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Abstract 
 
We present a proposal for lowering the overhead of 

interface contract checking for science and engineering 
applications.  Run-time enforcement of assertions is a 
well-known technique for improving the quality of 
software; however, the performance penalty is often too 
high for their retention during deployment, especially for 
long-running applications that depend upon iterative 
operations.  With an efficient adaptive approach the 
benefits of run-time checking can continue to accrue with 
minimal overhead.  Examples from scientific software 
interfaces being developed in the high performance 
computing research community will be used to measure 
the efficiency and effectiveness of this approach. 

1. Introduction 

We are proposing the use of a new approach to the 
checking of assertions in deployed software components; 
namely, run-time adaptation.  The goal of this approach is 
to provide an efficient, effective mechanism that improves 
on the standard practice of disabling or even eliminating 
assertion checking prior to deployment.   

For this effort, our definition of a component conforms 
to that given by Bertrand Meyer [15]; namely, that a 
component is an independent software unit with an 
interface specification describing how the component 
should be used.  In other words, clients and components 
are loosely coupled through the component’s interfaces.  
Hence, libraries or subsets of libraries with interface 
descriptions are considered components.  Even 
commercial, or third-party, binaries can be made into 
components after-the-fact through their interface 
definitions. 

Consequently, our instantiation of adaptable assertion 
checking relies on the use of software that wraps the 
implementation of a component.  These wrappers are 
automatically generated from formal specifications of the 
interfaces that include behavioral contracts or constraints.  

These behavioral contracts are automatically transformed 
into enforcement code. 

Unfortunately, the benefits of run-time assertion 
checking often come at the price of unacceptably high 
overhead.  This is especially true for long-running 
applications using iterative operations, which are 
commonly found in scientific computing.  One way to 
retain some of the benefits of assertion enforcement 
during deployment is to reduce the frequency of checking 
[13].  And one avenue that, to our knowledge, has not 
been explored is to achieve this reduction through 
adaptation. 

Liblit et al. [13] explore the use of statistical sampling 
over time to debug infrequently occurring errors by 
amortizing the cost of assertion checking throughout the 
user community.  In science and engineering applications, 
however, it is possible to iterate over a given interface 
hundreds to many thousands of times in a single run.  This 
characteristic provides an opportunity to make effective 
use of techniques, such as statistical sampling over time, 
to reduce the frequency assertion checking. 

Furthermore, not all assertions are equal in terms of 
cost or importance.  That is, the cost of checking a given 
assertion can range from cheap (e.g., checking for a null 
pointer) to expensive (e.g., checking that matrix A is an 
inverse of matrix B if the product AB is the identity 
matrix).  Similarly, some assertions are merely useful to 
check while others can be critical, such as a computed 
value used to drive expensive hardware.  In addition, the 
numerically intensive nature of science and engineering 
applications provides an opportunity for exploring the use 
of hierarchies of increasingly expensive assertion 
implementations.  For example, an assertion that requires 
a matrix be symmetric could be represented by an 
“inexpensive” check that samples a subset of the elements 
or by the more expensive yet accurate version that checks 
every element not on the diagonal. 

The remainder of this paper describes the challenges, 
component contracts, run-time enforcement, and plans for 
testing the performance and effectiveness of these 
techniques.  The examples that serve as the experimental 
basis employ the standard mesh interface specification 



[19] being developed by the Terascale Simulation Tools 
and Technologies (TSTT) Center [4].  The TSTT Center 
is a collaborative effort between researchers from a 
number of U.S. DOE national laboratories and academic 
institutions who are focused on the development of “plug-
and-play” software components for multiple meshing and 
discretization technologies. 

2. Challenges  

There are trade-offs that must be made in order to 
provide some level of assurance in the quality of software.  
The primary issue inhibiting the use of run-time assertion 
enforcement during deployment is the commitment of 
compute resources.  In particular, memory and processing 
time are often at a premium in high performance 
computing applications.  The trade-offs associated with 
the flexibility, performance, and effectiveness of our 
proposal are briefly discussed in this section. 

Flexibility is often pitted against efficiency both in 
terms of memory and performance.  Providing the 
flexibility to specify a range of assertions and to specify 
multiple assertions inherently requires that the code use a 
larger memory footprint.  The key is to try to minimize 
that footprint whenever possible.  Assertion checking 
itself inevitably impacts the amount of time it takes to 
execute a method (also referred to as a routine or 
operation), therefore it is very important to minimize the 
performance overhead.  For reduced frequency checking, 
this is especially important when assertions are not going 
to be checked for a given invocation.  

Reducing the frequency also introduces the issue of 
effectiveness.  That is, decreasing the level of checking 
inherently reduces the opportunities to catch assertion 
violations.  Determining the balance between an 
acceptable level of checking and its ability to identify 
bugs in the code, whether in terms of the application’s use 
of the interface or the interface implementation, is a 
challenge. 

Furthermore, recognizing the fact that not all assertions 
are equal in terms of cost or importance exacerbates the 
flexibility versus performance versus effectiveness 
concerns.  Clearly there is additional memory and 
performance overhead that must be addressed when 
distinguishing cheap versus expensive as well as 
hierarchies of assertion checks.  In addition, questions 
about identification and classification of assertions arise.  
For example, a function call used in an assertion could be 
cheap if the function does a comparison of a constant and 
a simple data type variable.  Whereas, a function that 
performs a computation that requires iterating over all of 
the elements of a matrix would be expensive.  The 
encapsulation of interface specifications basically 
precludes this information. 

3. Component contracts  

Since the advances in supercomputing systems are 
enabling the development of increasingly larger, more 
complex applications, the developers of those codes are 
relying more than ever on software elements developed 
by disparate teams and third-party contributors.  
Consequently, it’s becoming increasingly common for 
applications to be composed of codes implemented in 
multiple programming languages.  This provides an 
opportunity to efficiently integrate both automated 
language interoperability and assertion enforcement 
technologies.  Doing so also enables the reuse of contracts 
across multiple implementations of an interface. 

Therefore, we have integrated support for assertions 
into the Scientific Interface Definition Language (SIDL) 
developed by the Components project [5] at Lawrence 
Livermore National Laboratory (LLNL) [6].  SIDL has 
been extended to include the standard assertions 
applicable to interface specifications; namely, class 
invariants, method preconditions and method 
postconditions.  An invariant is used to specify properties 
that are to remain unchanged throughout the life of a 
software element instance.  A method precondition 
specifies constraints on when it is valid to invoke a 
method while a postcondition constrains its effects. 

3.1 SIDL 

SIDL is an interoperability specification language for 
scientific computing.  It is used to identify the calling 
interface of a component being made available to clients 
implemented in different programming languages.  
Specifications written in SIDL are automatically 
transformed into client-server language interoperability 
code tailored for scientific computing through the Babel 
compiler [7].  Like other Interface Definition Languages, 
such as the Object Management Group (OMG) IDL [17] 
used by the Common Object Request Broker Architecture 
(CORBA) [16], SIDL is programming- and 
implementation- language neutral.   

Both SIDL and OMG IDL support the modular 
packaging of full method definitions that specify the type  
(e.g., integer, float) and direction (i.e., in, out, inout) of 
each parameter.  Both also support multiple inheritance of 
interfaces, enumerations and arrays. 

Unlike OMG IDL, SIDL’s basic types include the 
fundamental science and engineering data types of 
numeric complex and multi-dimensional, multi-strided 
arrays.  Furthermore, the Babel compiler generates 
interoperability code optimized for in-process 
communication and implementation code that conforms to 
the typical scientific programming paradigms of the 
underlying implementation languages. 



3.2 Assertion extensions 

The SIDL grammar has been extended to include 
constructs inspired by Eiffel [14] to represent the classic 
interface assertions of class invariants, method 
preconditions and method postconditions.  Like result 
checking techniques [18, 20], postconditions depend upon 
the function being computed regardless of the underlying 
implementation algorithm. 

The syntax for the precondition and postcondition 
assertion clauses is illustrated by the norm method in the 
VectorUtilities package below.  The precondition appears 
in the require clause and specifies that the caller must 
pass a non-null array into the norm method.  The 
postconditions are given in the ensure clause and are 
based on the mathematical properties of the vector norm. 
The expression “result >= 0.0” states that the 
implementation of the norm method shall return a non-
negative result.  Furthermore, “nearEqual(result, 0,0, 
1.0e-9) iff isZero(u, 1.0e-9)” states that the result shall be 
zero (within the computational tolerance of 1.0e-9) if-and-
only-if the parameter, u, is the zero array (i.e., each of u’s 
elements are within the same computational tolerance of 
0.0).  Note that, in this example, isZero is a method that is 
defined elsewhere in the interface and the tolerance value 
of 1.0e-9 is used for illustration purposes. 

 
package VectorUtilities version 1.0 {   

       class Ops {…   
           static double norm (in array<double> u)  
              require u != null;   
              ensure result >= 0.0;  
                             nearEqual(result, 0.0, 1.0e-9)  
                                                iff isZero(u, 1.0e-9);  
        …}} 

 
In integrating conditional expressions, the basic 

operators available in most programming languages were 
added (e.g., equality, logical and), as were some that are 
not typically found (e.g., implies, xor, iff).  The literals 
“true”, “false”, and “null” were also included as was the 
literal “result” for the return value of a function.  

One concern with interface-level assertions is that the 
encapsulation of private data, used to hide implementation 
details, precludes their inclusion in assertion expressions.  
In order  to deal with this situation, we have allowed the 
use of function calls within expressions.  There are 
restrictions, of course, in that the functions must be either 
local to the interface or be one of the built-in methods 
automatically generated by the Babel compiler, which 
include existential and universal quantifiers. 

4. Run-time enforcement 

Since one of the key challenges to providing efficient 
run-time enforcement of assertion checking is minimizing 
the performance overhead, care has been taken to address 
this issue specifically when assertions are not being 
checked.  Additionally, techniques that reduce the 
frequency of checking are being explored, starting with 
two rudimentary adaptation policies: linear and random. 

4.1 Efficient execution 

Since assertion enforcement is being integrated into 
language interoperability code, the Babel compiler 
automatically generates the run-time assertion checks in 
its  Intermediate Object Representation (IOR) of classes.  
For reasons of portability and performance, IORs are 
generated in C regardless of the implementation language.  
Figure 1  illustrates the control flow path from the client 
through the interoperability code generated by Babel (i.e., 
the stub, IOR, and skeleton) to the implementation and 
back.  For efficiency, the skeleton layer is generally by-
passed when the implementation is also in C. 
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Figure 1. Interoperability control flow 

Since assertion enforcement is being generated in the 
language interoperability wrappers, a variation of the code 
duplication approaches advocated in [2, 13] has been 
employed.  This approach is illustrated for our norm 
example in the simplified code fragment below.  By 
leveraging Babel’s use of function pointers in the IOR, 
the only duplication necessary is that of the method call 
(e.g., call_norm()).  It is this call that is wrapped in a fast, 
uninstrumented path and a slow, instrumented path.  
When the policy dictates that assertions are not checked, 
the fast path is taken, which performs only slightly more 
processing than the method invocation.  Otherwise, the 



slow path is taken where all preconditions and invariants 
are checked prior to invocation then all postconditions 
and invariants are checked after invocation.  

 
if (countdown > 1) {  

        /* Fast path: decrement countdown and call function */ 
        countdown = countdown - 1;   
        result = call_norm(u);  
     } else {    
        /* Slow path:  wrap call with checks, reset countdown */ 
        okay = true;   
        if (u == null) {     
           okay = false;     
           call_check_error(pre, name, not_null_msg);  
        }    
        if (okay) {  
            result = call_norm(u);  
       }  
        if (result < 0.0) {   
           okay = false;   
           call_check_error(post, name, non_negative_msg);  
        }    
         …     
        setNextCountdown(method, okay);  
     }   
     return result; 

4.2 Adaptation strategies 

Adaptable enforcement of assertions enables their 
application on realistic data sets, both in terms of size and 
values.  Due to the very precise, compute-intensive nature 
of science and engineering applications, they are more 
susceptible to overflow, underflow, and round-off errors 
than most IT applications [12, 18, 20].  The aggregation 
of round-off errors over the life of an iterative 
computation that can take days, weeks, or months to run 
can result in a tremendous waste of time and compute 
resources.  While pinpointing the exact time where the 
computation started to fail would be ideal, the ability to 
detect it in the middle of a computation could save 
developers hours of debugging time. 

As a proof of concept, we have implemented two 
policies for rudimentary adaptable assertion checking: 
linear and random.  The linear approach employs a 
counter-based sampling technique similar to that used by 
Arnold et al. [2] for the collection of profiling 
information.  The random approach uses a statistical 
sampling technique similar to the one used by Liblit et al. 
[13] for checking assertions at the programming language 
level.  Both approaches rely on a user-specified sampling 
value to determine the sampling frequency or density, 
respectively. 

Regardless of the policy, assertions are checked on the 
initial call to each method.  The basic assumption being 
that it is best to catch problems using the interface on the 

first call.  The assertions are checked again on each 
subsequent call to a method that follows an assertion 
violation until no violations are detected.  Hence, if there 
are no assertion violations for a method, the frequency of 
checking follows that specified by the policy. 

This simplistic approach to adaptation has provided 
some of the infrastructure to enable us to pursue the more 
advanced adaptation policies introduced in Section 1.  In 
particular, we are in the design phase of developing 
adaptation policies to take advantage of the fact that not 
all assertions are equal in terms of cost or importance.  
We will begin by integrating a user-specified importance 
factor into the SIDL grammar as well as modifying our 
framework to obtain and utilize rules for distinguishing 
between cheap and expensive assertions and for 
progressing through hierarchies of checks. 

5. Experimentation plan 

In order to address the two major concerns of 
efficiency and effectiveness, we will perform experiments 
based on the TSTT interface standard [19].  Several 
existing mesh smoothing clients and a finite element 
method client will be used over two different 
implementations of the interface.  Although the TSTT 
interface standard is still in flux; using it enables contract 
reuse.  As a result, additional experimentation 
opportunities will arise in the near future as other 
implementations that have or are in the process of 
conforming to the standard become available. 

Two forms of additional instrumentation will 
obviously have to be added in order to obtain the 
necessary analysis data.  To measure the performance 
impact, timing information will need to be collected.  
Fault injection will be used to randomly perturb the data 
associated with the assertion violations based on known 
fault models in related numerical computations. 
Information on injection and violation detection incidents 
will be collected for analysis of the effectiveness of our 
adaptable assertion enforcement approach. 

6. Related Work 

The software engineering literature has many examples 
of efforts exploring facets of ensuring component 
correctness.  Similarly, the scientific computing 
community has explored mechanisms for ensuring the 
correctness of computational results.  Due to space 
constraints, this section focuses on related works in the 
area of general run-time assertion checking with an 
emphasis on those based on high-level specifications. 

There are two basic characteristics that differentiate 
run-time assertion checking efforts reported in the 
literature.  In particular, the efforts are distinguished by 



their method of integration and level of enforcement.  The 
integration of assertion checking into an application can 
be instrumented directly in code, in wrappers, or through 
external monitors.  Similarly, the level of enforcement can 
be an all-or-nothing approach, sometimes with the option 
of partial enforcement such as all preconditions only or all 
postconditions only, or through a reduced checking 
approach.  The remainder of this section briefly describes 
related efforts within this context. 

In order to ensure safe adaptation, the SAMcode model 
of adaptable mobile agents [1] includes the specification 
of adaptable procedure and method assertions. The 
specifications allow one precondition and one 
postcondition associated with each adaptable method so 
they appear to follow an all-or-nothing enforcement 
strategy, though adaptable procedures can be used for 
assertions.  Similarly, Feather et al. [9] adapt their 
requirements constraint checking (through run-time event 
monitoring) in order to account for runtime behavioral 
deviations and changing environmental conditions.  They 
consider constraints as soft goals, some of which can be 
specified by the user as “breakable assertions”.  This 
actually corresponds to our notion of useful assertions.  
Unlike these efforts, our work provides automated 
adaptation of the frequency of checking itself. 

Liblit et al.’s [13] statistical assertion checking 
inspired our work, especially in terms of implementation 
efficiency (i.e., fast versus slow paths) and reduced 
frequency checking.  However, we are integrating our 
checks into language interoperability code to maximize 
contract reuse; whereas theirs is instrumented in the 
software itself.  Additionally, each of their assertions has 
equal probability of being checked on a given execution 
while all assertions for a method are currently treated as a 
single entity with the same probability in our work. 

There are a number of high-level specification efforts 
that map constraints, or contracts, into executable code.  
The Architectural Specification Language (ASL) [3] is 
mapped into OMG IDL.  Hamie [10] added assertions to 
the Object Constraint Language (OCL), which is used for 
modeling the design of software, and integrated them into 
specifications for C++ and Java.  Similarly, Verheecke 
and Van Der Straeten [21] developed a framework that 
translates OCL into executable constraints though their 
approach employs constraint classes.  Edwards et al. [8] 
also uses the automatic generation of instrumented 
wrappers from specifications.  Heineman [11], however, 
employs a Run-time Interface Specification Checker 
(RISC) for contract enforcement.  None of these efforts, 
however, utilize adaptation to address reduced frequency 
checking.  

7. Conclusions 

When developing software for use by others, long-
term success mandates that the code attain an acceptable 
level of quality.  One technique for ensuring the quality of 
software involves the use of assertions.  Full assertion 
enforcement is too costly for most applications, so we 
propose the use of adaptive assertion checking as a new 
approach to run-time enforcement in deployed 
components.   

Adaptable enforcement of assertions facilitates 
debugging software that would otherwise run without 
assertion checking enabled.  Using this approach has the 
potential of saving developers hours, even days, of 
debugging, especially for long-running applications that 
depend upon iterative operations. 

We have implemented two rudimentary adaptation 
policies and are in the process of designing experiments 
to test their performance and efficiency.  We are also in 
the preliminary design phase of developing more 
advanced policies that factor in the cost and importance of 
individual assertions. 
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