
Adaptable Assertion Checking for Scientific Software Components

Tamara L. Dahlgren
Center for Applied Scientific Computing and Center for
Applications Development and Software Engineering

Lawrence Livermore National Laboratory
dahlgren1@llnl.gov

Premkumar T. Devanbu
Department of Computer Science
University of California, Davis

devanbu@cs.ucdavis.edu

Abstract

We present a proposal for lowering the overhead of

interface contract checking for science and engineering
applications. Run-time enforcement of assertions is a
well-known technique for improving the quality of
software; however, the performance penalty is often too
high for their retention during deployment, especially for
long-running applications that depend upon iterative
operations. With an efficient adaptive approach the
benefits of run-time checking can continue to accrue with
minimal overhead. Examples from scientific software
interfaces being developed in the high performance
computing research community will be used to measure
the efficiency and effectiveness of this approach.

1. Introduction

We are proposing the use of a new approach to the
checking of assertions in deployed software components;
namely, run-time adaptation. The goal of this approach is
to provide an efficient, effective mechanism that improves
on the standard practice of disabling or even eliminating
assertion checking prior to deployment.

For this effort, our definition of a component conforms
to that given by Bertrand Meyer [15]; namely, that a
component is an independent software unit with an
interface specification describing how the component
should be used. In other words, clients and components
are loosely coupled through the component’s interfaces.
Hence, libraries or subsets of libraries with interface
descriptions are considered components. Even
commercial, or third-party, binaries can be made into
components after-the-fact through their interface
definitions.

Consequently, our instantiation of adaptable assertion
checking relies on the use of software that wraps the
implementation of a component. These wrappers are
automatically generated from formal specifications of the
interfaces that include behavioral contracts or constraints.

These behavioral contracts are automatically transformed
into enforcement code.

Unfortunately, the benefits of run-time assertion
checking often come at the price of unacceptably high
overhead. This is especially true for long-running
applications using iterative operations, which are
commonly found in scientific computing. One way to
retain some of the benefits of assertion enforcement
during deployment is to reduce the frequency of checking
[13]. And one avenue that, to our knowledge, has not
been explored is to achieve this reduction through
adaptation.

Liblit et al. [13] explore the use of statistical sampling
over time to debug infrequently occurring errors by
amortizing the cost of assertion checking throughout the
user community. In science and engineering applications,
however, it is possible to iterate over a given interface
hundreds to many thousands of times in a single run. This
characteristic provides an opportunity to make effective
use of techniques, such as statistical sampling over time,
to reduce the frequency assertion checking.

Furthermore, not all assertions are equal in terms of
cost or importance. That is, the cost of checking a given
assertion can range from cheap (e.g., checking for a null
pointer) to expensive (e.g., checking that matrix A is an
inverse of matrix B if the product AB is the identity
matrix). Similarly, some assertions are merely useful to
check while others can be critical, such as a computed
value used to drive expensive hardware. In addition, the
numerically intensive nature of science and engineering
applications provides an opportunity for exploring the use
of hierarchies of increasingly expensive assertion
implementations. For example, an assertion that requires
a matrix be symmetric could be represented by an
“inexpensive” check that samples a subset of the elements
or by the more expensive yet accurate version that checks
every element not on the diagonal.

The remainder of this paper describes the challenges,
component contracts, run-time enforcement, and plans for
testing the performance and effectiveness of these
techniques. The examples that serve as the experimental
basis employ the standard mesh interface specification

[19] being developed by the Terascale Simulation Tools
and Technologies (TSTT) Center [4]. The TSTT Center
is a collaborative effort between researchers from a
number of U.S. DOE national laboratories and academic
institutions who are focused on the development of “plug-
and-play” software components for multiple meshing and
discretization technologies.

2. Challenges

There are trade-offs that must be made in order to
provide some level of assurance in the quality of software.
The primary issue inhibiting the use of run-time assertion
enforcement during deployment is the commitment of
compute resources. In particular, memory and processing
time are often at a premium in high performance
computing applications. The trade-offs associated with
the flexibility, performance, and effectiveness of our
proposal are briefly discussed in this section.

Flexibility is often pitted against efficiency both in
terms of memory and performance. Providing the
flexibility to specify a range of assertions and to specify
multiple assertions inherently requires that the code use a
larger memory footprint. The key is to try to minimize
that footprint whenever possible. Assertion checking
itself inevitably impacts the amount of time it takes to
execute a method (also referred to as a routine or
operation), therefore it is very important to minimize the
performance overhead. For reduced frequency checking,
this is especially important when assertions are not going
to be checked for a given invocation.

Reducing the frequency also introduces the issue of
effectiveness. That is, decreasing the level of checking
inherently reduces the opportunities to catch assertion
violations. Determining the balance between an
acceptable level of checking and its ability to identify
bugs in the code, whether in terms of the application’s use
of the interface or the interface implementation, is a
challenge.

Furthermore, recognizing the fact that not all assertions
are equal in terms of cost or importance exacerbates the
flexibility versus performance versus effectiveness
concerns. Clearly there is additional memory and
performance overhead that must be addressed when
distinguishing cheap versus expensive as well as
hierarchies of assertion checks. In addition, questions
about identification and classification of assertions arise.
For example, a function call used in an assertion could be
cheap if the function does a comparison of a constant and
a simple data type variable. Whereas, a function that
performs a computation that requires iterating over all of
the elements of a matrix would be expensive. The
encapsulation of interface specifications basically
precludes this information.

3. Component contracts

Since the advances in supercomputing systems are
enabling the development of increasingly larger, more
complex applications, the developers of those codes are
relying more than ever on software elements developed
by disparate teams and third-party contributors.
Consequently, it’s becoming increasingly common for
applications to be composed of codes implemented in
multiple programming languages. This provides an
opportunity to efficiently integrate both automated
language interoperability and assertion enforcement
technologies. Doing so also enables the reuse of contracts
across multiple implementations of an interface.

Therefore, we have integrated support for assertions
into the Scientific Interface Definition Language (SIDL)
developed by the Components project [5] at Lawrence
Livermore National Laboratory (LLNL) [6]. SIDL has
been extended to include the standard assertions
applicable to interface specifications; namely, class
invariants, method preconditions and method
postconditions. An invariant is used to specify properties
that are to remain unchanged throughout the life of a
software element instance. A method precondition
specifies constraints on when it is valid to invoke a
method while a postcondition constrains its effects.

3.1 SIDL

SIDL is an interoperability specification language for
scientific computing. It is used to identify the calling
interface of a component being made available to clients
implemented in different programming languages.
Specifications written in SIDL are automatically
transformed into client-server language interoperability
code tailored for scientific computing through the Babel
compiler [7]. Like other Interface Definition Languages,
such as the Object Management Group (OMG) IDL [17]
used by the Common Object Request Broker Architecture
(CORBA) [16], SIDL is programming- and
implementation- language neutral.

Both SIDL and OMG IDL support the modular
packaging of full method definitions that specify the type
(e.g., integer, float) and direction (i.e., in, out, inout) of
each parameter. Both also support multiple inheritance of
interfaces, enumerations and arrays.

Unlike OMG IDL, SIDL’s basic types include the
fundamental science and engineering data types of
numeric complex and multi-dimensional, multi-strided
arrays. Furthermore, the Babel compiler generates
interoperability code optimized for in-process
communication and implementation code that conforms to
the typical scientific programming paradigms of the
underlying implementation languages.

3.2 Assertion extensions

The SIDL grammar has been extended to include
constructs inspired by Eiffel [14] to represent the classic
interface assertions of class invariants, method
preconditions and method postconditions. Like result
checking techniques [18, 20], postconditions depend upon
the function being computed regardless of the underlying
implementation algorithm.

The syntax for the precondition and postcondition
assertion clauses is illustrated by the norm method in the
VectorUtilities package below. The precondition appears
in the require clause and specifies that the caller must
pass a non-null array into the norm method. The
postconditions are given in the ensure clause and are
based on the mathematical properties of the vector norm.
The expression “result >= 0.0” states that the
implementation of the norm method shall return a non-
negative result. Furthermore, “nearEqual(result, 0,0,
1.0e-9) iff isZero(u, 1.0e-9)” states that the result shall be
zero (within the computational tolerance of 1.0e-9) if-and-
only-if the parameter, u, is the zero array (i.e., each of u’s
elements are within the same computational tolerance of
0.0). Note that, in this example, isZero is a method that is
defined elsewhere in the interface and the tolerance value
of 1.0e-9 is used for illustration purposes.

package VectorUtilities version 1.0 {

 class Ops {…
 static double norm (in array<double> u)
 require u != null;
 ensure result >= 0.0;
 nearEqual(result, 0.0, 1.0e-9)
 iff isZero(u, 1.0e-9);
 …}}

In integrating conditional expressions, the basic

operators available in most programming languages were
added (e.g., equality, logical and), as were some that are
not typically found (e.g., implies, xor, iff). The literals
“true”, “false”, and “null” were also included as was the
literal “result” for the return value of a function.

One concern with interface-level assertions is that the
encapsulation of private data, used to hide implementation
details, precludes their inclusion in assertion expressions.
In order to deal with this situation, we have allowed the
use of function calls within expressions. There are
restrictions, of course, in that the functions must be either
local to the interface or be one of the built-in methods
automatically generated by the Babel compiler, which
include existential and universal quantifiers.

4. Run-time enforcement

Since one of the key challenges to providing efficient
run-time enforcement of assertion checking is minimizing
the performance overhead, care has been taken to address
this issue specifically when assertions are not being
checked. Additionally, techniques that reduce the
frequency of checking are being explored, starting with
two rudimentary adaptation policies: linear and random.

4.1 Efficient execution

Since assertion enforcement is being integrated into
language interoperability code, the Babel compiler
automatically generates the run-time assertion checks in
its Intermediate Object Representation (IOR) of classes.
For reasons of portability and performance, IORs are
generated in C regardless of the implementation language.
Figure 1 illustrates the control flow path from the client
through the interoperability code generated by Babel (i.e.,
the stub, IOR, and skeleton) to the implementation and
back. For efficiency, the skeleton layer is generally by-
passed when the implementation is also in C.

 Client

Stub

IOR

Skeleton

Implementation

Figure 1. Interoperability control flow

Since assertion enforcement is being generated in the
language interoperability wrappers, a variation of the code
duplication approaches advocated in [2, 13] has been
employed. This approach is illustrated for our norm
example in the simplified code fragment below. By
leveraging Babel’s use of function pointers in the IOR,
the only duplication necessary is that of the method call
(e.g., call_norm()). It is this call that is wrapped in a fast,
uninstrumented path and a slow, instrumented path.
When the policy dictates that assertions are not checked,
the fast path is taken, which performs only slightly more
processing than the method invocation. Otherwise, the

slow path is taken where all preconditions and invariants
are checked prior to invocation then all postconditions
and invariants are checked after invocation.

if (countdown > 1) {

 /* Fast path: decrement countdown and call function */
 countdown = countdown - 1;
 result = call_norm(u);
 } else {
 /* Slow path: wrap call with checks, reset countdown */
 okay = true;
 if (u == null) {
 okay = false;
 call_check_error(pre, name, not_null_msg);
 }
 if (okay) {
 result = call_norm(u);
 }
 if (result < 0.0) {
 okay = false;
 call_check_error(post, name, non_negative_msg);
 }
 …
 setNextCountdown(method, okay);
 }
 return result;

4.2 Adaptation strategies

Adaptable enforcement of assertions enables their
application on realistic data sets, both in terms of size and
values. Due to the very precise, compute-intensive nature
of science and engineering applications, they are more
susceptible to overflow, underflow, and round-off errors
than most IT applications [12, 18, 20]. The aggregation
of round-off errors over the life of an iterative
computation that can take days, weeks, or months to run
can result in a tremendous waste of time and compute
resources. While pinpointing the exact time where the
computation started to fail would be ideal, the ability to
detect it in the middle of a computation could save
developers hours of debugging time.

As a proof of concept, we have implemented two
policies for rudimentary adaptable assertion checking:
linear and random. The linear approach employs a
counter-based sampling technique similar to that used by
Arnold et al. [2] for the collection of profiling
information. The random approach uses a statistical
sampling technique similar to the one used by Liblit et al.
[13] for checking assertions at the programming language
level. Both approaches rely on a user-specified sampling
value to determine the sampling frequency or density,
respectively.

Regardless of the policy, assertions are checked on the
initial call to each method. The basic assumption being
that it is best to catch problems using the interface on the

first call. The assertions are checked again on each
subsequent call to a method that follows an assertion
violation until no violations are detected. Hence, if there
are no assertion violations for a method, the frequency of
checking follows that specified by the policy.

This simplistic approach to adaptation has provided
some of the infrastructure to enable us to pursue the more
advanced adaptation policies introduced in Section 1. In
particular, we are in the design phase of developing
adaptation policies to take advantage of the fact that not
all assertions are equal in terms of cost or importance.
We will begin by integrating a user-specified importance
factor into the SIDL grammar as well as modifying our
framework to obtain and utilize rules for distinguishing
between cheap and expensive assertions and for
progressing through hierarchies of checks.

5. Experimentation plan

In order to address the two major concerns of
efficiency and effectiveness, we will perform experiments
based on the TSTT interface standard [19]. Several
existing mesh smoothing clients and a finite element
method client will be used over two different
implementations of the interface. Although the TSTT
interface standard is still in flux; using it enables contract
reuse. As a result, additional experimentation
opportunities will arise in the near future as other
implementations that have or are in the process of
conforming to the standard become available.

Two forms of additional instrumentation will
obviously have to be added in order to obtain the
necessary analysis data. To measure the performance
impact, timing information will need to be collected.
Fault injection will be used to randomly perturb the data
associated with the assertion violations based on known
fault models in related numerical computations.
Information on injection and violation detection incidents
will be collected for analysis of the effectiveness of our
adaptable assertion enforcement approach.

6. Related Work

The software engineering literature has many examples
of efforts exploring facets of ensuring component
correctness. Similarly, the scientific computing
community has explored mechanisms for ensuring the
correctness of computational results. Due to space
constraints, this section focuses on related works in the
area of general run-time assertion checking with an
emphasis on those based on high-level specifications.

There are two basic characteristics that differentiate
run-time assertion checking efforts reported in the
literature. In particular, the efforts are distinguished by

their method of integration and level of enforcement. The
integration of assertion checking into an application can
be instrumented directly in code, in wrappers, or through
external monitors. Similarly, the level of enforcement can
be an all-or-nothing approach, sometimes with the option
of partial enforcement such as all preconditions only or all
postconditions only, or through a reduced checking
approach. The remainder of this section briefly describes
related efforts within this context.

In order to ensure safe adaptation, the SAMcode model
of adaptable mobile agents [1] includes the specification
of adaptable procedure and method assertions. The
specifications allow one precondition and one
postcondition associated with each adaptable method so
they appear to follow an all-or-nothing enforcement
strategy, though adaptable procedures can be used for
assertions. Similarly, Feather et al. [9] adapt their
requirements constraint checking (through run-time event
monitoring) in order to account for runtime behavioral
deviations and changing environmental conditions. They
consider constraints as soft goals, some of which can be
specified by the user as “breakable assertions”. This
actually corresponds to our notion of useful assertions.
Unlike these efforts, our work provides automated
adaptation of the frequency of checking itself.

Liblit et al.’s [13] statistical assertion checking
inspired our work, especially in terms of implementation
efficiency (i.e., fast versus slow paths) and reduced
frequency checking. However, we are integrating our
checks into language interoperability code to maximize
contract reuse; whereas theirs is instrumented in the
software itself. Additionally, each of their assertions has
equal probability of being checked on a given execution
while all assertions for a method are currently treated as a
single entity with the same probability in our work.

There are a number of high-level specification efforts
that map constraints, or contracts, into executable code.
The Architectural Specification Language (ASL) [3] is
mapped into OMG IDL. Hamie [10] added assertions to
the Object Constraint Language (OCL), which is used for
modeling the design of software, and integrated them into
specifications for C++ and Java. Similarly, Verheecke
and Van Der Straeten [21] developed a framework that
translates OCL into executable constraints though their
approach employs constraint classes. Edwards et al. [8]
also uses the automatic generation of instrumented
wrappers from specifications. Heineman [11], however,
employs a Run-time Interface Specification Checker
(RISC) for contract enforcement. None of these efforts,
however, utilize adaptation to address reduced frequency
checking.

7. Conclusions

When developing software for use by others, long-
term success mandates that the code attain an acceptable
level of quality. One technique for ensuring the quality of
software involves the use of assertions. Full assertion
enforcement is too costly for most applications, so we
propose the use of adaptive assertion checking as a new
approach to run-time enforcement in deployed
components.

Adaptable enforcement of assertions facilitates
debugging software that would otherwise run without
assertion checking enabled. Using this approach has the
potential of saving developers hours, even days, of
debugging, especially for long-running applications that
depend upon iterative operations.

We have implemented two rudimentary adaptation
policies and are in the process of designing experiments
to test their performance and efficiency. We are also in
the preliminary design phase of developing more
advanced policies that factor in the cost and importance of
individual assertions.

8. Acknowledgements

Our appreciation goes to Tom Epperly and Gary
Kumfert for their support of the modifications to SIDL
and Babel. We would also like to thank Bjarne Stroustrup
for his suggestions regarding assertion importance and
user-defined violation handling. This effort was funded
under the auspices of the U.S. Department of Energy’s
Center for Component Technology for Terascale
Simulation Software (CCTTSS) of the Scientific
Discovery through Advanced Computing (SciDAC)
program.

Funding for the examples being leveraged in our study
was provided by the TSTT SciDAC. We want to thank
Kyle Chand for his suggestion to implement the mesh
smoothing examples as part of a TSTT interface
performance study and for helping debug aspects of their
use of the Overture implementation. Thanks also go to
Lori Diachin for her finite element methods example.

Our thanks also go to those who reviewed and
provided feedback on the initial draft of this paper. In
particular, we’d like to thank Tom Epperly, Alan Laub,
and Bronis de Supinski.

This work was performed under the auspices of the
U.S. Department of Energy by the University of
California Lawrence Livermore National Laboratory
under contract number W-7405-Eng-48.

9. References

[1] N. Amano and T. Watanabe, “A Software Model for
Flexible and Safe Adaptation of Mobile Code Programs”,
In Proceedings of the International Workshop on Principles
of Software Evolution, Orlando, FL, May 2002, pp. 57-61.

[2] M. Arnold and B.G. Ryder, “A Framework for Reducing
the Cost of Instrumented Code”, ACM SIGPLAN Notices,
V. 36, May 2001, pp. 168-179.

[3] F. Bronsard, D. Bryan, D., W.(V.) Kozaczynski, E.S.
Liongosari, J.Q. Ning, A. Olafsson, and J.W. Wetterstrand,
“Toward Software Plug-and-Play”, In Proceedings of 1997
Symposium on Software Reusability (SSR ’97), Boston,
MA, May 17-20, 1997, pp. 19-29.

[4] D. Brown, L. Freitag, and J. Glimm, “Creating
Interoperable Meshing and Discretization Technology: The
Terascale Simulation Tools and Technologies Centre”, In
Proceedings of the 8th International Conference on
Numerical Grid Generation in Computation Field
Simulations, Honolulu, HI, June 3-6, 2002. Also available
as Technical Report UCRL-PRES-151494, Lawrence
Livermore National Laboratory, Livermore, CA, 2002.

[5] Components Project, www.llnl.gov/CASC/components/,
2004.

[6] T. Dahlgren, T. Epperly, and G. Kumfert, “Babel User’s
Guide”, Technical Report UCRL-MA-145991, Lawrence
Livermore National Laboratory, Livermore, CA, 2004.

[7] T. Dahlgren, T. Epperly, and G. Kumfert, “Babel Tutorial -
Introduction to Babel Technologies,” Technical Report
UCRL-PRES-200001, August 2003.

[8] S. H. Edwards, G. Shakir, M. Sitaraman, B.W. Weide, and
J. Hollingsworth, “A Framework for Detecting Interface
Violations in Component-Based Software”, In Proceedings
of the 5th International Conference on Software Reuse, June
2-5, 1998, pp. 46-55.

[9] M.S. Feather, S. Fickas, A. van Lamsweerde, and C.
Ponsard, “Reconciling System Requirements and Runtime
Behavior”, In Proceedings of the 9th International
Workshop on Software Specification and Design, April
1998, pp. 50-59.

[10] A. Hamie, “Enhancing the Object Constraint Language for
More Expressive Specifications”, In Proceedings of the 6th

Asia-Pacific Software Engineering Conference (APSEC
‘99) Takamatsu, Japan, December 7-10, 1999, 376-383.

[11] G.T. Heineman, “Integrating Interface Assertion Checkers
into Component Models”, In Proceedings of the 6th ICSE
Workshop on Component-Based Software Engineering:
Automated Reasoning and Prediction, Portland, OR, May
3-4, 2003.

[12] T.E. Hull, M.S. Cohen, J.T.M. Sawchuk, and D.B.
Wortman, “Exception Handling in Scientific Computing”,
ACM Transactions on Mathematical Software, V. 14, N. 3,
September 1988, pp. 201-217.

[13] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug
Isolation via Remote Program Sampling”, In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI’03), San
Diego, CA, June 9-11, 2003, pp. 141-154.

[14] B. Meyer, Object-Oriented Software Construction, 2nd
Edition, Prentice Hall, Upper Saddle River, NJ, 1997.

[15] B. Meyer, “The Grand Challenge of Trusted Components”,
In Proceedings of the 25th International Conference on
Software Engineering (ICSE’03), Portland, OR, May 3-10,
2003, pp. 660-667.

[16] Object Management Group, “CORBA Basics”,
www.omg.org/gettingstarted/corbafaq.htm, 2004.

[17] Object Management Group, “OMG IDL: Details”,
www.omg.org/gettingstarted/omg_idl.htm, 2004.

[18] P. Prata and J.G. Silva, “Algorithm Based Fault Tolerance
Versus Result-Checking for Matrix Computations”, In
Proceedings of the 29th Annual International Symposium on
Fault-Tolerant Computing, June 15-18, 1999, pp. 4-11.

[19] Terascale Simulation Tools and Technologies Specification
(V. 0.5.1), www.tstt-scidac.org/software/TSTT.sidl, 2004.

[20] M. Turmon, R. Granat, D.S. Katz, and J.Z. Lou, “Tests and
Tolerances for High-Performance Software-Implemented
Fault Detection”, IEEE Transactions on Computers, V. 52,
N. 5, May 2003, pp. 579-591.

[21] B. Verheecke and R. Van Der Straeten, “Specifying and
Implementing the Operational Use of Constraints in Object-
Oriented Applications”, In Proceedings of the 40th
International Conference on Technology of Object-
Oriented Languages and Systems (Tools Pacific 2002),
Sydney, Australia, February 2002, pp. 23-32.

	Introduction
	Challenges
	Component contracts
	SIDL
	Assertion extensions

	Run-time enforcement
	Efficient execution
	Adaptation strategies

	Experimentation plan
	Related Work
	Conclusions
	Acknowledgements
	References

