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ABSTRACT
Constrained clustering has been well-studied for algorithms
likeK-means and hierarchical agglomerative clustering. How-
ever, how to encode constraints into spectral clustering re-
mains a developing area. In this paper, we propose a flexi-
ble and generalized framework for constrained spectral clus-
tering. In contrast to some previous efforts that implicitly
encode Must-Link and Cannot-Link constraints by mod-
ifying the graph Laplacian or the resultant eigenspace, we
present a more natural and principled formulation, which
preserves the original graph Laplacian and explicitly encodes
the constraints. Our method offers several practical advan-
tages: it can encode the degree of belief (weight) in Must-
Link and Cannot-Link constraints; it guarantees to lower-
bound how well the given constraints are satisfied using a
user-specified threshold; and it can be solved deterministi-
cally in polynomial time through generalized eigendecom-
position. Furthermore, by inheriting the objective function
from spectral clustering and explicitly encoding the con-
straints, much of the existing analysis of spectral cluster-
ing techniques is still valid. Consequently our work can be
posed as a natural extension to unconstrained spectral clus-
tering and be interpreted as finding the normalized min-cut
of a labeled graph. We validate the effectiveness of our ap-
proach by empirical results on real-world data sets, with ap-
plications to constrained image segmentation and clustering
benchmark data sets with both binary and degree-of-belief
constraints.
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1. INTRODUCTION
Constrained clustering is a category of techniques that

try to incorporate user supervision (side information) into
existing clustering algorithms [2]. The typical form of pair-
wise constraints are Must-Link (the pair of points must be
assigned into the same cluster, ML for short) and Cannot-
Link (the pair of points cannot be assigned into the same
cluster, CL for short). These types of constraints have been
added into many popular clustering algorithms such as K-
means clustering, mixture modeling, hierarchical clustering
and density-based clustering [2]. However, constrained spec-
tral clustering remains a developing area.

Spectral clustering is an important clustering technique
that has been extensively studied in the image processing,
data mining, and machine learning communities [13–15]. It
is considered superior to traditional clustering algorithms
likeK-means in terms of having deterministic and polynomial-
time solution and its equivalence to graph min-cut problems.
Its advantage has also been validated by many real-world
applications, such as image segmentation [14] and mining
social networks [18].

The aim of this paper is to combine spectral clustering
and pairwise constraints in a principled and flexible man-
ner. Most of the existing techniques on constrained spec-
tral clustering can be categorized into two different types,
based on how they enforce the constraints. The first type of
methods [7,8,11,17,19] directly manipulate the graph Lapla-
cian (or equivalently, the affinity matrix) according to the
given constraints; then unconstrained spectral clustering is
applied on the modified graph Laplacian. The second type
of methods use constraints to restrict the feasible solution
space. For example, the subspace trick introduced by De
Bie et al. [5] alters the resultant eigenspace which the clus-
tering assignment vector will be projected onto, based on
given constraints. This technique was later extended in [3]
to accommodate inconsistent constraints. Yu and Shi [20,21]
encoded partial grouping information as a subspace projec-
tion. Li et al. [10] enforced constraints via the regularization
of the spectral embedding.

The aforementioned approaches have two limitations:

1. They are designed to handle binary ML and CL con-
straints. However, there are many applications where
the constraints are often provided in the form of real-
valued numbers (degree of belief) rather than yes/no
verdicts. For example in a collaborative tagging ap-
plication, constraints are provided by a group of users
who do not necessarily agree with each other. So it is
more natural to measure the likeliness of two instances



belonging to the same cluster with a real-valued score,
according to the ratio of users who agree so.

2. They aim to satisfy as many constraints as possible,
which could be unnecessary and difficult in practice.
For example, constraints provided by multiple users
could be inconsistent, thus they cannot be all satisfied
at one time. Also it is reasonable to ignore a small
portion of constraints in exchange for a clustering with
much lower cost.

In this paper, we go beyond binary ML/CL constraints
and propose a more flexible framework to accommodate
general-type user supervision. The binary constraints are re-
laxed to become a degree of belief (real-valued) that two data
instances belong to the same class or two different classes.
Moreover, instead of trying to satisfy each and every con-
straint that has been given, we use a user-specified threshold
to lower-bound how well the given constraints are satisfied.
Therefore, our method provides maximum flexibility
in terms of both representing constraints and satis-
fying them.
Specifically, we formulate constrained spectral clustering

as a constrained optimization problem by adding a new con-
straint to the original objective function of spectral clus-
tering (see Section 3.1). Then we show that our objective
function can be converted it into a generalized eigenvalue
system, which can by solved deterministically in polynomial
time (see Section 3.2). This should be considered as a ma-
jor advantage over constrained K-means clustering, which
produces non-deterministic solutions while being intractable
even for K = 2 [4, 6]. Furthermore, our algorithm (see Sec-
tion 4) guarantees to find the solution if one exists, which is
not the case for many constrained clustering algorithms that
are sensitive to the ordering of the constraints (See Fig. 1
in [4] for a concrete example). We validate the effective-
ness of our approach on several real-world data sets in Sec-
tion 5. The results of image segmentation (see Fig. 3 and 4)
show that our method can produce semantically meaningful
clustering that conforms to human intuition and expecta-
tion. The results of clustering benchmarks (see Fig. 5) show
quantitatively that our method can significantly improve the
resultant clustering with given constraints.
Our contributions are:

• We are the first to incorporate user supervision into
spectral clustering that allows real-valued degree-of-
belief constraints.

• We introduce a user-specified threshold to indicate the
importance of user supervision, so that some of the
constraints can be ignored in exchange for lower clus-
tering cost (whereas previous approaches tried to sat-
isfy all consistent constraints).

• We inherit the original objective function of spectral
clustering while encoding constraints explicitly and cre-
ating a novel constrained optimization problem (Eq.(3)).

• Our approach can be viewed as a natural extension to
the original spectral clustering formulation: we show
how our approach (see Section 3.5) can be interpreted
as finding the normalized min-cut of a labeled graph.

• We validate the effectiveness of our approach and its
advantage over existing methods using standard bench-
marks (see Section 5).

Table 1: Table of notations
Symbol Meaning

A The affinity matrix
D The degree matrix
I The identity matrix

L(L̄) The (normalized) graph Laplacian
Q(Q̄) The (normalized) constraint matrix

2. BACKGROUND AND PRELIMINARIES
In this paper we follow the standard graph model that

is commonly used in the spectral clustering literature. We
reiterate some of the definitions and properties in this sec-
tion, such as graph Laplacian, normalized min-cut, eigende-
composition and so forth, to make this paper self-contained.
Readers who are familiar with the materials can skip to
our contributions in Section 3. Important notations used
throughout the rest of the paper are listed in Table 1.

A collection of N data instances is modeled by an undi-
rected, weighted graph G(V, E , A), where each data instance
corresponds to a vertex (node) in V; E is the edge set and A
is the associated affinity matrix. A is symmetric and non-
negative. The diagonal matrix D = diag(D11, . . . , DNN ) is
called the degree matrix of graph G, where

Dii =

N∑
j=1

Aij .

Then

L = D −A

is called the graph Laplacian of G. Assuming G is connected
(i.e. any node is reachable from any other node), L has the
following properties:

Property 1. (Properties of graph Laplacian [15])
Let L be the graph Laplacian of a connected graph, then we
have:

1. L is symmetric and positive semi-definite.

2. L has one and only one eigenvalue equal to 0, and N−1
positive eigenvalues: 0 = λ0 < λ1 ≤ . . . ≤ λN−1.

3. 1 is an eigenvector of L with eigenvalue 0 (1 is a con-
stant vector whose entries are all 1).

Shi and Malik [14] showed that the eigenvector of L as-
sociated with the second smallest eigenvalue λ1 solves the
normalized min-cut (N-Cut) problem of graph G (in a re-
laxed sense). The objective function can be written as:

argmin
u∈RN

uTLu, s.t. uTDu = vol(G), Du ⊥ 1, (1)

where vol(G) =
∑N

i=1 Dii. Note that in Eq.(1), u is the re-

laxed cluster indicator vector; uTLu is the cost of the cut,
which is to minimize; the first constraint uTDu = vol(G)
normalizes the cluster indicator vector u; the second con-
straint Du ⊥ 1 rules out the principal eigenvector of L as a
trivial solution, because it does not define a meaningful cut
on the graph.

In the rest of paper, for the simplicity of notation, we use
an equivalent objective function used in [15]. We substitute



u by D−1/2v, then Eq.(1) becomes:

argmin
v∈RN

vT L̄v, s.t. vTv = vol(G), v ⊥ D1/21. (2)

Here

L̄ = D−1/2LD−1/2

is called the normalized graph Laplacian [15]. Again, Eq.(2)
is equivalent to Eq.(1) since v∗ is the optimal solution to

Eq.(2) if and only if u∗ = D−1/2v∗ is the optimal solution
to Eq.(1).
Note that the result of spectral clustering is solely decided

by the affinity structure of graph G as encoded in the matrix
A (and thus the graph Laplacian L). We will then describe
our extensions on how to incorporate additional supervision
so that the result of clustering will reflect both the affinity
structure of the graph and the structure of the constraint
information.

3. OUR PROBLEM FORMULATION
In this section, we show how to incorporate user super-

vision into spectral clustering, whose objective function is
shown as in Eq.(2). We encode supervision in such a way
that we not only allow binary CL/ML constraints, but also
a real-valued degree of belief that two data instances belong
to the same cluster or two different ones. We propose a new
objective function for constrained spectral clustering, which
is formulated as a constrained optimization problem. Then
we show how to solve the objective function by converting
it into a generalized eigenvalue system. Note that the un-
constrained spectral clustering problem can be interpreted
as the N-Cut of an unlabeled graph. Similarly, our formu-
lation can be interpreted as the N-Cut of a labeled graph.

3.1 Objective Function
We encode user supervision with an N × N constraint

matrix Q. Traditionally, constrained clustering only uses
binary constraints: Must-Link and Cannot-Link, which
can be naturally encoded as follows:

Qij = Qji =


+1 if ML(i, j)

−1 if CL(i, j)

0 no supervision available

.

Let u ∈ {−1,+1}N be a cluster indicator vector, where
ui = +1 if node i belongs to cluster + and ui = −1 if node
i belongs to cluster −, then

uTQu =

N∑
i=1

N∑
j=1

uiujQij

is a measure of how well the constraints in Q are satisfied
by the cluster assignment u: the measure will increase by 1
if Qij = 1 and node i and j have the same sign in u; the
measure will decrease by 1 if 1) Qij = 1 but node i and j
have different signs in u, or 2) Qij = −1 but node i and j
have the same sign in u.
Now to accommodate degree-of-belief constraints, we si-

multaneously relax the cluster indicator vector u and the
constraint matrix Q such that:

u ∈ RN , Q ∈ RN×N .

Qij is positive if we believe nodes i and j belong to the same
class; Qij is negative if we believe nodes i and j belong to

different classes; the magnitude of Qij indicates how strong
the belief is.

Consequently, uTQu becomes a real-valued measure of
how well the constraints in Q have been satisfied, in the
relaxed sense. For example, Qij < 0 means we believe nodes
i and j belong to different classes, then in order to improve
uTQu, we should assign ui and uj with values of different
signs; similarly, Qij > 0 means nodes i and j are believed to
belong to the same class, then we should assign ui and uj

with values of the same sign. The larger uTQu is, the better
the cluster assignment u conforms to the given constraints
in Q.

Now given this real-valued measure, rather than trying to
satisfy all the constraints given in Q, we can lower-bound
this measure with a constant α ∈ R:

uTQu ≥ α.

By substituting u by D−1/2v, above inequality becomes

vT Q̄v ≥ α,

where

Q̄ = D−1/2QD−1/2

is the normalized constraint matrix.
We append this lower-bound constraint to the objective

function of unconstrained spectral clustering in Eq.(2), and
we have:

Problem 1. (Constrained Spectral Clustering) Given
a normalized graph Laplacian L̄, a normalized constraint
matrix Q̄ and a threshold α, we want to optimizes the fol-
lowing objective function:

argmin
v∈RN

vT L̄v, s.t. vT Q̄v ≥ α, vTv = vol(G), v ̸= D1/21.

(3)

Here vT L̄v is the cost of the cut, which is to minimize; the
first constraint vT Q̄v ≥ α is to lower-bound how well the
constraints in Q are satisfied; the second constraint vTv =
vol(G) normalizes v; the third constraint v ̸= D1/21 rules

out the trivial solution D1/21. Suppose v∗ is the optimal
solution to Eq.(3), then u∗ = D−1/2v∗ is the optimal cluster
indicator vector.

It is easy to see that the unconstrained spectral clustering
in Eq.(2) can be covered as a special case of our formulation
where Q̄ = I and α = vol(G).

3.2 Solving the Objective Function
To solve a constrained optimization problem, we normally

use the Karush-Kuhn-Tucker Theorem [9], which describes
the necessary conditions for the optimal solution to the prob-
lem. We can derive a set of candidates, which are called
feasible solutions, that satisfy all the necessary conditions.
Then we can find the optimal solution among the feasible
solutions using brute-force method, given the size of the fea-
sible set is small.

For our objective function in Eq.(3), we introduce La-
grange multipliers as follows:

Λ(v, λ, µ) = vT L̄v− λ(vT Q̄v− α)− µ(vTv− vol(G)). (4)

Then according to the KKT Theorem, any feasible solution



to Eq.(3) must satisfy the following conditions:

(Stationarity) L̄v − λQ̄v − µv = 0, (5)

(Primal feasibility) vT Q̄v ≥ α,vTv = vol(G), (6)

(Dual feasibility) λ ≥ 0, (7)

(Complementary slackness) λ(vT Q̄v − α) = 0. (8)

Note that Eq.(5) comes from taking the derivative of Eq.(4)
with respect to v. Also note that we dismiss the constraint
v ̸= D1/21 at this moment, because it can be checked inde-
pendently, after we find the feasible solutions.
To solve Eq.(5)-(8), we start with looking at the com-

plementary slackness requirement in Eq.(8), which can be
broken down into two mutual-exclusive cases:
Case 1: λ = 0: In this case, the KKT conditions become:

L̄v − µv = 0 ⇒ L̄v = µv

vT Q̄v ≥ α,vTv = vol(G).
(9)

This case is easy to check because the feasible solutions gen-
erated in this case are still the eigenvectors of L̄. All we need
to do is to remove the ones that fail to satisfy the constraint
vT Q̄v ≥ α.
Case 2: λ ̸= 0: In this case, for Eq.(8) to hold vT Q̄v−α

must be 0. Consequently the KKT conditions become:

L̄v − λQ̄v − µv = 0, (10)

vTv = vol(G), (11)

vT Q̄v = α, (12)

λ > 0, . (13)

Unfortunately, under the assumption that α is arbitrarily
given by user and λ and µ are independent variables, Eq.(10-
13) cannot be solved explicitly, and it may produce infinite
number of feasible solutions, if a solution exists.
Thus we introduce an additional variable, β, which is de-

fined as the ratio between µ and λ. Formally:

β = −µ

λ
vol(G). (14)

The introduction of β brings two computational benefits:

1. It helps convert our problem into a generalized eigen-
value system, which can be solved efficiently and pro-
duces up to N feasible solutions.

2. As we will show below, β always lower-bounds α. Thus
we can let user specify the value for β, and our original
constraint will be satisfied automatically.

Now we substitute Eq.(14) into Eq.(10) we obtain:

L̄v − λQ̄v +
λβ

vol(G)v = 0,

or equivalently:

L̄v = λ(Q̄− β

vol(G)I)v (15)

We immediately notice that Eq.(15) is a generalized eigen-
value problem once β is given.
We denote γ = vT L̄v, by left-hand multiplying vT to

both sides of Eq.(15) we have

vT L̄v = λvT (Q̄− β

vol(G)I)v.

Then combining Eq.(11) and (12) we have

γ = λ(α− β).

Now recall that L is positive semi-definite (Property 1), and
so is L̄, which means

γ = vT L̄v > 0,∀v ̸= D1/21.

Consequently, we have

α− β =
γ

λ
> 0 ⇒ α > β.

Recall that α is the lower-bound of how well the given
constraints are satisfied. And now we show that β is a lower-
bound of α. Therefore, instead of letting user assign the
value of α explicitly, we let user assign the value of β, and
the output of algorithm will guarantee vT Q̄v = α > β.

In summary, our method works as follows (the exact im-
plementation is shown in Algorithm 1):

1. Generating candidates: The user specifies a value
for β, and we solve the generalized eigenvalue system
given in Eq.(15). Note that both L̄ and Q̄−β/vol(G)I
are Hermitian matrices, thus the generalized eigenval-
ues are guaranteed to be real numbers.

2. Finding the feasible set: Removing generalized eigen-
vectors associated with non-positive eigenvalues, and
normalize the rest such that vTv = vol(G). Note that

the trivial solution D1/21 is automatically removed in
this step because if it is a generalized eigenvector in
Eq.(15), the associated eigenvalue would be 0. Since
we have at most N generalized eigenvectors, the num-
ber of feasible eigenvectors is at most N .

3. Choosing the optimal solution: We combine the
feasible solutions from Case 1 and 2, and choose from
them the one that minimizes vT L̄v, say v∗.

Then in retrospect, we can claim that v∗ is the optimal
solution to the objective function in Eq.(3) for β as given
and α = v∗T Q̄v∗.

3.3 How To Set β: Sufficient Condition for the
Existence of Feasible Solutions

On one hand, our method described above is guaranteed
to generate a finite number of feasible solutions. On the
other hand, we need to set β appropriately so that the gener-
alized eigenvalue system in Eq.(15) combined with the KKT
conditions in Eq.(10-13) will give rise to at least one feasible
solution. In this section, we discuss such a sufficient condi-
tion:

β < λmaxvol(G),

where λmax is the largest eigenvalue of Q̄.
In this case, the matrix on the right hand side of Eq.(15),

Q̄ − β/vol(G)I, will have at least one positive eigenvalue.
Consequently, the generalized eigenvalue system in Eq.(15)
will have at least one positive eigenvalue. Moreover, the
number of feasible eigenvectors will increase if we make β
smaller. For example, if we set β < λminvol(G), λmin to be
the smallest eigenvalue of Q̄, then Q̄ − β/vol(G)I becomes
positive definite. Then the generalized eigenvalue system in
Eq.(15) will generate N − 1 feasible eigenvectors (the trivial

solution D1/21 with eigenvalue 0 is dropped).



Figure 1: An illustrative example: the affinity struc-
ture says {1, 2, 3} and {4, 5, 6} while the node labeling
(coloring) says {1, 2, 3, 4} and {5, 6}.

In practice, we normally choose the value of β within the
range

(λminvol(G), λmaxvol(G)).

In that range, the greater β is, the more the solution will be
biased towards satisfying the constraints in Q. Again, note
that whenever we have β < λmaxvol(G), the value of α will
always be bounded by

β < α ≤ λmaxvol(G).

Therefore we do not need to take care of α explicitly.

3.4 Generating Constraints from Labels
In practice, the pairwise constraints are often generated

from known data labels, i.e. a ML is added when two in-
stances have the same label and a CL is added when two
instances have different labels. Similarly, the constraint ma-
trixQ in our formulation can be conveniently generated from
a (partially) labeled data set. Let X be an N ×K matrix,
where Xij is positive if we believe data instance i belongs
to class j; and negative otherwise; the magnitude of Xij in-
dicates the degree of that belief. Then Q can be generated
by

Q = XXT . (16)

Note that our model’s capacity of incorporating real-valued
constraints makes it possible to better handle multi-labeled
data set: if node i and j share two labels whereas node k
and l only share one label, then our formulation is able to
generate constraints in such a way that node i and j are
more strongly advised to be assigned into the same cluster
than node k and l are.

3.5 A Graph Cut Interpretation
Unconstrained spectral clustering can be interpreted as

finding the N-Cut of an unlabeled graph. Similarly, our
formulation of constrained spectral clustering in Eq.(3) can
also be interpreted as finding the N-Cut in a labeled/colored
graph.
Specifically, suppose we have an undirected, weighted graph.

The nodes of the graph are colored in such a way that nodes
of the same color are advised to be assigned into the same
cluster while nodes of different colors are advised to be as-
signed into different clusters (e.g. Fig. 1). Let v∗ be the
solution to the constrained optimization problem in Eq.(3).
We cut the graph into two parts based on the values of the
entries of u∗ = D−1/2v∗. Then v∗T L̄v∗ can be interpreted
as the cost of the cut (in a relaxed sense), which is to min-
imize. On the other hand,

α = v∗T Q̄v∗ = u∗TQu∗

can be interpreted as the purity of the cut (also in a relaxed
sense), according to the color of the nodes in respective sides.
For example, if Qij is a positive number, then u∗

i and u∗
j

having the same sign will help increase the purity of the
cut, whereas their having different signs will decrease the
purity of the cut. It is not difficult to see that the purity can
be maximized when there is no pair of nodes with different
colors that are assigned to the same side of the cut, which
is the case where constraints in Q are completely satisfied.

3.6 An Illustrative Example
To illustrate how our approach works, we present a toy

example as follows. In Fig. 1, we have a graph associated
with the following affinity matrix:

A =


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Unconstrained spectral clustering will cut the graph at

edge (3, 4) and split it into two symmetric parts {1, 2, 3}
and {4, 5, 6} (Fig. 2(a)). Now we introduce constraints as
follows:

Q =


+1 +1 +1 +1 −1 −1
+1 +1 +1 +1 −1 −1
+1 +1 +1 +1 −1 −1
+1 +1 +1 +1 −1 −1
−1 −1 −1 −1 +1 +1
−1 −1 −1 −1 +1 +1

 .

Q is essentially saying that we want to group nodes {1, 2, 3, 4}
into one cluster and {5, 6} the other. Although this kind of
“full supervision” does not make sense in practice, it is used
here just to make the result more obvious and intuitive.

Q̄ has two distinct eigenvalues: 0 and 2.6667. As an-
alyzed above, β must be smaller than 2.6667 × vol(G) to
guarantee the existence of a feasible solution, and larger β
means we want more constraints in Q to be satisfied (in a
relaxed sense). Thus we set β to vol(G) and 2vol(G) respec-
tively, and see how the results will be affected by different
values of β. We solve the generalized eigenvalue system in
Eq.(15), and plot the resultant cluster indicator vector u∗ in
Fig. 2(b) and 2(c). We can see that as β increases, node 4 is
dragged from the group of nodes {5, 6} to the group of nodes
{1, 2, 3}, which conforms to our expectation that greater β
value implies higher level of constraint satisfaction.

4. ALGORITHM
In this section, we discuss the implementation issues of

our method.
The routine of our method is similar to that of uncon-

strained spectral clustering. The input of the algorithm is an
affinity matrix A, the constraint matrix Q (or alternatively
the label matrix X), and the threshold β. Then we solve the
generalized eigenvalue problem in Eq.(15) and find all the
feasible generalized eigenvectors. The output is the optimal
(relaxed) cluster assignment indicator u∗. The algorithm is
summarized in Algorithm 1. Note that it only considers the
solutions generated from Case 2 in Section 3.2. Those from
Case 1 (the trivial case) can be examined separately.
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Figure 2: The solutions to the illustrative example in Fig. 1 with different β. The x-axis is the indices of
the instances and the y-axis is the corresponding entry values in the optimal (relaxed) cluster indicator u∗.
Notice that node 4 is biased toward nodes {1, 2, 3} as β increases.

Algorithm 1: Constrained Spectral Clustering

Input: Affinity matrix A, constraint matrix Q, β;
Output: The optimal (relaxed) cluster indicator u∗;

1 vol(G)←
∑N

i=1

∑N
j=1 Aij , D ← diag(

∑N
j=1 Aij);

2 L̄← I −D−1/2AD−1/2, Q̄← D−1/2QD−1/2;

3 λmax ← the largest eigenvalue of Q̄;
4 if β ≥ λmaxvol(G) then
5 return u∗ = ∅;
6 end
7 else
8 Solve the generalized eigenvalue system in Eq.(15);
9 Remove eigenvectors associated with non-positive

eigenvalues and normalize the rest by
v← v

∥v∥vol(G);
10 v∗ ← argminv vTLv, where v is among the feasible

eigenvectors generated in the previous step;

11 return u∗ ← D−1/2v∗;

12 end

Our algorithm can be naturally extended to K-way par-
tition for K > 2, following what we usually do for uncon-
strained spectral clustering [15]: instead of using the optimal
generalized eigenvector u∗, we preserve top-K generalized
eigenvectors corresponding to positive generalized eigenval-
ues, and perform K-means algorithm in the eigenspace.
Since our model encodes constraints as a degree of belief,

inconsistent constraints in Q will not corrupt our algorithm.
Instead, they are enforced implicitly by the effort of improv-
ing uTQu. Note that if the constraint matrix Q is generated
from the partial label matrix X, then the constraints in Q
will always be consistent.
The runtime of our algorithm is dominated by that of

the generalized eigendecomposition. In other words, the
complexity of our algorithm is on a par with that of un-
constrained spectral clustering in big-O notation, which is
O(kN2), N to be the number of data instances and k to be
the number of eigenpairs we need to compute.

5. EMPIRICAL STUDY
In this section, we applied our method on several real-

world data sets, with comparison to existing techniques. Our
goal is to answer the following questions:

1. Does our method generate semantically meaningful re-

sults that conform to user supervision and expecta-
tion?

2. Does our method produce entirely novel clustering when
given different sets of constraints?

3. Does our method outperform unconstrained spectral
clustering and existing constrained spectral clustering
techniques?

4. Can our method effectively utilize degree-of-belief con-
straints, which may carry information that binary con-
straints cannot encode?

All data sets and source codes (in Matlab) used in the
experiments are publicly available. Please contact the first
author for further information.

5.1 Constrained Image Segmentation
First we validate the effectiveness of our approach in the

context of image segmentation. We choose image segmenta-
tion as a demonstration for several reasons: 1) it is one of
the applications where spectral clustering significantly out-
performs other clustering techniques, e.g. K-means; 2) the
results of image segmentation can be easily interpreted and
evaluated by human; 3) instead of generating random con-
straints, we can add in semantically meaningful constraints
to see if the results of constrained clustering conform to our
expectation.

The images we used were chosen from the Berkeley Seg-
mentation Dataset and Benchmark [12]. The original im-
ages are 480 × 320 grayscale images in jpeg format. For
efficiency consideration, we compressed them to 10% of the
original size, which is 48×32 pixels, as shown in Fig. 3(a) and
4(a). Then affinity matrix of the image was computed using
RBF kernel, based on both the positions and the grayscale
values of the pixels. As a baseline, we used unconstrained
spectral clustering [14] to generate a 2-segmentation of the
image. Then we introduced different sets of constraints to
see if they can generate expected segmentation. Note that
the results of image segmentation vary with the number of
segments. To save us from the complications of parameter
tuning, which is related to the contribution of this work, we
always set the number of segments to be 2.

The results are shown in Fig. 3 and 4. Note that to visual-
ize the resultant segmentation, we reconstructed the image
using the entry values in the relaxed cluster indicator vec-
tor u∗. In Fig. 3(b), the unconstrained spectral clustering
partitioned the elephant image into two parts: the sky (red
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Figure 3: Segmentation results of the elephant image (best viewed in color). The images are reconstructed
based on the relaxed cluster indicator u∗. Pixels that are closer to the red end of the spectrum belong to one
segment and blue the other. The labeled pixels are as bounded by the black and white rectangles.
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Figure 4: Segmentation results of the face image (best viewed in color).The images are reconstructed based
on the relaxed cluster indicator u∗. Pixels that are closer to the red end of the spectrum belong to one
segment and blue the other. The labeled pixels are as bounded by the black and white rectangles.

pixels) and the two elephants and the ground (blue pixels).
This is not satisfying in the sense that it failed to isolate the
elephants from the background (the sky and the ground).
To correct this, we introduced constraints by labeling two
5× 5 blocks to be 1 (as bounded by the black rectangles in
Fig. 3(c)): one at the upper-right corner of the image (the
sky) and the other at the lower-right corner (the ground);
we also labeled two 5 × 5 blocks on the heads of the two
elephants to be −1 (as bounded by the white rectangles in
Fig. 3(c)). Then we used Eq.(16) to generate the constraint
matrix Q: a ML was added between every pair of pixels
with the same label and a CL was added between every pair
of pixels with different labels. The parameter β was set as:

β = λmax × vol(G)× (0.5 + 0.4× # of constraints

N2
), (17)

where λmax is the maximum eigenvalue of Q̄. In this way,
β is always between 0.5λmaxvol(G) and 0.9λmaxvol(G), and
it will gradually increase as the number of constraints in-
creases. From Fig. 3(c) we can see that with the help of
user supervision, our method successfully isolated the two
elephants (blue) from the background, which is the sky and
the ground (red). Note that our method achieved this with
very simple labeling: four squared blocks.
To show the flexibility of our method, we tried a different

set of constraints on the same elephant image with the same
parameter settings. This time we aimed to separate the
two elephants from each other, which is impossible in the
unconstrained case because the two elephants are not only
similar in color (grayscale value) but also adjacent in space.

Again we used two 5 × 5 blocks (as bounded by the black
and white rectangles in Fig. 3(d)), one on the head of the
elephant on the left, labeled to be 1, and the other on the
body of the elephant on the right, labeled to be −1. As
shown in Fig. 3(d), our method cut the image into two parts
with one elephant on the left (blue) and the other on the
right (red), just like what a human user would do.

Similarly, we applied our method on a human face image
as shown in Fig. 4(a). The unconstrained spectral cluster-
ing failed to isolate the human face from the background
(Fig. 4(b)). This is because the tall hat breaks the spatial
continuity between the left side of the background and the
right side. Then we labeled two 5 × 3 blocks to be in the
same class, one on each side of the background. As we in-
tended, our method assigned the background of both sides
into the same cluster and thus isolated the human face with
his tall hat from the background(Fig. 4(c)). Again, this was
achieved simply by labeling two blocks in the image, which
covered about 3% of all pixels. Alternatively, if we labeled
a 5×5 block in the hat to be 1, and a 5×5 block in the face
to be −1, the resultant clustering will isolate the hat from
the rest of the image (Fig. 4(d)).

5.2 Clustering UCI Benchmarks
Next we evaluated our method (CSP) by clustering bench-

mark data sets from the UCI Archive [1]. We chose six differ-
ent data sets with class label information, namely Hepatitis,
Iris, Wine, Glass, Ionosphere and Breast Cancer Wiscon-
sin (Diagnostic). We performed 2-way clustering simply by
partitioning the optimal cluster indicator according to sign:



Table 2: The UCI benchmarks
Identifier #Instances #Attributes
Hepatitis 80 19
Iris 100 4
Wine 119 13
Glass 214 9
Ionosphere 351 34
WDBC 569 30

Table 3: The newsgroup data
Group Label #Instances

3 comp.os.ms-windows.misc 53
4 comp.sys.ibm.pc.hardware 60
5 comp.sys.mac.hardware 59
9 rec.motorcycles 65
10 rec.sport.baseball 64
11 rec.sport.hockey 51

positive entries to one cluster and negative the other. We
removed the setosa class from the Iris data set, which is the
class that is known to be well-separately from the other two.
For the same reason we removed Class 1 from the Wine data
set, which is well-separated from the other two. We also re-
moved data instances with missing values. The statistics of
the data sets after preprocessing are listed in Table 2.
For each data set, we computed the affinity matrix using

the RBF kernel. We randomly generated constraints us-
ing the groundtruth label information. For each round we
randomly chose a certain percentage of data instances and
assumed that their labels are known; then we generated the
constraint matrix Q following Eq.(16). Note that when no
constraint was generated, the unconstrained spectral clus-
tering was performed. The quality of the clustering results
was measured by Rand index [16], which tells how similar
our clustering is as compared to the groundtruth class labels.
The only parameter in our method, β, was set according to
Eq.(17) throughout the experiments.
We compared our method to two existing techniques. The

first one (ModAff) is from [8], which modifies the affinity ma-
trix directly: when a ML constraint is given, it changes
the corresponding entries in A to 1; and 0 for CL con-
straint. Then unconstrained spectral clustering is performed
on the new graph Laplacian. The second one (GrBias) is
from [20,21], which encodes partial grouping information as
a projection matrix. Note that the GrBias method can only
accommodate ML constraints. We also implemented the
subspace trick in [5] and the affinity propagation algorithm
in [11]. We did not present results from those two techniques
because overall they did not perform as well as the two we
presented.
We report the Rand index of all methods against the per-

centage of known labels (from 0 to 100%, by 10% increment)
so that we can see how the quality of clustering varies when
more constraints are added in. Note that at each stop, we
randomly generate 100 sets of constraints and reported the
mean, maximum and minimum Rand index of the 100 ran-
dom trials, as shown in Fig. 5. From the results we can
tell:

• Our method consistently and significantly outperforms
unconstrained spectral clustering (whose Rand index is

the one reported at x = 0). We can also notice the per-
formance boost from x = 0 to x = 10%, which means
that our method can effectively improve the clustering
result with a small number of constraints.

• Our method outperforms the two competitors in most
cases. And more importantly, the performance of our
method is much more stable over different data sets,
different number of constraints, and different sets of
randomly generated constraints. As a contrast, the
GrBias produced good results on certain data sets with
certain configurations, but bad results in other cases.
One possible reason, among many others, might be
that since it only uses ML constraints, it will not help
much in cases where CL constraints are necessary to
improve the results.

• Unlike the GrBias method, the performance of our
method increases consistently with the number of given
constraints, which indicates that our method can effec-
tively use constraints to improve the clustering results.
(Similar observation was made in [8] that the perfor-
mance of GrBias may drop when more constraints are
provided.)

5.3 Results with Degree-of-Belief Constraints
Lastly, we show that our method can effectively incorpo-

rate degree-of-belief constraints, which may carry richer in-
formation that binary constraints cannot accommodate. To
make our case, we encode hierarchical (multiple) labels into
degree-of-belief constraints, and see if our method can re-
cover the hierarchical structure of the data set (only) based
on given constraints. We chose a subset of the 20 Newsgroup
data set1, as shown in Table 3. We randomly sampled about
350 documents from 6 groups. At the highest level, those
groups belong to two topics: computer (comp) and recre-
ation (rec). We used these two topics as groundtruth labels
when computing Rand index.

To generate binary constraints, we added a ML link be-
tween two articles within the same group; CL between two
articles from different groups. To generate degree-of-belief
constraints, we converted the group titles into multiple la-
bels, e.g. rec.sport.baseball became rec, sport, and baseball.
Then given two articles, we compared the number of com-
mon labels they shared. For example, if those two articles
came from the same group, we set the corresponding en-
try in Q to +3; if one was from rec.sport.baseball and the
other from rec.sport.hockey, we set the corresponding entry
to +2; if they did not share any label at all, we set the entry
to −1 (recall that in our model, 0 does not mean CL but no
constraints given).

After the constraints were generated, we performed our
method with degree-of-belief (CSP-DoB) and binary constraints
(CSP-Binary), respectively. Our task was to cluster the data
set into 6 clusters, and then compute the Rand index with
respect to the two-topic groundtruth (comp and rec). As
shown in Fig. 6, since the binary constraints only captured
the group-level relationship, the top-level class information
(comp vs. rec) cannot be recovered by using binary con-
straints. As a contrast, the degree-of-belief constraints pre-
served the hierarchical structure of the data set. Hence,
although the number of clusters were assigned to be 6, our

1http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 5: Clustering results on UCI benchmarks. The Rand index over different percentage of known labels
is reported (mean, maximum and minimum over 100 random constraint sets).
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Figure 6: Clustering results on the newsgroup data
set, with binary and degree-of-belief constraints.

method with degree-of-belief constraints tended to merge
the articles into 2 clusters: one corresponding to comp and
the other rec. The resultant clustering successfully recov-
ered the original hierarchical information, as indicated by
the steadily increasing Rand index (CSP-DoB) in Fig. 6.

6. CONCLUSION
This paper addresses the problem of constrained spec-

tral clustering. While constrained K-means clustering has
been well-studied, existing techniques on constrained spec-
tral clustering are limited because they are primarily focused
on Must-Link and Cannot-Link constraints, which could
be both insufficient and inflexible in practice. To overcome
this, we propose a generalized framework for constrained
spectral clustering. Our approach is more flexible in the
sense that we can deal with both binary constraints and
real-valued degree-of-belief constraints. Our approach is also
more principled since it can be considered a natural exten-
sion to the original objective function of unconstrained spec-
tral clustering, as a cut on a labeled graph. Our objective
function is formulated as a constrained optimization prob-

lem and can be solved in closed form with polynomial time,
through generalized eigenvalue decomposition. Our method
introduces a user-specified parameter β, which serves as a
tradeoff factor between the structure as defined by the orig-
inal graph Laplacian and that by the constraint matrix.

Empirical results justified the effectiveness of our method.
We used image segmentation to demonstrate that our method
can produce meaningful and intuitive clustering with vari-
ous sets of constraints. We also evaluated our method on
benchmark data sets. We showed that our method can im-
prove the quality of clustering by taking in both binary and
real-valued constraints over unconstrained spectral cluster-
ing. We also showed the advantage of our approach over
existing techniques.
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