and
much previous work [3]–[5] has shown that ML and CL
constraints, when used properly, can greatly improve the
quality of the resultant clustering. Those work represents

the second incarnation of spectral clustering: passive and
semi-supervised.

In this work we make the natural and important progres-
sion to the third incarnation of spectral clustering: active
and semi-supervised. In this formulation the constraints are
provided incrementally after querying an oracle rather
than a priori in a batch before clustering begins. Active
and semi-supervised spectral clustering has many natural
problem settings that will see its wide-scale use:

• The constraints can be used as an explicit and elegant
way to perform interactive transfer learning. In this
setting the graph Laplacian is generated from the source
domain and the constraints from the target domain. For
example a given set of facial portraits may naturally
cluster according to hair-style. The constraints (derived
by a domain expert) are used to transfer this structure to
a related but more complex domain such as identifying
gender.

• The graph Laplacian can sometimes be noisy and in-
consistent. This is particularly likely if it is constructed
from complex objects such as images that are of poor
quality, not completely aligned or taken with different
cameras. The oracle then can be used to overcome these
issues.

• Some problems in this domain naturally have a se-
quential aspect. Consider the clustering of a stream of
video (Chapter 18, [2]), it makes most sense to specify
constraints incrementally rather than all at once.

• Previous research [5] showed that in batch constrained
clustering, not all given constraints are equally help-
ful/informative in terms of improving label purity in
the clusters despite the constraints being generated from
the same labels used to measure performance. We
experimentally verify in section IV that incrementally
collecting constraints produces better results.

Therefore, it is a natural and important question to ask:
instead of passively taking a given set of constraints, which
may consist of both helpful and harmful constraints, is
it possible for the algorithm to actively query/fetch only
the constraints that are expected to be helpful? With the
availability of an oracle, we can put constrained spectral

clustering into the context of active learning [6]. Our goal is
to maximally improve the quality of the resultant clustering
(maximizing performance gain) while making as few queries
as possible (minimizing cost). We propose an active learning
framework for constrained spectral clustering, or active
spectral clustering for short. Our framework consists of two
key components:

• A constrained spectral clustering algorithm: This com-
ponent takes the graph and the constraints that have
already been queried as input. It produces a Ncut of
the graph which satisfies the constraints we currently
have.

• A query strategy: This component evaluates the current
cut of the graph as well as the constraints we have,
then decides the best constraint to query next, based
on the principle of maximally reducing the expected
error between our current cluster assignment and the
expected groundtruth assignment.

We apply these two components alternatively and the resul-
tant clustering will be refined over iterations and eventually
converge to the groundtruth result.

Our contributions are:

1) This is the first principled framework for active spec-
tral clustering. It provides a cost-efficient solution to
many real-world applications that need to find the
Ncut of a graph: it actively selects the most helpful
constraints to query from an oracle and thus minimizes
the efforts required from the oracle/domain experts.

2) We propose a ready-to-use active spectral clustering
algorithm as a realization of our framework. The
proposed algorithm is highly flexible and can deal with
both hard and soft constraints. This is of great practical
importance because soft constraints are common in
many applications, especially when the oracle is not
a single human expert, but a group of users who may
give inconsistent answers to the same query [7], [8].

3) We address some important implementation issues for
our method, such as dealing with outliers and runtime
analysis. We also discuss the limitation of our method
in its current form as well as future work.

4) We empirically show that our method significantly
outperforms the baseline method typically used by
practitioners. This is a significant result with practical
implications. It means it is far better to incrementally
and interactively specify constraints rather than getting
them in one large batch.

The rest of the paper is organized as follows: related work
is discussed in Section II; we propose our active spectral
clustering framework in Section III; it is evaluated empiri-
cally in Section IV; implementation issues are discussed in
Section V and future directions are discussed in Section VI;
we conclude our work in Section VII.

II. RELATED WORK

Active clustering is a special sub-category of active learn-
ing algorithms [6]. The difference is that active clustering
algorithms query pairwise relations between two nodes
instead of the labels of individual nodes. Most existing
active clustering methods [3]–[5], [9]–[11] were built upon
hard clustering schemes such as K-means clustering and
hierarchical clustering. Little attention has been paid to the
active learning framework for spectral clustering, which is
the most popular soft clustering scheme and a solution to
many real-world applications.

Xu et al. [12] proposed an active spectral clustering
method that examines the eigenvectors of the graph Lapla-
cian to identify boundary points and sparse points, and then
queries the oracle for constraints among these ambiguous
points. Their work is limited mainly because they explicitly
assume that the underlying clusters in the data set are
nearly separated and it is the boundary points that cause
the inaccuracy in the cluster assignment; it is unclear if
the propose method would still work otherwise. Also, since
the proposed method is built upon the KKM constrained
spectral clustering method [13], it can only incorporate hard
constraints, not soft ones.

Active spectral clustering is also related to the area of
matrix perturbation analysis for spectral clustering [14],
[15], which studies how much the resultant clustering will
change when a perturbation is applied to the original
graph Laplacian. The results from perturbation analysis can
give us an idea of how stable the clustering is and how
many constraints are needed for the clustering to change
significantly. However, the bounds in matrix perturbation
theory are typically of the form involving the norm of the
matrix and hence do not give directly suggestion on what
constraints we should query.

III. OUR ACTIVE SPECTRAL CLUSTERING FRAMEWORK

In this section we present our active spectral cluster-
ing framework. We provide the background knowledge in
Section III-A and an overview of our framework in Sec-
tion III-B. We begin in Section III-C by introducing the
first important component of our framework, a constrained
spectral clustering algorithm that can handle both hard and
soft constraints. Then in Section III-D we describe the
second important component of our framework, an active
query strategy based on maximum expected error reduction.
Important notations used throughout the rest of the paper are
listed in Table I. Note that the superscript “*” when attached
to a symbol refers to the groundtruth answer typically only
available to the oracle.

A. Background and Preliminaries

We have a graph G with N nodes. A is the associated
affinity matrix. A is symmetric and nonnegative. D is the

Table I
TABLE OF NOTATIONS

Symbol Meaning
A The affinity matrix
D The degree matrix
I The identity matrix
L The graph Laplacian

Q(t) The constraint matrix at time t
Q∗ The groundtruth (complete) constraint matrix
u(t) The relaxed cluster indicator vector at time t
u∗ The groundtruth cluster indicator vector

degree matrix of G where

Dij =

{∑N
j=1 Aij if i = j

0 if i ̸= j
.

L = D −A is the graph Laplacian of G.
It is well-known result [1] that spectral clustering finds

the normalized minimum cut of G in its relaxed form:

argmin
u∈RN

uTLu,

s.t. uTDu = vol(G), Du ⊥ 1,
(1)

where vol(G) =
∑N

i=1 Dii and u is the relaxed cluster indi-
cator vector. The optimal solution to Eq.(1) is the eigenvector
associated with the second smallest eigenvalue of L. The
actual 2-way cut is given by assigning nodes corresponding
to the positive entries in u to one side and negative nodes
to the other.

In practice, the graph Laplacian L is often generated with
noise and/or from a biased sample of the underlying data dis-
tribution. As a result, the clustering found by (unconstrained)
spectral clustering, u, will differ from the groundtruth cluster
assignment, u∗. In order to find a u that better approximates
the groundtruth result, a popular approach is to incorporate
constraint information into spectral clustering. Formally, let
A be a constrained spectral clustering algorithm:

u← A (L,Q).

Now the resultant clustering u is decided by both the graph
Laplacian L and a constraint matrix Q. In its generalized
form, Q ∈ RN×N is a symmetric matrix that encodes
pairwise relations between the nodes of G as follows:

• Qij > 0 means that node i and j should be assigned
to the same cluster;

• Qij < 0 means that node i and j should be assigned
to different clusters;

• Qij = 0 means that the relation between node i and j
is unknown.

For hard constraints, we have Qij = 1 for Must-Links
and Qij = −1 for Cannot-Links. For soft constraints, the
magnitude of Qij indicates how confident we are about that
constraint. Previous work on constrained spectral clustering
assumes the constraint matrix Q is provided a priori, i.e.

the selection of known entries in Q is independent from
the algorithm A and we have no control over the selection
process.

B. An Overview of Our Framework

In this work, we make the assumption that there is an
oracle who has access to the groundtruth constraint matrix
Q∗ = u∗u∗T , where u∗ ∈ RN is the groundtruth cluster
assignment. We assume that we can actively query an oracle
about the value of any entry in Q∗, one entry at a time. Q is
the matrix that contains all the constraints we have queried
so far (0 for unknown entries). Note that the nonzero entries
in Q is always a proper subset of the nonzero entries in
Q∗. Our goal is to minimize the difference between u =
A (L,Q) and u∗ using as few queries as possible.

We propose an iterative process to incrementally query
the oracle about the constraint that can maximally reduce
the expected error in our current result. We start with an
empty constraint matrix Q(0) with all 0 entries, then we
compute the current clustering using a constrained spectral
clustering algorithm A :

u(0) ← A (L,Q(0)).

Note that u(0) should be the same as the clustering found by
the unconstrained spectral clustering algorithm as we have
no constraint so far. Then assume at iteration t we already
have

u(t) ← A (L,Q(t)).

A query strategy Q will evaluate the current clustering u(t)

and the current constraints Q(t) to decide what is the next
entry in Q∗ we should query from the oracle. Let

(i, j)← Q(u(t), Q(t)),

we update Q(t) to Q(t+1) by filling in Q
(t)
ij and Q

(t)
ji with

the value of Q∗
ij (since the constraint matrix is symmetric).

Then we update the clustering by

u(t+1) ← A (L,Q(t+1)).

We repeat this iteration until certain stopping criteria is met.
Our framework has two key components: the constrained

clustering algorithm A and the query strategy Q. Next we
will discuss their realization in detail, respectively.

C. The Constrained Spectral Clustering Algorithm

The first key component of our framework is a constrained
spectral clustering algorithm A . A takes the graph Lapla-
cian L and a constraint matrix Q as input and outputs a
(relaxed) cluster indicator vector u. In general, our frame-
work has no restriction on the realization of A as long as
it satisfies the following property:

Property 1 (Convergence): As the constraint matrix Q
approaches Q∗, the output of the constrained clustering algo-
rithm, u, will converge to the groundtruth cluster assignment
u∗:

lim
Q→Q∗

u = u∗.

This property is to ensure that our active learning framework
will converge to the groundtruth cluster assignment as more
constraints are revealed by the oracle. As trivial as this
property may seem like, it is not automatically guaranteed
by all constrained clustering algorithms. For example, some
constrained K-means clustering algorithms are sensitive to
the order in which the constraints are enforced and thus may
not converge to the groundtruth clustering after all.

There are a number of possible candidates for A [13],
[16], [17] in the literature. In this work we implement
the framework using the constrained spectral clustering
algorithm we proposed in a recent work [18]. The main
advantage of this approach is that it not only satisfies
the convergence property but also is flexible enough to
incorporate both hard and soft constraints. Its objective
function is as follows:

argmin
u∈RN

uTLu,

s.t. uTDu = vol(G), uTQu ≥ α.
(2)

By comparing Eq.(2) to Eq.(1), we can see that a new term
uTQu ≥ α is added to the original formulation of spectral
clustering. Recall Q is the constraint matrix and u is the
cluster assignment vector, then

uTQu =

N∑
i=1

N∑
j=1

uiujQij

can be considered as a measure (in relaxed form) of how
well the pairwise relations as implied by cluster assignment
u conform to those as demanded by the constraint matrix Q:
the larger the value is, the more consistent they are. Hence
the term uTQu ≥ α essentially lower bounds how well the
constraints in Q are satisfied (in its relaxed form) by the
cluster assignment u.

Eq.(2) is intractable in general. However, we can use the
Karush-Kuhn-Tucker Theorem [19] to find a sub-optimal
solution (please see the original paper [18] for detailed
derivation). Intuitively speaking, recall that the solution to
the unconstrained spectral clustering problem (Eq.(1)) is
provided by the eigenvalue problem:

Lu = λu.

Similarly, the solution to our constrained spectral clustering
problem (Eq.(2)) is provided by the following generalized
eigenvalue problem

Lu = λ(Q− αI)u, (3)

where I is an N ×N identity matrix and α < λmax, λmax

to be the largest eigenvalue of Q. As we have shown in
[18], all generalized eigenvectors of Eq.(3) associated with
positive eigenvalues1 will satisfy the constraint uTQu ≥ α;
and among those the one that minimizes uTLu would be
a sub-optimal solution to Eq.(2). Note that α is a lower-
bound on how well the constraints in Q are satisfied: larger
α implies the resultant clustering conforms more strictly to
the given constraints. When α is sufficiently large, there
will only be one generalized eigenvector associated with
nonnegative eigenvalue and the eigenvector will be used as
the solution to Eq.(2).

D. The Query Strategy

The second key component of our framework is the
query strategy Q. Our strategy evaluates the current cluster
assignment u and the constraints in Q and decides what is
the best entry of Q∗ to query next. The principle it uses is
maximum expected error reduction, which means that for all
unknown pairwise relations between two nodes, we compute
the expected error between our current estimation of that
value and its groundtruth value, and we pick the pair of
nodes with largest expected error and query the oracle for
their relation.

Formally, let P
(t)
ij be our estimation of the pairwise

relation between node i and j at time t. A straightforward
way to compute P

(t)
ij from the cluster assignment vector u(t)

is:
P

(t)
ij = u

(t)
i u

(t)
j . (4)

Let d ∈ R × R 7→ R be a distance function that measures
the error between our current estimation and the groundtruth
value:

d(P (t)
ij , Q∗

ij) = (P
(t)
ij −Q∗

ij)
2.

Since Q∗
ij remains unknown until after we actually query it,

we cannot compute the error d(P (t)
ij , Q∗

ij) directly. Instead,
we compute the mathematical expectation of the error over
the two possible answers from the oracle:

E(d(P (t)
ij , Q∗

ij)) = d(P (t)
ij , 1)Pr(Q∗

ij = 1)+

d(P (t)
ij ,−1)Pr(Q∗

ij = −1).
Now the question becomes how we can estimate

Pr(Q∗
ij = 1) and Pr(Q∗

ij = −1) based on the information
we already have. Recall that we assumed Q∗ = u∗u∗T , thus
Q∗ is a rank-one matrix. If we treat the current constraint
matrix Q(t) as an approximation to Q∗ with missing values,
then it is a standard approach to use the rank-one approxi-
mation of Q(t) to recover the unknown entries in Q∗ [20].
Let ū(t) be the largest singular vector of Q(t), then

Q̄t = ū(t)ū(t)T

1The generalized eigenvector associated with eigenvalue 0 may or may
not satisfy the constraint uTQu ≥ α, but it is excluded either way since
it is a trivial solution that assigns all the nodes to the same side of the cut.

is the optimal rank-one approximation to Q(t) in terms of
Frobenius norm [21]. Then we can compute Pr(Q∗

ij = 1)
and Pr(Q∗

ij = −1) as follows:

Pr(Q∗
ij = 1) = Pr(Q∗

ij = 1|Q(t))

=
1 +min{1,max{−1, Q̄t

ij}}
2

,

Pr(Q∗
ij = −1) = 1− Pr(Q∗

ij = 1).

Finally, we query the entry that has the maximum ex-
pected error:

Q(u(t), Q(t)) = argmax
{(i,j)|Q(t)

ij =0}
E(d(P (t)

ij , Q∗
ij)). (5)

IV. EMPIRICAL RESULTS

To show the effectiveness of our approach, we evaluated
its performance on several UCI benchmark data sets [22].
Our goal is to show that our framework can achieve better
performance with a smaller number of actively selected con-
straints, as compared to a randomly selected constraint set.
This effectively tests our active selection approach against
the batch approach using the same number of constraints.

We compared our method (active) to a baseline method
(random). Both methods used the exact same implementa-
tion of the constrained spectral clustering algorithm. The
only difference was that the constraints used by active
were actively selected using our query strategy, whereas the
constraints used by random were randomly selected.

We used both hard and soft constraints in our experiments.
For hard constraints, we chose five different data sets with
groundtruth labels, namely Hepatitis, Iris, Wine, Glass, and
Ionosphere. We performed 2-way partition on all data sets.
We removed the SETOSA class from the Iris data set, which
is the class that is known to be well-separately from the
other two. For the same reason we removed Class 1 from the
Wine data set. We also removed data instances with missing
values. The statistics of the data sets after preprocessing
are listed in Table II. For each data set, we computed the
affinity matrix A using the RBF kernel (the edge weight
between two nodes is the similarity between those two data
instances).

For soft constraints, we chose a subset of the 20 News-
group data, as shown in Table III. We randomly sampled
about 350 documents from 6 groups. At the highest level,
those groups can be divided into two topics: computer
(comp) and recreation (rec). To generate soft constraints, if
two articles are from different topics, we set the correspond-
ing entry in Q∗ to −1; if two articles are from the same topic
but different groups, we set the corresponding entry to 0.5;
if they are from the same group, we set the entry to 1. The
affinity matrix A was generated from the similarity matrix
based on inner-product (the edge weight between two nodes
is the number of words those two articles have in common).

Table II
THE UCI BENCHMARKS

Identifier #Instances #Attributes
Hepatitis 80 19
Iris 100 4
Wine 119 13
Glass 214 9
Ionosphere 351 34

Table III
THE NEWSGROUP DATA

Group Label #Instances
3 comp.os.ms-windows.misc 53
4 comp.sys.ibm.pc.hardware 60
5 comp.sys.mac.hardware 59
9 rec.motorcycles 65
10 rec.sport.baseball 64
11 rec.sport.hockey 51

On all data sets, we started with no constraint and queried
one constraint at a time from the oracle. Note that we did not
use the transitive or entailment properties [5] to deduce more
constraints based on the existing ones, which is impossible
to do when the constraints are soft. To evaluate the accuracy
of the resultant clustering at each time step, we used Rand
index [23]. For each data set, we made up to 2N queries,
where N was the size of the data set. There is only one
parameter in our method, which is α for the constrained
spectral clustering algorithm (see Eq.(3)). Throughout all
experiments, we simply set it to λmax/2, where λmax is
the largest eigenvalue of Q. In this way, we guarantee the
existence of at least one feasible solution, while requiring
that a reasonable amount constraints must be satisfied.

The results are shown in Fig. 1 and we can observe that:

• In most cases, our active method converged to the
groundtruth clustering after a small number of queries.

• As a contrast, the baseline method often did not even
show performance gain with a randomly selected con-
straint set of the same size.

• In most cases, the performance of our active method
consistently increased as more constraints had been
queried. This suggested that the active query process
utilized constraints in a helpful way.

• Our active approach outperformed the random approach
in average by a large margin. In many cases, our
active approach even outperformed the best-of-luck
result from the random approach.

• There are also some dataset-specific observations. For
example, the performance of our active method on
the Iris data set was not as good when only a very
small number of constraints had been queried. We
contribute this to the existence of contextual outliers,
as we discovered in our previous work [24], the influ-
ence of which misled the initial active query process.
However, our active method recovered quickly after

more constraints were queried. We also noticed that
on the 20NG data set, the performance of the random
method struggled hopelessly. This is because the data
set contains six well-separated sub-clusters (each corre-
sponding to a sub-topic). Randomly queried constraints
did not work as effectively as the active method to help
identify the two more generalized topics, which lead to
the groundtruth 2-partition we are looking for.

The above observations can be explained by noting
that our actively set of constraints complement each other
whilst the randomly selected constraints may very well
be contradictory. These results for the baseline approach
are consistent with earlier work [5] which showed the
randomly chosen constraint sets often hurt performance of
the underlying algorithm when measured by the Rand index.

In our experiments, we also noticed that there were cases
where our query strategy found more than one constraints
with the same largest expected error. In this case, we used
a randomized tie-breaking step to pick one of them to
query. As a result, although our query strategy is designed
to be deterministic, its output on certain data sets could
vary over many trials. However, for reasonably large data
sets, the variation between different trials appeared to be
insignificant.

The data sets and Matlab codes used in our experiments
are publicly available. Please contact the authors for infor-
mation.

V. IMPLEMENTATION ISSUES

A. Outliers

Our query strategy Q is an instance-based strategy. As a
result, the existence of outliers may cause a large number of
additional queries. For example, imagine we have a graph
with one outlying node. Without constraints, the spectral
clustering algorithm may identify the outlying node as one
cluster and the rest of the graph as another (especially when
the majority of the graph is a relatively well-connected com-
ponent). According to our query strategy, the outlying node
will have the largest expected error, because the resultant
cluster assignment will be entirely different depending on
whether or not this node is a true outlier, or it is actually
a cluster by itself. Our query strategy will keep querying
the pairwise relations between this outlying node and all
the other nodes in the rest of the graph until it reaches a
conclusion.

On the one hand, we need to point out that this kind of
intensive queries on a key node is necessary without prior
knowledge on the existence of outliers or the underlying
distribution of the data. On the hand other, if we do have
prior information, e.g. the minimum size of the potential
clusters, we could remove obvious outliers during the pre-
processing step. This can help avoid initiating our method
with a completely wrong clustering, which inevitably would

take much more queries to converge to the groundtruth
result.

We also found out that normalizing our estimation of the
relation between node i and j, which is P

(t)
ij as shown in

Eq.(4), can help reduce the influence of potential outliers
in the graph. This can avoid a relatively large entry in u(t)

from dominating the query process. Specifically, we have:

P
(t)
ij =

1 if u(t)

i u
(t)
j > 1

−1 if u(t)
i u

(t)
j < −1

u
(t)
i u

(t)
j otherwise

.

B. Time Complexity

Our active learning method is an iterative process. The
time complexity for each iteration is constant. Within the
iteration, there are two main steps, the constrained spectral
clustering process, and the query process. The runtime of
the constrained spectral clustering algorithm we introduce
is dominated by that of solving a generalized eigenvalue
problem on an N ×N matrix; the runtime of the query pro-
cess is dominated by computing the rank-one approximation
to an N ×N matrix, which takes no longer than solving the
eigenvalue problem. Therefore, the overall time complexity
of our method is equal to the number of iterations times
the time complexity of solving an eigenvalue problem on an
N × N matrix, depending on which solver you choose to
use, but O(N2) at least. In other words, the runtime of our
method is mainly decided by 1) the size of the data set; 2)
the number of iterations/queries.

Note that the time complexity of our method does not
increase with the number of constraints we have queried or
the number of constraints we query at each time. Thus in
practice we can choose to query more than one constraint
during each iteration. However, under the assumption that
each query comes with a cost, this is essentially a tradeoff
between the runtime and the cost of querying the oracle.

C. Stopping Criterion

A common consideration when implementing active
learning algorithms is when to stop querying, because either
1) the result has converged and will no longer change
with more constraints, or 2) the result is “good enough”
thus further queries are no longer worth the cost. It is
possible to find such a criterion when the learning task itself
is supervised/semi-supervised and there is some kind of
auxiliary information to measure the quality and/or stability
of the result. However, it is less likely to find such a measure
that works for unsupervised learning (clustering) in general,
due to the absolute absence of groundtruth information.
Moreover, as Burr Settles stated in his survey on active
learning [6]:

“... in my own experience, the real stopping cri-
terion for practical applications is based on eco-

0 20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

constraints queried

R
a

n
d

 i
n

d
e

x

active

random−max

random−avg

random−min

(a) Hepatitis

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

constraints queried

R
a

n
d

 i
n

d
e

x

active

random−max

random−avg

random−min

(b) Iris

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

constraints queried

R
a

n
d

 i
n

d
e

x

active

random−max

random−avg

random−min

(c) Wine

0 50 100 150 200 250 300 350 400
0.5

0.6

0.7

0.8

0.9

1

constraints queried
R

a
n

d
 i
n

d
e

x

active

random−max

random−avg

random−min

(d) Glass

0 100 200 300 400 500 600 700
0.5

0.6

0.7

0.8

0.9

1

constraints queried

R
a

n
d

 i
n

d
e

x

active

random−max

random−avg

random−min

(e) Ionosphere

0 100 200 300 400 500 600 700
0.5

0.6

0.7

0.8

0.9

1

constraints queried

R
a
n
d
 i
n
d
e
x

active

random−max

random−avg

random−min

(f) Newsgroup

Figure 1. Results on six UCI data sets, with comparison between our method active and the baseline method random. Y -axis is Rand index, X-axis
is the number of constraints queried. The maximum number of queries is 2N , where N is the size of the corresponding data set. For the random method,
the max/average/min performance over 10 runs (each with a randomly generated constraint set) are reported, respectively.

nomic or other external factors, which likely come
well before an intrinsic learner-decided threshold.”

Therefore, from the practical perspective, we suggest
to make as many queries as possible/affordable, and our
method will consistently improve the result unless it has
already converged to the groundtruth.

VI. LIMITATIONS AND FUTURE WORK

Our query strategy as described in Section III-D assumes
that Q∗ is, or can be well approximated by, a rank-one
matrix. Only with this assumption, we can estimate the
expected error using the rank-one approximation technique.
However, we notice that there are real-world application
scenarios where Q∗ may have a higher rank. For example,
the Q∗ may be derived from a K-way partition of the data

set (K > 2), then the rank of Q∗ would be K − 1. Or there
might be one-sided oracles who only provide Must-Link
or Cannot-Link constraints, but not both. To deal with
these scenarios, we need to adopt more sophisticated method
to estimate the expected error between our current cluster
assignment and the groundtruth result.

Another natural extension for our method is K-way par-
tition where K > 2. The spectral formulation of clustering
is for cutting a graph and many applications of the approach
only require a K = 2 clustering. Although it is possible to
extend the formulation to K-way partition, some important
theoretical properties will be lost after the extension, e.g.
the result is no longer deterministic and it is difficult to
interpret the result as a normalized min-cut. To modify our
current algorithm for K-way partition, we need to modify

the constrained spectral clustering algorithm A to support
K-way partition. Common practice is to, instead of only
looking at one eigenvector, look at the top-K eigenvectors
all together and perform K-means clustering on the rows of
the N×K matrix [25]. Note that now the output of A (L,Q)
would become the N × N matrix P that directly encodes
the pairwise relations between nodes, since a single indicator
vector u cannot encode K-way partition for K > 2. Then
we need to modify the query strategy to deal with a Q∗

whose rank is now K − 1 , as we mentioned above.

VII. CONCLUSION

In this work, we proposed an active learning framework
for spectral clustering. Its goal is to maximally improve
the performance of a given constrained spectral clustering
algorithm by using as few constraints as possible. We
designed a query strategy that incrementally and iteratively
picks the constraint with the largest expected error among all
unknown constraints and then retrieves the groundtruth value
for that constraint from an oracle. Our framework is not only
principled, but also high flexible to work with both hard and
soft constraints that may occur in real-world applications.
We used several UCI benchmark data sets to validate the
advantage of our approach, by comparing to the baseline
method with randomly selected constraint set. Empirical
results showed that our method can find the groundtruth
cluster assignment by only using a small constraint set, and
it outperformed the baseline method of specifying the same
number of constraints as a batch by a large margin.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of
this research from the NSF (IIS-0801528) and ONR
(N000140910712 P00001).

REFERENCES

[1] J. Shi and J. Malik, “Normalized cuts and image segmenta-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8,
pp. 888–905, 2000.

[2] S. Basu, I. Davidson, and K. Wagstaff, Eds., Constrained
Clustering: Advances in Algorithms, Theory, and Applica-
tions. Chapman & Hall/CRC, 2008.

[3] D. Klein, S. D. Kamvar, and C. D. Manning, “From instance-
level constraints to space-level constraints: Making the most
of prior knowledge in data clustering,” in ICML, 2002, pp.
307–314.

[4] S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-
supervision for pairwise constrained clustering,” in SDM,
2004.

[5] I. Davidson, K. Wagstaff, and S. Basu, “Measuring constraint-
set utility for partitional clustering algorithms,” in PKDD,
2006, pp. 115–126.

[6] B. Settles, “Active learning literature survey,” University of
Wisconsin–Madison, Computer Sciences Technical Report
1648, 2009.

[7] “Flickr: The commons.” [Online]. Available: http://www.
flickr.com/commons/

[8] “Galaxy zoo.” [Online]. Available: http://www.galaxyzoo.org/

[9] P. K. Mallapragada, R. Jin, and A. K. Jain, “Active query
selection for semi-supervised clustering,” in ICPR, 2008, pp.
1–4.

[10] D. Greene and P. Cunningham, “Constraint selection by
committee: An ensemble approach to identifying informative
constraints for semi-supervised clustering,” in ECML, 2007,
pp. 140–151.

[11] R. Huang, W. Lam, and Z. Zhang, “Active learning of con-
straints for semi-supervised text clustering,” in SDM, 2007.

[12] Q. Xu, M. desJardins, and K. Wagstaff, “Active constrained
clustering by examining spectral eigenvectors,” in Discovery
Science, 2005, pp. 294–307.

[13] S. D. Kamvar, D. Klein, and C. D. Manning, “Spectral
learning,” in IJCAI, 2003, pp. 561–566.

[14] L. Huang, D. Yan, M. I. Jordan, and N. Taft, “Spectral
clustering with perturbed data,” in NIPS, 2008, pp. 705–712.

[15] G. W. Stewart and J.-g. Sun, Matrix Perturbation Theory.
Academic Press, Inc., 1990.

[16] Z. Lu and M. Á. Carreira-Perpiñán, “Constrained spectral
clustering through affinity propagation,” in CVPR, 2008.

[17] T. Coleman, J. Saunderson, and A. Wirth, “Spectral clustering
with inconsistent advice,” in ICML, 2008, pp. 152–159.

[18] X. Wang and I. Davidson, “Flexible constrained spectral
clustering,” in KDD, 2010, pp. 563–572.

[19] H. Kuhn and A. Tucker, “Nonlinear programming,” ACM
SIGMAP Bulletin, pp. 6–18, 1982.

[20] M. Brand, “Fast online svd revisions for lightweight recom-
mender systems,” in SDM, 2003.

[21] R. Horn and C. Johnson, Matrix analysis. Cambridge Univ.
Press, 1990.

[22] A. Asuncion and D. Newman, “UCI machine learning
repository,” 2007. [Online]. Available: http://www.ics.uci.
edu/∼mlearn/MLRepository.html

[23] K. Wagstaff and C. Cardie, “Clustering with instance-level
constraints,” in ICML, 2000, pp. 1103–1110.

[24] X. Wang and I. Davidson, “Discovering contexts and contex-
tual outliers using random walks in graphs,” in ICDM, 2009,
pp. 1034–1039.

[25] U. von Luxburg, “A tutorial on spectral clustering,” Statistics
and Computing, vol. 17, no. 4, pp. 395–416, 2007.

