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ABSTRACT 
Data quality is a central issue for many information-oriented 
organizations. Recent advances in the data quality field reflect the 
view that a database is the product of a manufacturing process. 
While routine errors, such as non-existent zip codes, can be 
detected and corrected using traditional data cleansing tools, many 
errors systemic to the manufacturing process cannot be addressed. 
Therefore, the product of the data manufacturing process is an 
imprecise recording of information about the entities of interest 
(i.e. customers, transactions or assets). In this way, the database is 
only one (flawed) version of the entities it is supposed to 
represent. Quality assurance systems such as Motorola’s Six-
Sigma and other continuous improvement methods document the 
data manufacturing process’s shortcomings. A widespread method 
of documentation is quality matrices. In this paper, we explore the 
use of the readily available data quality matrices for the data 
mining classification task. We first illustrate that if we do not 
factor in these quality matrices, then our results for prediction are 
sub-optimal. We then suggest a general-purpose ensemble 
approach that perturbs the data according to these quality matrices 
to improve the predictive accuracy and show the improvement is 
due to a reduction in variance. 
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1. INTRODUCTION AND MOTIVATION 
Data mining techniques have been widely employed to many 
industrial problems. The data mining process involves a) 
collecting data, b) transforming/cleansing the data, c) model 
building and d) model deployment/monitoring [1]. Most 
practitioners agree that data preparation, steps a) and b), 
consumes the majority of the data mining cycle time and budget 
[2].  

Consider a set of entities such as customers whose information is 
recorded in a database. The process of recording this information 
can introduce errors. This view of data as being produced from a 
manufacturing process is common in the data quality literature 
[3]. We can consider that the aim of steps a) and b) is to restore 
the data to their “correct” values by removing these recording 
errors. While specific detectable errors can be identified and 
removed such as invalid ZIP codes prior to model building, for 
other errors we can only record their general properties. For 
example, it may be known that a particular ZIP code is often 
interchanged with another in the same state when entering data 
from forms into a database. We may be able to estimate the 
proportion of times this occurs (i.e. by polling a small sample), 
but it would be infeasible to verify and correct all cases. This is an 
example of an undetectable but documentable error. 

Detectable errors can be corrected using ECTL (extract, clean, 
transform and load) tools that are widely available. However, this 
is time consuming particularly since it is an iterative process that 
involves all steps of the data mining cycle except d). Common 
repair and cleaning operations involve removing outliers, filling 
in missing values, removing nuisance columns and data 
aggregation to name a few. These operations must be 
proceduralized and applied to any new data that is collected and 
are an example of removing detectable errors. 

A complementary approach to data cleaning and repairing that can 
address undetectable but documentable errors is to model the 
inherent quality levels of the data. This requires knowledge of the 
business processes that generated the data and involves modeling 
the known defects in these processes. For example, consider the 
customer gender field in an operational database that is populated 
by manual entry from hand written customer applications. An 
analysis of this process may reveal that 90% of the time the 
correct field value is entered. In 8% of the remaining situations 
FEMALE is entered as MALE in the other 2% MALE is entered 
as FEMALE. This data quality knowledge can be modeled as a 
data quality matrix [4]. Data quality matrices are commonly used 
for continuous data quality improvement and are readily available 



  

  

in many organizations or can be generated using standard 
procedures. For example, the Six-Sigma methodology used by 
firms such as GE, Motorola [5] requires that such matrices be 
available and used. 

In this paper, we introduce the idea of using data quality matrices 
with data mining algorithms. The idea behind this is work is as 
follows. If our data base is one flawed version of the entities, then 
recreating other versions, building models from them and 
combining their results can improve predictive accuracy. We 
propose a general purpose ensemble technique that exploits 
quality matrices and can be used with standard data mining 
algorithms such as a decision tree and naïve Bayes. The first 
section introduces different data quality dimensions followed by a 
discussion of how data quality matrices can model them. We 
provide examples of data quality matrices for the dimensions we 
will explore in this work with the remaining dimensions to be 
explored in the future. We then describe our ensemble technique 
and empirically verify its performance. We show for decision tree 
algorithms under a variety of conditions using real world data sets 
that our approach yields better predictive accuracies than using a 
single model or the ensemble technique bagging [6]. These 
conditions include the situation where the quality matrices are 
completely and partially accurate. We then show that the 
improvements are due to variance reduction. Finally, we discuss 
future work and summarize our paper and its contributions. 

2. DATA QUALITY MATRICES 
It is becoming more common for business organizations to view 
data or information they produce as being equivalent to a 
marketable product. This requires assessing the quality of data 
across multiple dimensions, evaluating the adequacy of the data 
quality for multiple uses and deploying techniques and methods 
for enhancing the data quality to higher acceptable levels. In order 
to assess the quality of data several practical approaches and tools 
are being used. One common approach is the use of the data 
quality matrix [4], which is a concise way of representing errors 
and deficiencies in the data along different dimensions. 
Specifically, the matrices enable us to quantify the errors in the 
data manufacturing process. Once the matrices are completed, 
quality enhancement can be undertaken by using a variety of 
analytical procedures. For an introduction see [7][8] which 
present various analytical models and procedures for data 
enhancement in database and data warehouse environments. 

The basic forms of data quality matrices mentioned in this paper 
cannot model all of the quality dimensions. We provide examples 
for those that can be measured.  We devote the rest of this section 
to describe how quality matrices can model the different types of 
errors. It is important to note the following. The matrices are 
created as part of quality assurance systems such as Six Sigma.  
Further, the matrices are typically calculated from samples of the 
data (i.e. customers are surveyed or additional third party data is 
purchased to verify personal information) and it is infeasible to 
correct all the errors in the data. 

2.1 Accuracy 
We can represent/model inaccuracies by taking a random sample 
and verifying the correctness of the recorded data values. For 
example, after such an analysis, it maybe determined that the 
gender and age fields could be modeled by the following data 
quality matrices. 

 
Gender 

 Male Female 

Male 0.95 0.05 

Female 0.11 0.89 

 
Age 

  

Age N(Age,stdev) 

Table 1. Example quality matrices for accuracy. 
If we consider Male as positive and Female as negative, this can 
be interpreted that the gender field has 5% false positives and 
11% false negatives. For continuous attributes, such as age, 
approaches such as the Six-Sigma methodology can construct a 
probability distribution over the range of values. The mean of this 
distribution is the true value and the standard deviation a measure 
of variability due to errors. In this paper our focus is on using 
these quality matrices for data mining purposes. How these 
matrices are created is documented in the quality literature [4][5]. 

2.2 Contextual Quality 
The contextual quality effectively measures the proportion of time 
a constraint or business rule is violated. Consider a customer 
database of sales transactions. Customers who purchase more than 
1000 units of an item obtain a price discount which lowers the 
cost to below $10, whereas the typical price is more than $10. The 
following matrix illustrates the number of times this business rule 
is violated. We assume that when this situation occurs it is a data 
quality error not a transaction error. 

 

 Quantity<=1000 Quantity>1000 

Price<$10 0.01 0.99 

Price>=$10 0.94 0.06 

2.3 Semantic Interpretability 
Consider a single field in the database labeled “Sales”. 
Unfortunately, the database is a combination of records where any 
sales tax is not added, only county sales tax is added or both 
county and state sales tax is added. The quality matrix approach 
can represent this situation as follows. 

 

 Sales + 
8%Tax  

Sales + 
4% Tax  

Sales No Tax 

Sale < $25 0.98 0.01 0.01 

Sale>=$25 0.95 0.02 0.03 

For all database records, eight percent sales tax should have been 
added. For each situation where this did not occur, we have the 
chance of the various errors (sales amounts) occurring. 



  

  

3. AN ENSEMBLE APPROACH TO 
MINING WITH QUALITY MATRICES: 
EQPD 
The view of data being manufactured by a process lends itself to 
the following pictorial representation of the process.  

True
Values

Recording/Manufacturing

Version_1

.

.

.

Recording/Manufacturing

Version_T
 

Figure 1. The view of data as being manufactured. Note each 
view is equally likely and the database is one such view. 

Note that a version of the data is not dependent on any other 
version. Each version can be viewed as a stochastic perturbation 
of the true values and are captured/modeled by the quality 
matrices. We assume that true values are not known, therefore our 
mining approach must use a version of the data. If all T versions 
were available, then we could build a model for each and 
aggregate the predictions amongst the T models. However, we 
typically have only one version of the data. One way to 
approximate the various versions, is by perturbing the data 
available according to the quality matrices. The usefulness of the 
approximation, of course, depends on how close they are to the 
actual versions if they were available. How we approximate the 
versions is shown below. Note that our notation denotes all 
quality matrices as a single function Q. Future work will examine 
better approximations. 

 

True Values R1  Rn 

Database V1=Q(R1) … Vn=Q(Rn) 
Approx_Version1 AV1,1=Q(V1) … AV1,n=Q(Vn) 

  . 
. 

… 
… 

. 

. Approx_VersionT AVT,1=Q(V1) … AVT,n=Q(Vn) 

Table 2. The database of n records we have available is one 
(perturbed) version of the true values. From this, we can 
generate approximations of other versions. 
We can now build models from all approximated versions and 
aggregate votes like the ensemble approach bagging. The pseudo 
code for the algorithm follows: 

 

 

 

 

 

 

Algorithm: EQPD (Ensembles of Quality-Matrix 
Perturbed Data) 

Input:D:TrainingSet, T:#perturbations, Q: 
quality matrices, x: Test instance  
Output:  M: The T models, Vi : Vote from 
model i for test set instance   
// Generate versions of data sets and build 
models 
For i = 1 to T 
 Xi = PerturbData(D,Q) 
 Mi = Classifier(Xi) 
End For 
// Predictions for test instance  
For i = 1 to T 
 Vi = Mi(x) 
End For 

4. EMPIRICAL RESULTS 
In this section we wish to explore the properties of our approach 
to answer the following questions for decision tree classifiers: 

1) Does the EQPD approach provide an improved 
accuracy over building a single model from the training 
data set? 

2) Does the EQPD approach provide an improved 
accuracy over bagging the data set when using the same 
number of models (T)? 

3) Does the performance of EQPD severely degrade if the 
quality matrices are incorrect? 

We focus on three common data sets available from the UCI 
repository: Credit Screening, Breast Cancer and Contraceptive. 
Each recorded result is from 20 independent experiments of 10-
fold cross validation. The statistically significant1 best result for 
each data is shown in bold. If no result is statistically significant 
than another, then no entry is in bold. 

Our first results shown in Table 3 illustrate the performance of a 
variety of techniques when less than 10% of discrete valued 
columns are perturbed by data quality matrices. We say that the 
quality matrices have a small variance (less than 0.1) when for 
binary matrices the variance is the weighted sum of the product of 
each row of the matrix. For example the GENDER quality matrix 
in Table 1 (assuming equal proportions of MALE and FEMALE) 
has a variance of (0.5*0.95*0.05) + (0.5*0.89*0.11) ≈ 0.07 

We find that the EQPD approach outperforms a single model and 
bagging when the variance is small. 

 Error 
Single 
Model  

Error 
Bagging 
(T=750) 

Error 
EQPD 

(T=750) 

Credit 22.8% 19.8% 19.2% 

Breast 35.8% 34.4% 33.1% 

Contraceptive 18.4% 16.5% 15.9% 

Table 3. The performance of various approaches where the 
quality matrices are correct and their variability is < 0.1 

Our next results shown in Table 4 illustrate the performance of a 
variety of techniques when less than 10% of discrete columns are 

                                                                 
1 Test of means at 95% confidence level 



  

  

perturbed by data quality matrices but the quality matrices have a 
variance more than 0.1. We find in this situation our approach 
performs better than before when compared to bagging.  

 

 Error 
Single 
Model 

Error 
Bagging 
(T=1850) 

Error 
EQPD 

(T=1850) 

Credit 29.6% 29.2% 27.1% 

Breast 38.4% 36.7% 35.3% 

Contraceptive 27.1% 26.9% 24.1% 

Table 4. The performance of various approaches where the 
quality matrices are correct and their variability is > 0.1 

We now focus on the situation where the quality matrices are 
incorrect by a factor of 25%. For example, if the correct matrix 
value is 0.6 then a 25% error would produce the value of 0.4 or 
0.8. We find (shown in Table 5) that the approach performs better 
than a single model all the time, but is not always better than 
bagging. As expected the performance improvement is not as 
great as before (Table 3 and Table 4). 

 

 Error 
Single 
Model 

Error 
Bagging 
(T=910) 

Error 
EQPD 

(T=910) 

Credit 25.6% 24.3% 25.1% 

Breast 37.9% 37.1% 36.9% 

Contraceptive 22.6% 20.1% 19.8% 

Table 5. The performance of various approaches, the quality 
matrices are incorrect by 25% and their variability is < 0.1. 

5. WHY THE APPROACH WORKS 
The error of a mining tool can be decomposed into three 
components: a) noise, b) bias and c) variance [9]. As our approach 
outperforms the other approaches, then it must be better at 
reducing one of these three components.  

The inherent noise in a problem reflects the “randomness” in the 
mapping between the independent and dependent variables. For 
example, consider the simple univariate case where the 
independent variable is SEX and the binary dependent variable is 
CHURN. Suppose each gender is apriori equally likely and 60% 
of males churn and 80% of females do not churn. Then the 
inherent noise in the problem 0.4*0.5+0.2*0.5 = 0.3. This noise is 
the Bayes error and no mining tool can reduce it. 

The bias component of error reflects the systematic error due to an 
inappropriate model space for example. While the variance 
component of the error refers to the mining tools sensitivity to 
changes in the training data set. 

For our previous empirical results we measure the variability over 
the twenty experiments. The variance over the training set error 
(for a 0-1 loss) is shown in Table 6, Table 7 and Table 8. We find 
that as expected bagging reduces the variability of the classifier. 
This is well known as bagging makes unstable learners stable [6]. 
However, EQPD further reduces the variance partially indicating 

why it outperforms the other approaches. Future work will look at 
determining if the bias is also reduced. 

 

 Single 
Model 

Bagging 
(T=750) 

EQPD 
(T=750) 

Credit  4.61 4.38  4.13 

Breast  8.93 7.19  6.81 

Contraceptive  3.79 3.42  3.11 

Table 6. The variance of various approaches where the quality 
matrices are correct and their variability is < 0.1 (corresponds 

with Table 3).  
 

 Single 
Model 

Bagging 
(T=1850) 

EQPD 
(T=1850) 

Credit  6.71 5.48  4.53 

Breast  9.43 8.34  6.99 

Contraceptive  4.89 4.46  3.67 

Table 7. The variance of various approaches where the quality 
matrices are correct and their variability is > 0.1 (corresponds 

with Table 4). 
 

 Single 
Model 

Bagging 
(T=910) 

EQPD 
(T=910) 

Credit  5.88  5.92  5.24 

Breast  9.43  10.1  9.16 

Contraceptive  4.91  4.59  3.67 

Table 8. The variance of various approaches where the quality 
matrices are incorrect and their variability is < 0.1 
(corresponds with Table 5). 

6. FUTURE WORK 
In this paper, we have not focused on the dimensions: timeliness, 
completeness and believability. As well as being more challenging 
than the dimensions investigated in this paper, the data mining 
and machine learning communities have tackled variations of 
these problems. Timeliness can be considered as an example of 
concept drift [10], completeness is an example of artificially 
producing surrogate variables [1] while believability has not been 
studied by either community. We intend to determine how making 
use of data quality matrices to model these dimensions lends itself 
to existing approaches or whether new approaches are required. 

Our empirical results are encouraging and demonstrate the 
usefulness of the approach. However, like all ensemble techniques 
how many models to build remains an open and important 
question. In our approach we know that we are attempting to 
approximate the “true” ensemble. Furthermore, we have the 
quality matrices that are approximations to the generation 
mechanism that produced the true ensemble. We then can answer 
the question of how many models to build by replacing it with the 
question of how close to the true ensemble do we wish to be. 
Some of our previous work has developed bounds on the number 
of instances required to build a belief network [11]. We will 



  

  

explore extending the approach described in that paper which uses 
Chernoff and Chebychev bounds to determine a bound for the 
number of ensembles to build. 

7. CONCLUSION 
Data quality is becoming an issue of growing importance to many 
information-intensive organizations. Accordingly current efforts 
to improve the quality of data have gone beyond procedures that 
involve simple detection and correction of data errors. Data 
quality enhancement efforts consider data as being a product of a 
data manufacturing process. Therefore a collection of data records 
generated from such a process may embody a variety of systemic 
errors and flaws. Although these errors are documentable, 
typically they are undetectable and hence require use of 
approaches such as quality matrices to model them. These 
matrices are useful and appropriate in capturing the stochastic 
nature of the data manufacturing process. 

Our work tries to replicate the variability in the data using the data 
quality matrices. This naturally lends itself to building an 
ensemble of models. We propose the EQPD (Ensemble of 
Quality-Matrix Perturbed Data) approach that builds an ensemble 
of models from perturbations of the training data according to the 
quality matrix. Our empirical work shows that the approach leads 
to better accuracies than building a single model and better 
accuracies than bagging.  

A partial explanation of why the approach works is that the 
variance of the EQPD ensemble error is less than a bagging an 
ensemble and a single model. Whether the approach also reduces 
bias we will address in future work. 
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