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ABSTRACT
The area of constrained clustering has been actively pursued for
the last decade. A more recent extension that will be the focus of
this paper is constrained hierarchical clustering which allows build-
ing user-constrained dendrograms/trees. Like all forms of con-
strained clustering, previous work on hierarchical constrained clus-
tering uses simple constraints that are typically implemented in
a procedural language. However, there exists mature results and
packages in the fields of constraint satisfaction languages and solvers
that the constrained clustering field has yet to explore. This work
marks the first steps towards introducing constraints satisfaction
languages/solvers into hierarchical constrained clustering. We make
several significant contributions. We show how many existing and
new constraints for hierarchical clustering, can be modeled as a
Horn-SAT problem that is easily solvable in polynomial time and
which allows their implementation in any number of declarative
languages or efficient solvers. We implement our own solver for
efficiency reasons. We then show how to formulate constrained
hierarchical clustering in a flexible manner so that any number of
algorithms, whose output is a dendrogram, can make use of the
constraints.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION AND MOTIVATION
The area of clustering with constraints was introduced to the ma-

chine learning and data mining fields by Wagstaff and Cardie [18] a
decade ago. During the past ten years much research has occurred
in the field with the seminal paper [18] obtaining over five hundred
citations and a recent collected edition [4] describes many innova-
tive applications. Despite the great attention given to constrained
clustering two noticeable “gaps" in the research have occurred.
Firstly, despite an extensive survey [13] of application journals in
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domains such as biology, chemistry and physics showing that hi-
erarchical, not non-hierarchical, clustering is the most prevalent
clustering approach, little effort has looked at constrained hierar-
chical clustering. Secondly, the connection with the closely re-
lated computer science fields of constraint programming languages,
declarative languages, and constraint satisfaction solvers has re-
ceived little attention.

The first gap/limitation described above greatly limits the use of
constrained clustering algorithms since in that survey it was found
that over 50% of applications of clustering were to create hierar-
chies. This is not too surprising given that hierarchies are of more
use to practitioners since they offer a more comprehensive sum-
mary of the data and can model temporal relationships such as
evolution. The introduction of constrained hierarchies offers even
more benefits since hierarchical techniques tend to be used in ar-
eas where considerable domain expertise already exists and hence
should provide a ready source of constraints if they are rich enough
to model the concepts in these fields.

The second gap/limitation is perhaps the most startling given the
aim of constrained clustering is to find clusterings consistent with
a given set of constraints. Modeling constraints in a procedural
language is greatly limiting and gave rise to declarative languages
with built-in constraint satisfaction techniques such as resolution
thereby freeing the programmer to model the constraints rather than
designing algorithms to solve them. A severe limitation to intro-
ducing more complex constraints beyond the seminal constraints
must-link and cannot-link is that determining if they can
be efficiently satisfied, and how to satisfy them becomes a difficult
issue. Our first order logic formulation, can be propositional-
ized into a set of Horn-SAT constraints allowing us to check
the consistency of the constraints and find dendrograms that
satisfy all of the supplied constraints in polynomial time.

We make the first steps to combining hierarchical constrained
clustering and constraint programming languages and solvers. Our
previous work [8] explored using constraint satisfaction techniques
and 2-SAT for non-hierarchical clustering in a limited setting (k =
2). The direction we take in this paper has many immediate and
long term benefits to the field, some of which we now list.

• The domain-expert/user can specify a collection of different
types of constraints. Previous work has focused on only one
type of instance-level constraint.

• The constraints are capable of expressing hierarchical infor-
mation including partial dendrograms.

• The domain-expert/user can specify a large collection of con-
straints and they can be efficiently checked for inconsisten-
cies and satisfaction unlike the non-hierarchical case which
is in general NP-Complete [7].



• Extensive complexity and algorithm design results have cre-
ated a rich literature of which normal forms of clauses are
efficiently solvable and algorithms exist to solve large col-
lections of clauses. For example, in this paper we make use
of the fact that clauses in Horn-form are efficiently solvable
and base our own solver on the work of Dowling and Gallier
[9].

• The user and algorithm designer are free to focus on data
mining algorithms and not how to model or satisfy constraints.

• By separating out the constraint satisfaction part of the algo-
rithm and formally modeling it, we create a reusable frame-
work that can be used with a variety of algorithms that build
hierarchies.

We begin this paper by describing previous work, which is lim-
ited to just six papers, in Section 2. In Section 3 we describe our
first order logic language to model constraints. Section 4 shows
how an agglomerative clustering algorithm can use our formalism
to find solutions to constrained hierarchical clustering problems.
The description of our experiments and results can be found in Sec-
tion 5.

2. PREVIOUS WORK
Despite the popularity of applying hierarchical clustering algo-

rithms, little work has focused on hierarchical constrained cluster-
ing. Previous work has explored using instance level constraints
for hierarchical clustering. Davidson and Ravi use must-link
(ML) and cannot-link (CL) constraints previously used for
non-hierarchical clustering and demonstrated their use for hierar-
chical clustering [6, 7]. Kestler and Kraus showed the limitations of
using ML and CL constraints with hierarchical clustering and pro-
posed a method to limit the scope of the constraints [12]. They used
must-link and cannot-link constraints for their problem,
but because of their application, needed different sets of constraints
for the top half of their dendrogram than for the bottom half. They
created an algorithm to do so and conjectured that their work could
be extended so that constraints could be specified at more than the
two levels. Bade and Nürnberger proposed a new type of constraint
for hierarchical clustering, must-link-before (MLB), a trinary
relationship that specifies that two points should be joined together
before either are joined to a specified third point in the resulting hi-
erarchy [2, 3]. We show these and other constraints can be naturally
modeled in our framework.

Recently there has also been work by Davidson, Ravi, and Shamis
which showed how 2-SAT solvers can be used as a basis to form
non-hierarchical clustering algorithm’s objective functions [8]. This
paper instead looks at modeling complex constraints (not the objec-
tive function) in hierarchical clustering and using Horn-SAT.

3. A FORMULATION FOR CONSTRAINED
HIERARCHICAL CLUSTERING

In this section we outline at a high level how to build a knowl-
edge base that can both model a dendrogram and the constraints
the dendrogram must satisfy. The implementation of our constraint
solver propositionalizes the knowledge base, so we only add sen-
tences that will propositionalize into Horn clauses. We first define
the trinary relationship together(x,y,i) which will express
that instances x and y must be in the same cluster at level i in
the dendrogram. We will then show in the next section four prop-
erties that a dendrogram must satisfy and define them using the
together relationship.

DEFINITION 1. together Relation. together(x,y,i)
which if true requires points x and y to be in the same cluster at
level i.

Our work in this section can be summarized as follows.

• We give a definition of dendrogram using the together
relationship that requires the following properties to be satis-
fied: Transitivity, Symmetry, Inter-level link
and Full-tree (see Section 3.1).

• Each of four properties can be expressed in Horn form (see
Section 3.3).

• The definition of dendrogram we use is quite broad and in-
cludes dendrograms where no, one, or multiple merges occur
at each level in the tree.

• We show that all types of existing constraints can be easily
modeled using the together relationship and expressed as
Horn sentences (see Section 3.2).

• Our formulation lends itself to both new global and local
types of constraints.

Once we have created a set of sentences (a knowledge base) to
represent our problem and the constraints, a SAT solver will try
to find a model that satisfies all of the sentences and thus can be
interpreted as a dendrogram that satisfies the user constraints. If it
is unable to do so then the set of sentences is unsatisfiable, which
would manifest itself in a contradiction. Our knowledge base is in
first order logic but we propositionalize it and use an efficient
solver.

3.1 How to Model a Dendrogram
We now describe a logic formulation for hierarchical clustering

that allows us to express each of the previously described con-
straints in the literature (global, must-link-before, level spe-
cific) and new variations. The definition of dendrogram we use
is a sequence of clusterings where each clustering is derived from
the previous clustering in the sequence through zero or more merge
operations1. A complete dendrogram is defined as a dendrogram
that has only one cluster in the final clustering in that sequence.
Throughout this paper, we refer to the "leaf end" of a tree as the
first level of a dendrogram, and the root of the tree as the top level
of a dendrogram.

We first constrain together to reflect a clustering for each
value of i by requiring it to respect the equivalence relation prop-
erties of transitivity, symmetry, and reflexivity. We then force each
clustering at different levels of i to be related through merges by
enforcing the inter-level link property. Finally we ensure the re-
lationship will represent a complete dendrogram by enforcing the
full-tree dendrogram property. These properties are described for-
mally below. By adding sentences that enforce these properties to
our formalism, any satisfying model will be interpretable as a full
dendrogram. We will then be able to add our own domain or prob-
lem specific constraints to find hierarchical clusterings that satisfy
those constraints as well (assuming they are consistent).

Reflexivity.
Every instance is always in the same cluster as itself.

DEFINITION 2. Reflexivity Property

∀i, x[together(x,x,i)]

1Requiring one or more merges per level, although a more natural
formulation, leads to an NP-Hard constraint satisfaction problem.



Symmetry.
If instance a is in the same cluster as instance b at a particular

level i, then a is also in the same cluster as b at that level.

DEFINITION 3. Symmetry Property.

∀i, x, y[together(x,y,i) → together(y,x,i)]

Transitivity.
If instance a and instance b are in the same cluster

(together(a,b,i)) and instance b and instance c are in the
same cluster (together(b,c,i)) then instance a and instance
c are in the same cluster (together(a,c,i)).

DEFINITION 4. Transitivity Property.

∀i, x, y, z[together(x,y,i) ∧ together(y,z,i) →

together(x,z,i)]

Implied Inter-Level Links.
Due to the nature of hierarchical clustering, if two instances are

in the same cluster at a given level, they will also be in the same
cluster at higher levels in the hierarchy. Another way of putting
this, is that once two instances have been merged into the same
cluster, they can never be unmerged.

DEFINITION 5. Implied Inter-level Links

∀i, x, y[together(x,y,i) → together(x,y,i+1)]

Complete Dendrograms.
If our resulting dendrograms are to form a complete tree, then the

top level of the hierarchy must contain just one cluster containing
all instances.

DEFINITION 6. Complete Dendrogram Property

∀x, y[together(x,y,top)]

3.2 Modeling User Constraints
The power of using a logic formulation for hierarchical cluster-

ing is that many different types of user constraints can be easily
added. All of the constraint types described in previous work (in-
stance constraints [7], level specific instance constraints [12],
must-link-before [3]) can be formulated using only Horn
clauses of our core relation (see Definition 1). We also show how
the expressiveness of logic allows us to easily extend the
must-link-before constraints to encode a notion of distance.

Global constraints.
In previous work Davidson and Ravi explore using must-link

and cannot-link constraints for hierarchical clustering. The
must-link and cannot-link constraints were originally for-
mulated for use with non-hierarchical clustering [7]. Since each
level of a dendrogram effectively corresponds to a different non-
hierarchical clustering, an obvious interpretation of the constraints
is that they must hold in each and every level of the dendrogram.
We refer to such unconditional must-link and cannot-link
constraints as global constraints since they apply to each level of
the dendrogram. Note that a single cannot-link constraint pre-
vents a full dendrogram from being constructed. Therefore the use

of the global cannot-link constraint cannot be used without
removing the full dendrogram requirement.

A global constraint can easily be specified in our framework by
replicating the constraint at each level in the dendrogram.

OBSERVATION 1. Encoding Global Must/Cannot-Link Con-
straints [7]

ML(a, b) ≡ ∀i together(a,b,i)

CL(a, b) ≡ ∀i ¬together(a,b,i)

Must Link Before Constraints.
The must-link-before constraints formulated and explored

in the work of Bade and Nürnberger, are important because they
are created specifically for use with hierarchical clustering and are
simple to create in practice. must-link-before is a trinary re-
lationship that specifies that two instances, a and b, are more sim-
ilar to each other than either is to a third instance, c. Hence any
satisfying dendrogram must have a and b in the same cluster be-
fore either is in the same cluster as c. A key observation is that
the must-link-before constraint is logically equivalent to the
claim that if either of a or b are in the same cluster as c, then a and
b must already be in the same cluster at the previous level (higher
levels are closer to the dendrogram root).

OBSERVATION 2. Encoding Must-Link-Before Constraint [3]

must-link-before(a,b,c) ≡

∀i together(a,c,i+1) → together(a,b,i)

∀i together(b,c,i+1) → together(a,b,i)

¬together(b,c,1)

¬together(a,c,1)

The last two sentences are necessary to handle boundary condi-
tions and simply state that the distant point cannot be linked with
either of the close points in the first merge.

Level Specific Constraints.
The constraints specified by Kestler and Kraus allowed sets of

ML and CL constraints to be specified at different levels of the hi-
erarchy. The togetheri relation maps directly to that notion as we
can specify ML constraints at a specific level i. To specify can-
not links we can use a negated togetheri relation which is also in
Horn form (because a sentence consisting of a single negative lit-
eral meets the definition of a Horn clause, see Definition 7). These
constraints have previously been used successfully in specific ap-
plications but in general they are not easily generated because do-
main knowledge of the form that two instances should be together
or apart at specific levels in the dendrogram is rare. However, if
such information is available it can be both useful and complex to
satisfy. Consider if the domain expert states that x and y should
be together at level i, a and b together at level i + 1, and x and a
should be apart at level i+ 2. Due to entailment this will generate
a range of additional constraints at level i+ 2 namely cannot-links
between (x, b), (y, a), (y, b). If the domain expert were to inadver-
tently state any of these pairs should be together this would create
an inconsistency. The benefit of our approach at modeling con-
straints in a logic and using solvers is that such inconsistency can
be easily checked in polynomial time.



Other Constraints.
Our underlying core relation (see Definition 1) can be used to

model a variety of constraints. For example, it is easy to extend the
MLB constraint to take into account distances between merges. For
example, while a constraint MLB(a, b, c) specifies that instance a
and b must be merged together before a and c or b and c, it does
not say how soon before they should be merged. We may wish to
specify that a and b should be merged together much sooner before
a or b are merged with c. This may be the case if we believe a and
b share a close common ancestor but are only remotely related to c.
Consider the situation where a and b should not be merged with c
until d merges/time-steps. This can be formulated very similarly to
how must-link-before constraints are.

OBSERVATION 3. Encoding MLB-After-d

must− link − befored(a, b, c) ≡

∀i together(a,c,i+d) → together(a,b,i)

∀i together(b,c,i+d) → together(a,b,i)

¬together(b,c,1)

...

¬together(b,c,d)

¬together(a,c,1)

...

¬together(a,c,d)

The interpretation of this constraint relies on how merges are
performed, which is algorithm dependent. If exactly one merge
occurs per level then it will be the case that a and b will be together
d merges before either are merged with c. This extended MLB
then can be considered as a strong suggestion as to the distance
between the triple. In the case when d=1, this definition reduces to
the must-link-before constraint.

3.3 Propositionalization
Russel and Norvig give a general method for creating a set of

set of propositional sentences (CNF) from any first order knowl-
edge base [16]. A satisfying truth assignment for the propositional
sentences can be translated into a model satisfying the first order
knowledge base. All of the first order logic sentences we used
to define a dendrogram (reflexivity, symmetry, transitivity, implied
inter-level link) and all user constraints described in this paper can
be propositionalized into Horn clauses.

DEFINITION 7. [Horn Clause] A Horn clause is a disjunction
of literals (propositions or negated propositions) in which at most
one of the literals is not negated. A Horn clause is logically equiva-
lent to a sentence in which the conjunction of the variables from the
negative literals, imply the variable from the only positive literal.
For example ¬P ∨ ¬Q ∨R ≡ (P ∧Q) → R

The naive approach of model-checking [16] exhaustively tries
all combinations of propositional values (true or false) but will take
exponential time. The SAT problem is famously known to be NP-
complete and therefore no general-purpose polynomial time algo-
rithm is capable of exactly solving it (assuming P 6= NP)[5, 11].

If instead of allowing general logical sentences, we restrict the sen-
tences to be composed only of Horn clauses, then there are efficient
algorithms that can solve the satisfiability problem. In this paper we
use the algorithm presented by Dowling and Gallier which can ei-
ther find a minimal satisfying truth assignment, or determine that
the sentences are inconsistent in linear time with respect to the total
number of literals in all of the Horn clauses [9]. When a satisfying
truth assignment is found, it can be used to construct a dendrogram
that will satisfy all of the user constraints.

4. ALGORITHMS
In this section we describe our algorithm for incorporating con-

straint solvers into agglomerative algorithms. As shall be seen, our
work is algorithm independent and we experimentally show its per-
formance using single and complete linkage algorithms. It is worth-
while discussing at a high level how our work can be incorporated
into the agglomerative algorithm. This is shown in Figure 1.

Algorithm Generate Constrained Dendrogram
Input: Cdendrogram: The clauses that model the properties of a
dendrogram (see section 3.1).
Cuser: The clauses representing the different types of given user
constraints (see section 3.2).
X: A set of data points to build a dendrogram from.
Output: D: a dendrogram that at each level satisfies all constraints.

1. Let KB = Cdendrogram ∪ Cuser

2. if (RequiredJoins = Solver(KB)) fails then
exit // the user constraints are contradictory

// Note RequiredJoins is a list of triples < x, y, i >.
// Each triple states that these two points must be
// joined at this level. These are points that must be joined
// to satisfy the constraints in KB.

3. while (Agglomerative-Algorithm Not Converged)
a) Join = Agglomerative-Algorithm(RequiredJoins,X)
// The agglomerative algorithm choose the best legal join

b) KB = KB ∪ Join
c) RequiredJoins = Inc-Solver(RequiredJoins, KB)
end

4. Construct D from RequiredJoins

Figure 1: Our Algorithm Used in the Experimental Settings.

Firstly, in Line 1, the clauses representing the user constraints
and the dendrogram properties are added to form the core knowl-
edge base. This knowledge base is fed into our solver in Line 2. If
the solver fails then the constraints are inconsistent and should be
modified (future work will explore using MAXSAT and other for-
mulations to determine which constraints to repair). If the solver
succeeds it returns a list of required joins at given levels to sat-
isfy the constraints. Line 3 applies any agglomerative algorithm
to select appropriate joins. The solver is called at each level in
the dendrogram because the interaction between the joins the al-
gorithm chooses, and the user constraints, may produce additional
constraints. In Sections 4.2 and 4.3 we will give the details of our
constraint solver. We will give the full details of how the solver fits
into a hierarchical clustering algorithm in Section 4.1.



4.1 Full Constrained Hierarchical Clustering
Algorithm

Our propositional constraints along with a Horn-SAT solver can
be used by any agglomerative hierarchical clustering algorithm.
Agglomerative algorithms typically work by finding closest points,
merging them, and then updating the distance matrix for the new
clusters. This same procedure can be used with our constraint
solver to solve constrained hierarchical clustering. When an ag-
glomerative algorithm choses two closest points a and b to be merged,
this can be turned into a constraint together(a,b,i) where i
is the current step the agglomerative algorithm is on. This con-
straint can be added to the set of logic sentences specifying the
constrained problem (the knowledge base). Solving the SAT prob-
lem will determine if the merge violates the constraints. If it does
violate the constraints, the sentences will be unsatisfiable and the
algorithm will need to pick the next closest pair of points until it
finds a pair that does not violate the constraints of the problem.

In the case that adding the constraint does not cause the knowl-
edge base to become inconsistent, the Horn-SAT solver will pro-
duce a variable assignment which will include the results of merg-
ing the two points. In this case the SAT solver need not be restarted,
and more merges can continue to be processed without restarting
the solver. Merging two clusters may have logical consequences
that causes other unrelated clusters to merge together. For example
if a constraint MLB(a,b,c) is specified, and the merge chosen by
the algorithm causes b and c to be put in the same cluster before a
and b are in the same cluster, then a logical consequence is that a
and b will be merged at a lower level. Therefore, when updating
the distance functions, it is generally necessary to check the details
of the resulting variable assignment rather that just updating based
on the points that were explicitly merged together.

4.2 Horn-SAT
Our Horn-SAT solver determines if a set of Horn clauses is satis-

fiable, and if so, produces a minimal satisfying truth assignment. A
minimal truth assignment will have the fewest number of variables
set to true as possible. There are three types of Horn clauses: (1)
those consisting only of a positive literal, (2) those with negative
literals and a positive literal, (3) and those with only negative lit-
erals. In the case when there are no clauses consisting solely of a
single positive literal, the clauses are always satisfiable by assign-
ing every variable the value false. When there are no clauses that
only have negative literals, then the set of clauses can always be
satisfied by assigning every variable the value true. Therefore, the
single positive literal clauses are what initially drive the process of
requiring variables to be assigned the value true. Setting a variable
to true can lead to simplification in the remaining clauses. If all
of the negative literals in a clause are set to true, then any positive
literal in the clause must be set to true. If such a clause has no pos-
itive literal, then the clause has been simplified to the unsatisfiable
false, and the set of clauses is unsatisfiable.

The Horn-SAT algorithms proposed by Dowling and Gallier [9]
works by starting with an all false variable assignment and only
assigning a variable the value true if necessary (clauses with only
a positive literal, or have been simplified to have only a positive
literal). Once a variable is assigned the value true, the variable is
added to a queue of variables that will be used to further simplify
the remaining clauses. A mapping between each variable and a list
of all clauses containing the variable as a negative literal is main-
tained. If the simplification leads to a clause with a single positive
literal, then the variable from the positive literal is added to the
queue. The simplification can also lead to the unsatisfiable sen-
tence false in which case the set of clauses is unsatisfiable. The

algorithm finishes when all variables in the queue have been pro-
cessed and has a linear runtime with respect to the total number of
literals in all of the clauses whose satisfiability is being tested.

4.3 Horn-SAT With Equivalence Relation
The Horn-SAT solver described in the previous section will work

for our purposes but will require us to create a large number of
propositional sentences to model the properties used to define a
dendrogram. The modifications to the solver outlined in this section
allow the dendrogram properties to be modeled implicitly, leaving
propositional sentences only for use in expressing the user con-
straints. Our custom Horn-SAT solver takes advantage of our propo-
sitions being based on the together relationship. Given a con-
stant i, the together(x,y,i) relationship satisfies reflexivity,
symmetry, and transitivity, making it an equivalence relation. For
each possible level in the hierarchy we maintain a disjoint set data
structure which can be used to manipulate an equivalence relation.
A disjoint set data structure is initialized so that each point is in
its own set and the operation of the disjoint set data structure are
merge(x,y), which merges the sets that contain x and y, and
find(x) which returns the name of the set x belongs to. Using
the disjoint set data structure, we can set the value of a proposition
together(x,y,i) to true by selecting the ith disjoint set data
structure and executing merge(x,y). Furthermore we can test
the value of the same proposition by evaluating
find(x)==find(y). Each disjoint set data structure will nat-
urally assure all of the equivalence relation properties of our den-
drogram definition are enforced. To ensure that the inter-level link
property is enforced, any time a proposition together(x,y,i)
is set to true the solver will also set together(x,y,k) to true
for all k > i. To enforce the full dendrogram property all of the
instances in the top level disjoint-set data structure must be merged
into one cluster on initialization.

Our algorithm processes variables in the queue as normal, except
whenever a variable needs to be set to true, we simply perform a
merge operation. However such merges lead to many propositions
becoming true (assuming either set has more than one instance). To
avoid tracking those propositions that become true during merges,
we do not end the algorithm after the positive variable queue be-
comes empty. Instead, every time the queue becomes empty we
scan through the list of variables that are still contained as negative
literals in some clause. We check the truth values of such variables,
and if they are true, we add them to the queue.

4.4 Runtime Analysis
In this section we give a brief analysis of the general Horn-SAT

algorithm, then an analysis of the runtime of our custom solver. For
those who initially wish to skip the analysis, the overall runtime to
initialize and solve the satisfaction problem with our custom solver
is O(ln

2 + n2), where ln is the total number of negative literals
contained in the propositional Horn clauses, and n is the number of
instances being clustered. Additional constraints can be added to
the knowledge base and incrementally solved for in O(lnr

2) time
where lnr is the number of negative literals in the remaining Horn
clauses (calls to the solver generally leads to simplification of the
Horn clauses leading to fewer negative literals).

In the general Horn-SAT solver, each variable that must be set
to true is put on the queue once. When processing that variable
we check which Horn clauses are affected by setting the variable
true. Only the clauses that have negative literals that use the same
variable as the variable being set to true are affected. Each vari-
able that shows up as a positive literal in any of the clauses, has an
associated list of clauses, where each clause on the list is a clause



that will be affected if the variable is set to true. When a variable is
set to true all negative literals using that variable are removed from
their clauses (and implicitly replaced by a false constant). If any of
the clauses are left with only a positive literal that has not already
been set to true, then that variable is added to the queue.

Adding variables to the queue takes constant time. Removing a
negative literal takes constant time. Processing a variable from the
queue requires removing some negative literals and possibly adding
some more variables to the queue. Each variable can only be added
to the queue once. Therefore the total worst case running time is
O(ln+ lp+ io) where ln is the number of negative literals, lp is the
number of positive literals, and io the time needed to initialize the
necessary data-structures. Dowling and Gallier show that O(ln +
lp + io) = O(ln + lp) and details of the correctness and running
time of their algorithm can be found in their paper [9].

Our custom solver does extra work when processing each vari-
able in the queue. When a proposition together(x,y,i) is set
to true we merge the points x, y in the disjoint set data structures
corresponding to level i and above. A disjoint set data structure
can represent multiple disjoint sets and perform find and join oper-
ations that for practical purposes run in constant time [17] (actually
uses O(α(n)) where α(n) is the inverse of the Ackerman function
which grows very slowly, e.g. α(9876!) = 5). A dendrogram can
have at most n levels so a there are at most n constant time merges
performed to process a propositional variable in the positive literal
queue. Additionally, each disjoint set data structure can be initial-
ized in linear time with respect to the number of instances, leading
to an additional O(n2) initialization runtime cost.

The custom solver also does extra work every time the positive
literal queue is emptied. Every time the queue empties, it is nec-
essary to scan through all negative literals still contained in a Horn
clause and check if any of the associated variables have become
true. In the worst case only one negative literal will be removed
from the clause list each time the queue is emptied. In this case
the total amount of work added by the necessity to check those
variables is O(ln

2α(n)) ≈ O(ln
2). So the total runtime for our

custom Horn-SAT algorithm to take into account this extra work is
O((ln + lp + ln

2)α(n) + n2) ≈ O(ln
2 + n2). After initially

solving the satisfaction problem for a set of constraints, adding
an additional variable to the positive literal queue to create addi-
tional merges as described in Section 4.1, will take O(lnr

2α(n)) ≈
O(lnr

2) time, where lnr is the number of remaining negative liter-
als.

5. EXPERIMENTS
Previous work has shown that constraints can be advantageous

in increasing the quality of clusterings [3, 2, 7, 6, 12]. Therefore in
our experimental results we focus on two different questions:

• Does our method of incorporating constraints into hierarchi-
cal algorithms (see Figure 1) produce undesirable results?

• Can the more complex constraints such as those that allow
incorporating partial dendrograms produce better results?

The first question we wanted our experiments to answer is how
adding constraints using our algorithm would increase the quality
of the resulting dendrogram. This is an important question, be-
cause we would like users to be able to add this functionality into
their clustering algorithms and immediately see better results with-
out having to understand the internals of the constraint solver. We
therefore devised experiments to see if this approach would yield
good results.

The second question is most important and attempts to address
how the quality of resulting dendrograms would be affected by us-
ing new constraints that our formulation allows, such as the dis-
tance encoded must-link-before. On the surface our ex-
tension to the must-link-before constraint certainly appears
stronger, but if it does not lead to better results, then the added com-
plexity is not worthwhile. We created some experiments that would
directly compare the results of using must-link-before con-
straints, and our extension to must-link-before on the same
data sets, to determine whether there is a significant difference be-
tween the two in terms of dendrogram quality.

5.1 Simulated User Driven Constraints
Previous work in constrained hierarchical clustering has focused

on evaluating sets of randomly generated constraints. In some sce-
narios that makes sense, but we wanted to create constraints that
a user might make after finding unacceptable results in an already
attempted hierarchical clustering. We generate these by first creat-
ing a dendrogram using our hierarchical clustering algorithm with
no constraints, and comparing the output to the known hierarchi-
cal structure. We find a set of points that are merged together too
soon and create a MLB-After-d constraint to enforce the correct
merge order. We then continue the process by rerunning the clus-
tering algorithm with the new constraint, finding the next error, and
generating a new constraint based on it.

5.2 Measurements
We used two measurements to calculate the quality of our hi-

erarchical clustering results: F-score and H-Correlation. F-score
measure the trade-off between precision and recall and relies only
on the labels of each instance. To obtain the F-score we assign
each cluster a class based on the majority class membership in the
cluster. Each cluster has its F-score calculated and weighted by the
number of instances in the cluster. Finally the average F-score over
all of the clusters in the hierarchy is used to represent the quality of
hierarchical clustering.

H-Correlation is a measurement devised specifically for hierar-
chical clustering [1]. Rather than using the instance labels, the hi-
erarchical structure is used to measure the quality of the results.
Therefore the true hierarchical structure of the data is needed to use
this measurement. The measurement iterates over all triples (a,b,c)
in the data set and counts the number of times the triples satisfy
MLB(a, b, c) in the true hierarchy St, the learned hierarchy Sl,
and both simultaneously Sb. A higher H-Correlation is desirable
and is calculated using:

H =
Sb

St + Sl

5.3 Data

Artificial Data Set.
We created a method to artificially generate hierarchical data

sets. The data sets generated each have 8 classes whose instances
are normally distributed with a mean and variance specific to the
class. The method with which those Gaussian parameters are spec-
ified is what causes the data to have a hierarchical structure. An
initial mean corresponding to the root of the hierarchy is used to
calculate two new means which correspond to the two clusters at
the next lower level in the tree. Recursively, each of those means
is used to randomly generate two new means until there are a total
of 8 leaves in the tree. The variance at the root node starts at 1 and
is reduced by half at each lower level in the tree. This creates a



hierarchy with 5 levels. The first level is the root and has 1 cluster,
the second level has 2 clusters, the third 4, the fourth 8, and the last
level has as many clusters as there are instances. Each of the data
sets were created with a total of 120 five dimensional instances (15
instances per class).

Newsgroup Data Set.
To test our algorithms on a real world data set we utilized the

20 Newsgroups data set [15]. This is a collection of around 20,000
documents from 20 different newsgroups. A freely available ver-
sion of this data set has already already been processed into a document-
term matrix using the lexing capabilities of Rainbow [14]. The
number of terms in the document-term matrix is over 60,000 so
we used PCA to reduce the number of dimensions to 100. This
data has a natural hierarchical structure based on the way the top-
ics were originally organized. In figure 5.3 the hierarchical rela-
tionship between the newsgroups is displayed. The class we used
for each document when calculating the F-score is the name of the
newsgroup the document was posted in.

• Computers
◦ Hardware
* comp.os.mswindows.misc
* comp.windows.x
* comp.graphics

◦ Software
* comp.sys.ibm.pc.hardware
* comp.sys.mac.hardware

• Recreation
◦ Automobiles

* rec.autos
* rec.motorcycles

◦ Sports
* rec.sport.baseball
* rec.sport.hockey

• Sale
* misc.forsale

• Science
* sci.med

◦ Technology
* sci.crypt
* sci.electronics
* sci.space

• Politics
* talk.politics.guns

◦ International
* talk.politics.mideast
* talk.politics.misc

• Philosophy/Religion
* alt.atheism

◦ Theism
* talk.religion.misc
* soc.religion.christian

Figure 2: Hierarchical structure of the 20 Newsgroup data set.

5.4 Experimental Setup
The experiments we ran attempted to simulate the process users

might use to incrementally create constraints for their problems. In
our experiments we first perform unconstrained hierarchical clus-
tering and then find triples of instances that were merged in the
wrong order in relationship to the known true hierarchy. We take
one such triple, create a constraint that will correct it, and run
our constrained hierarchical clustering algorithm with the new con-
straint. We then continue the process, always creating one new
constraint based on an erroneous merge order in the previous clus-
tering, and then add the constraint to those from the previous steps
and re-cluster. We use standard agglomerative hierarchical clus-
tering algorithms and use the Horn-SAT solver to ensure that the
constraints are satisfied. We used both single linkage and complete
linkage distance update steps in order to compare how they each
behave in a constrained clustering environment.

In order to show the significance of our results we repeated each
experiment 10 times. For the artificial data set each independent run
of experiments started by randomly generating a new data set. The
Newsgroup data set was not randomly generated, but is sufficiently
large so that we were able to randomly sample the instances so that

each set of experiments had a sample of 200 instances with equal
number of instances in each class. After creating the data set, each
experiment was executed using the same data set, so the different
methods could be compared on the same data. We performed a full
combinatorial experiment on: choice of data set, type of constraints
and distance function. The results of each of these experiments
averaged over all 10 experimental runs are plotted below.

5.5 Results
Our results answered our questions fairly conclusively. We first

wanted to determine if using our Horn-SAT solver with standard
agglomerative clustering algorithms would improve the quality of
our results. The left most measurement on each graph in our results
is the measurement taken for unconstrained hierarchical clustering.
By adding our MLB-after-d constraints we saw improved per-
formance as the number of constraints increased. The improvement
is significantly larger than global constraints presented in our ear-
lier work [7] given the constraint is more expressive and capable of
encoding a partial dendrogram.

Secondly we wanted to determine if there were advantages to
being able to formulate new types of constraints using logic. The
F-score measurements in all of the experiments suggest that this
is the case since the MLB-after-d constraints all outperformed
the original must-link-before constraints. The H-correlation
measurement was created by the inventors of the
must-link-before constraint and centrally uses that constraint.
It is therefore quite encouraging to see that in our experiments us-
ing H-correlation, that the MLB After-d constraints were often able
to perform better than the must-link-before constraint which
the measure is based on.

6. CONCLUSION
In this work we attempted to create a constraint solver that would

allow any agglomerative hierarchical clustering algorithm to be-
come a constrained hierarchical clustering algorithm, through declar-
ative means, rather than procedurally. Logic is a good choice for
constraint specification, because it is formal, yet widely understood
and studied. There are also many algorithms for solving the satis-
fiability/consistency problem that can be utilized by a constraint
solver.

We showed how logic can be used to model dendrograms and
user constraints in such a way that the satisfiability could be tested
in polynomial time. All of the constraint types in previous work on
constrained hierarchical clustering are expressible in Horn form,
as are the logical sentences needed to model a dendrogram. This
ensures that we can find solutions that satisfy the constraints effi-
ciently. A still unexplored direction for our framework is maximiz-
ing the number of constraints satisfied in the case of an inconsistent
set of constraints.

We implemented our solver and integrated it into an agglomer-
ative hierarchical clustering algorithm, with as little extra work as
possible. We have also made our solver and experiment code avail-
able on-line[10]. Our experiments show that taking just that simple
step can lead to a well performing constrained hierarchical cluster-
ing algorithm. There are other ways this solver could be used to
perform hierarchical clustering, but it was more interesting to us to
see how it could be used by existing clustering algorithms with no
additional work.
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Figure 3: Artificial data set results.
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Figure 4: 20 Newsgroups data set results.
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