
DADO: Enhancing Middleware to Support Crosscutting Features in Distributed,
Heterogeneous Systems

Eric Wohlstadter, Stoney Jackson and Premkumar Devanbu
Center for Software Systems Research,

Department of Computer Science,
University of California, Davis, CA 95616

{wohlstad,j acksoni,devanbu } @ cs.ucdavis.edu

Abstract

Some "non-" or "extra-functional" features, such as relia-
bility, security, and tracing, defy modularization mechanisms
in programming languages. This makes such features hard
to design, implement, and maintain. Implementing such fea-
tures within a single plaOCorm, using a single language, is hard
enough. With distributed, heterogeneous (DT-[) systems, these
features induce complex implementations which cross-cut differ-
ent languages, OSs, and hardware plaO~orms, while still needing
to share data and events. Worse still, the precise requirements
for such features are often locality-dependent and discovered
late (e.g., security policies). The DADO 1 approach helps pro-
gram cross-cutting features by improving 797-[middleware. A
DADO service comprises pairs of adaplets which are explicitly
modeled in 1DL. Adaplets may be implemented in any language
compatible with the target application, and attached to stubs
and skeletons of application objects in a variety of ways. DADO
supports flexible and type-checked interactions (using generated
stubs and skeletons) between adaplets and between objects and
adaplets. Adaplets can be attached at run-time to an applica-
tion object. We describe the approach and illustrate its use for
several cross-cutting features, including performance monitor-
ing, caching, and security. We also discuss software engineering
process, as well as run-time performance implications.

1. Introduction

This paper is concerned with an approach to supporting the
development of late-bound, crosscutting features in distributed
heterogeneous systems.

Crosscutting features are those whose implementations stub-
bomly resist confinement within the bounds of modules. Fea-
tures such as logging, transactions, security and fault-tolerance
typically have implementations that straddle module boundaries
even within the most sensible decompositions of systems. This

IDADO: Distributed Adaplets for Distributed Objects. We also note that a
"dado" is a carpenter's tool for making cuts across the grain.

issue has been discussed widely in the literature (See for exam-
ple, [36, 17, 23, 9] among others; we present a sample security
policy in the next section which provides an illustration). The
scattered implementation of such features makes them difficult
to develop, understand and maintain. To worsen matters, the re-
quirements of such features are often late bound: locality depen-
dent, discovered late, and change often--security policies again
being a prime example. Programmers are thus confronted with
the difficult challenge of making a scattered set of changes to a
broad set of modules, often late in the game.

Distributed Heterogeneous systems (abbreviated ~DT-/) are
becoming part of the IT infra-structure in many organiza-
tions: many needed software functions are provided by sys-
tems assembled from pieces running on different platforms and
programmed in different languages. Distribution arises from
pressures such as globalization and mobility. Heterogeneity
arises from considerations such as performance, legacy sys-
tems, weight, size, vendor specialization, and energy consump-
tion. Crosscutting features in DT"/systems present special chal-
lenges. Feature implementations are scattered across different
languages, operating systems and hardware platforms. Feature
implementation elements in one platform need to correctly ex-
change information with existing application code, and with
such elements on other platforms. Any cross-platform (remote)
interactions between feature implementation elements may neg-
atively impact application performance. In a WAN context, the
presence of different, incompatible features (e.g. different se-
curity policies) may even cause the application to fail. In addi-
tion, the operator of a service may wish to change security poli-
cies at run-time. Some platforms may be too resource-limited
or performance-constrained to support some types of software
evolution techniques (e.g., reflection). In some cases, source
code may not be available for modification, so binary editing
techniques (or middleware-based wrapping) might have to be
used. However, since feature implementations may crosscut
platforms, all these different techniques of software evolution
should be allowed to co-exist, and inter-operate. Finally, since
crosscutting feature implementations might be widely applica-
ble, we would like to reuse them (in either source or binary form,
as applicable) by changing the way they are "bound" to applica-

0-7695-1877-X/03 $17.00 © 2003 IEEE 174

Fig t i r e 1. A distributed health-care system, with many ser-
vice providers, without (left) and with (right) security. The fight
one enforces this security policy: the client must first get get an
authentication token (1) from an authentication server, and then
present this token and his request (2) to a service-provider, who
then checks with the registration server (3) (to prevent multiple
fraudulent requests) before servicing the request (4). Such a pol-
icy requires implementations that crosscut system and language
boundaries.

tion implementations.
In this paper, we describe DADO, an approach to develop-

ing features in distributed systems that require code changes, in
a heterogeneous setting, to both cfient- and server-side of a re-
mote interaction. The paper begins with a motivating example
in Section 2. We then survey the surrounding area in Section 3.
Section 4 presents our research goals in more detail. Section
5 describes the current status of our experimental implemen-
tation of DADO (including the run-time, code-generation and
deployment tools), which is based on the OMG CORBA stan-
dard. Section 6 presents some sample applications of DADO.
Section 7 presents some micro-benchmarks evaluating the per-
formance impact of DADO. In section 8 we describe closely
related projects. Finally we conclude with an overall view of the
work, the current limitations, and our future plans.

2. An Example

For expository reasons, we review the example used in an
earlier position paper [44]. Consider a DT-/medical applica-
tion (Fig. 1), with a set of clients making use of three groups
of servers (shown as groups of circles with indicative labels):
clinics, pharmacies, and insurers. The servers in a group could
be running on different platforms (each doctor 's office might
use a different type of computer), but each provides the same
service (e.g., through the same CORBA IDL interface). The
components in this architecture communicate using D ~ mid-
dleware. In Fig. 1 (left), the original services are shown. The
multiple arrows suggest drug fraud, with an unauthorized im-
postor client contacting multiple doctors and getting many pre-
scriptions for the same drug, possibly getting each prescription
dispensed many times, by different pharmacies, and then issuing
multiple fraudulent insurance claims.

Consider injecting a security policy into this system, consist-
ing of two critical elements. First, each client must be authenti-

cated by an authentication server (e.g., by a password scheme).
Next each client must deal with only one server from each cate-
gory. Thus, each client must use just one doctor (except for sec-
ond opinions! !), one pharmacy, and one insurer within a given
time interval. Fig 1 (right side) schematically indicates the new
high-level architecture. A authentication server has been added
to validate users, and a registration server to register cfient-
service provider relationships.

This policy requires changes to every component and to every
interaction between components. The client now has to authen-
ticate itself to the authentication server, which provides an iden-
tity token. This token must now be added to all client-service
requests. All members of each group of services must now coor-
dinate among themselves to make sure that a client with a partic-
ular identity does not interact with more than one specific mem-
ber of a group. Since malicious clients may try to induce race
conditions among members of a group, they must synchronize
to "commit" to serving a cfient.

The changes are clearly "crosscutting". Programs running
on different platforms, and in different languages might need
changing. Since some platforms may have performance or bat-
tery limitations, (e.g., PDAs or laptops), or be remotely located,
different evolution strategies should be allowed, and allowed to
inter-operate. Changes to different elements must be made con-
sistently, to ensure correct interaction. Changes must be prop-
erly deployed in the different elements, otherwise versioning er-
rors may result. Since the function on the server side for doctors,
pharmacists and insurers is similar, i t would be desirable to re-
use the same policy implementation, even if their IDL interfaces
are different, should the platforms be compatible.

Next, we survey current approaches to D ~ evolution, con-
sidering how they address programming challenges such as this
one.

3. Current Approaches

There are a variety of approaches to dealing with crosscutting
features. Our survey here is limited by space to be representative
rather than exhaustive; no judgment of omitted or included work
is implied. A more complete survey can be found in [43].

Several language-based techniques have been proposed.
Classical syntactic program transforms [2] were perhaps among
the earliest to provide the capability of broad changes to pro-
grams. Reflection [28] provided means of introducing cross-
cutting changes at run-time in languages such as Smalltalk.
Compile-time [6, 37] reflection in C++ and Java has been de-
veloped and extended to load-time in Java using byte code edit-
ing [7]. Mixin-layers [33] also provide a way of adding fea-
tures to methods in several different classes simultaneously. Im-
plicit Context [41] is a method for separating extraneous em-
bedded knowledge (EEK) (or crosscutting knowledge) from the
design of a program, and re-weaving it back in later. Monads
and monad transformers [19] have been used in lazy, pure func-
tional languages to capture crosscutting features such as states
and side-effects. They work by encapsulating the basic notion of
a computation, and then allowing fundamental evaluation mech-

175

anisms such as value propagation to be overridden. Recently,
approaches such as HyperJ [36], Aspectj [17], and Aspectual
Components [20] provide differing approaches to implement-
ing crosscutting features in Java. A detailed comparison (but
see [15] for a comparison of compositional vs. aspectual views
of program evolution mechanisms) of these diffenng approaches
is beyond the scope of this paper; suffice to say we are inter-
ested in a 797-/setting, thus transcending language boundaries.
While details vary, most of these languages provide two fea-
tures: a hook or pattern, for describing where to insert crosscut-
ting changes, and then a way to program the changes themselves.
Since our approach uses the "hook" mechanism from AspectJ,
we discuss it in more detail here.

AspectJ provides a pattern mechanism, called pointcuts for
capturing groups of events, calledjoinpoints that may occur dur-
ing a program's operation (such as method calls/receptions, con-
structor calls, field accesses, and exception events). The pattern-
matching mechanism includes regular expression matching,
with wild-carding over fragments of method names, function
signatures, and types etc. Extra code, called advice can be as-
sociated with pointcuts, and is inserted by the AspectJ compiler
into the join-points. Advice can inspect and modify data that
are available at join-point events (e.g. method-call arguments
and return values), and can create new data dynamically that is
only shared with other advice. Our work uses these ideas for
modeling crosscutting changes to distributed systems at the IDL
level. However, the distribution, heterogeneity, and versioning
problems that arise in our context, require new and different im-
plementations.

Middleware-based approaches are certainly relevant. Some
works exploit language-based reflection in the middleware [26]
and other approaches use specially constructed reflective
ORB s [18, 8, 16]. Communication reflection reifies the channels
between client and server to address adaptation on a per-message
level [5]. SOM [10] was an early approach to support reflection
directly in the middleware. Interceptors [42, 24] and filters [32]
provide a way of inserting extra functionality into every method
that originates or arrives at a request broker; middleware-specific
APIs provide means for interceptor code to reflect upon the de-
tails of the intercepted invocations. While these reflective meth-
ods are suitable for implementing crosscutting services [4], (and
for some very idiosyncratic, and highly dynamic services may
be the only way to do it) the use of the low-level reflection APIs,
along with the need for frequent use of type-casting makes pro-
gramming difficult and error-prone; thus it would be preferable
to use more statically checkable methods when possible. Prox-
ies and wrappers [14, 34] are another approach. However, they
are typically tailored for a specific application object interface;
so thus, it would not be possible to reuse a wrapper to implement
the same security policy on such entirely different components
as doctors and insurers.

Container models [29, 38] address this problem through code
generation. They provide a fixed set of services (depending on
the container vendor) to application components. Via configu-
ration files and code-generation, services selected from a given
set can be added to any component. However, some services

cannot be completely located within the container. Consider
that a client may not be willing to reveal his password to just
any old application container, and so the initial step of authen-
tication (password based or public-key signature based) might
need to occur at a separate location that the client trusts. So the
authentication exchange must be custom-programmed using an
approach similar to interceptors. Programming here can be thus
sometimes as hard as programming interceptor-based services.

Recently, Duclos, Estublier, and Marat [13] have proposed
the model of a Component Virtual Machine, which captures im-
portant events in a component's lifecycle. These events can be
viewed asjoinpoints. An enhanced container implementation al-
lows extra advice to bind to specific pointcut patterns over these
joinpoints. This approach allows much easier implementation
of custom services on the container side. We discuss this work
in more detail later in § 8; we merely note here that our work
focuses more on heterogeneous systems rather than container-
based systems. Section 8 also surveys several other closely re-
lated works, that are easier to relate to ours after DADO details
have been presented.

4. D A D O Overv iew

As illustrated in Section 2, late-bound, crosscutting func-
tions such as security require extra functional elements (which in
DADO we call adaplets) to be located together with (potentially
distributed) application software components. A client-server
pair of adaplets would constitute a distributed DADO service.
We begin with a discussion of the main goals of our project.
Then we describe the features of DADO that address these chal-
lenges.

4.1 Desiderata

Heterogeneity and Communication Adaplets may need to ex-
change information and co-ordinate with each other, and/or with
the application components. While this is strongly analogous
to AspectJ, adaplets must communicate and co-ordinate in a
distributed heterogeneous context. The adaptation mechanisms
(source/binary transformation, runtime wrapping) may depend
on the platform; even so, heterogeneous adaplets should co-exist
and inter-operate correctly.
Binding and Deployment It would be desirable to support late
binding and flexible deployment of DADO services. Consider
that container standards such as J2EE allow independent con-
tainer developers to develop services that are customized for spe-
cific applications at deployment time. Likewise, we would like
to allow vendors to build services consisting of DADO services,
independently of application builders, and then allow deploy-
ment experts to combine services and applications to suit their
needs.
Dynamic Service Recognition Several adaplets, supporting dif-
ferent features, may be associated with an application compo-
nent; clients and servers must deploy matching sets of adaplets.
In a dynamic, widely distributed context, clients may become
aware only at run-time of the adaplets associated with a server

176

object. Thus adaplets may be need to be acquired and deployed
at runtime.
Flexible Communication and Co-ordination The interaction
between a matched pair of client and server adaplets may not be
simple and monolithic. Under different circumstances, the client
adaplet may require and request different functions (with differ-
ent parameters) that are supported by a server adaplet (just as a
distributed object can support several distinct methods). Like-
wise, the server adaplet may request different post-processing
functions on the client side. A cfient adaplet can refer to it's
server "mate" via the reserved name " t h a i : " (and vice versa).
However, for efficiency, it would be better to have only a single
invocation event through the middleware (e.g., a single CORBA
synchronous call).

4.2 DADO Features

Modeling, Type-Checking, and Marshalling DADO employs
an enhanced IDL and code-generation to support the following:

• Explicit IDL-level modeling of adaplets and their interac-
tion with application components.

• Abifity to implement adaplets in different languages, while
supporting:

• safer interaction (via static type-checking) between adap-
lets, with automated generation of marshaling code.

Pointcut based Binding DADO separates services (which de-
scribe the interfaces supported by adaplets) from a deployment
description, which specifies the precise deployment context of a
service (using a pointcut language similar to AspectJ). This al-
lows a deployment expert to tune the connection between DADO
services and different application components. The binding lan-
guage is agnostic with respect to the implementation; DADO ad-
aplets could be incorporated into the existing application using
static transformations (binary or source) or dynamic wrapping,
depending on available tools, performance issues, etc.
Multiple Contextual Invocations DADO allows adaplets on
the client and server side to communicate via messages. How-
ever, rather than inducing additional middleware invocations,
multiple messages are piggy-backed within the single pre-
existing application invocation.
Transparent Late binding DADO cfients transparently (with-
out additional programming) discover the services associated
with a server, and deploy 2 additional adaplets as needed.

4.3 Process implications of DADO

Currently, the process of building DT-t systems using middle-
ware such as CORBA includes modeling the high-level design
using IDL. IDL specs are then implemented by developers, be
they COTS vendors, or application builders, on different plat-
forms and perhaps in different languages. When implementation

2In Java, with a suitable c l a s s l o a d e r , adaplets could be even dynami-
cally downloaded over the internet.

is complete, the users of the distributed system can run ORBs on
a network as suited to the appfication and organizational needs,
and deploy the Constituent application objects, along with any
COTS software and ORB-provided services (naming, lifecycle,
events etc.).

DADO brings three new roles into this process (see Figure
2): a service architect, service programmer, and a service de-
ployment specialist. This service architect can design a ~DT-/ser-
vice that implements a crosscutting feature, such as the ones il-
lustrated in Section 6. This process begins with a description
of a crosscutting DADO service as in an enhanced IDL (known
as DAIDL, for DADO IDL). A service is a collection of DADO
adaplet interface descriptions, which consist of several meth-
ods, just like a CORBA IDL interface. These interfaces are then
compiled using DAIDL compilers for different target implemen-
tation languages (currently we support C++ and Java), produc-
ing marshaling routines and typing environments. The imple-
mentation then proceeds by service programmers just as with
conventional middleware.

The deployment specialist binds an implemented service to
a given application by specifying bindings using an AspectJ
like pointcut language. The deployment specialist will need
to understand both the application and the service, and select
the bindings based on the specific installation. Currently, these
bindings must b e specified ahead of time and pre-compiled; one
can then choose from different pre-compiled bindings (each of
which bind a service to a set of application objects in a par-
ticular way) dynamically 3. Duclos, Estublier and Marat's DS-
CVM [13] also includes similar roles, but their implementation
strategy is different, utifizing a sophisticated container architec-
ture (we come back to this later, in § 8).

5. DADO implementation

We now present more details on the DADO features outlined
in the above section. The current DADO experimental imple-
mentation is based on the OMG CORBA standard. It includes
IDL language extensions for services, DADO IDL (DAIDL)
compilers for C++ and Java, run-time software extensions for
two different ORBs (JacORB and the TAO ORB), and tool sup-
port for the deployment of services (i.e., for dynamically insert-
ing DADO services into existing CORBA applications).

5.1 IDLs, Type-checking, and Marshalfing

DADO adopts the philosophy (as does DS-CVM [13]) that
IDL-level models provide an excellent software engineering
methodology for distributed systems; in addition to promoting
better conceptualization of the design, one can construct tools
to generate useful "plumbing" code and typing environments
for static type-checking. DADO IDL introduces the notion of
a service that refers to a crosscutting feature. A service com-
prises client and/or server adaplets. Each adaplet supports sev-

3This suggests another role, perhaps an operator, who selects services based
on operating conditions.

177

Pmll~'lRm 'I -

.......... -,.,, _:- _;i:..

Figure 2. DADO Development Process. The left hand side (within the dotted lines) indicates the conventional CORBA
process. On the right, the DADO service development begins (1) with modeling the interfaces to DADO adaplets using
DAIDL; from this the DAIDL compiler generates (2) plumbing code, and typing contexts for adaplet implementations.
The programmer writes (3) the adaplet implementations and links to get (4) the adaplets. Now, the deployment specialist
produces (5) deployment specs, and these are used by deployment tools to install (6) the adaplets at the proper application
object locations. Deployment can occur at compile time, link time, or run-time, depending on the instrumentation technology
used (only run-time insertion is illustrated in the figure).

eral methods, which may be of 2 different kinds. Advice meth-
ods, identified in DAIDL by the advice keyword, may be bound,
via pointcut patterns (like AspectJ advice, as explained later, in
Section 5.3) to application objects. Advice methods basically
provide additional functionality that is run every time certain
methods defined in an IDL interface are invoked. Advice can
be on the client or the server-side.

In addition to advice methods, DAIDL services can also in-
clude request methods (identified in DAIDL by the request key-
word). These are a form of queued asynchronous methods (see
section 5.4 on RMCI) that may be invoked by any adaplet meth-
ods. Advice and request are explained in more detail in Sec-
tion 5.2.

DAIDL compilers can currently generate heterogeneous typ-
ing environments (i.e., C++ header files, or Java imports), as
well as stub and skeleton routines; adaplets can currently be
implemented in either C++ or Java (but must be written in the
same language as the application object4). We also note that ad-
vice adaplet methods have direct typed access to any argument
in the appfication invocation; the actual bindings are specified
in the pointcut. Programming within the context of typed stubs
and skeletons, and leveraging generated marshaling and other
"plumbing" code offers a distinct software engineering advan-
tage over the current practice of "type-less" programming of

4This is primarily for performance reasons; if adaplets are in a different lan-
guage, it would be necessary to go through middleware to get from an applica-
tion object to an adaplet. With a "polyglot" middleware like .NET's common
language runtime, this problem can be finessed to some extent.

late-bound services that use untyped string data in an invocation
context object for data exchange.

5.2 Advice and Request

The separation of advice and request operations in the adaplet
interfaces represents two levels of adaptation required to im-
plement crosscutting distributed heterogeneous services. In this
section we detail the relationship of advice and requests to the
development and runtime execution of standard CORBA com-
ponents and to each other.

We recall (from Section 4.3) that DADO introduces several
new service-related roles into the software process: a service ar-
chitect, service programmer, and a service deployer. When a
service architect decides that some additional behavior on the
cfient or server of a distributed application is desirable, she can
add an advice operation to the interface of an adaplet. Advice
operations can be specified to be cfient-side or server-side ad-
vice. The service deployer can then add the behavior specified
by the advice interface to a specific application object by writ-
ing an appropriate pointcut. The service programmer has the
obligation to implement each advice.

Some services can be implemented simply by executing ad-
vice on the client- or server-side, along with application method
invocations. However, in some cases, additional information
may be need to be sent along from the client to the server side
adaplet (or vice versa). For example, in section 6.1 we present
a service where a client side adaplet can request that a match-

178

ing server adaplet calculate server processing time for specific
invocations, and then communicate this information back to the
client adaplet. This additional information conveyed between
client and server adaplets is contextual. It must be associated
with some original CORBA invocation. Likewise, the timing be-
havior by the server adaplet must occur before and after the pro-
cessing of the invocation for which the client adaplet requested
statistics. This type of adaptation is handled by the RMCI mech-
anism described below, in Section 5.4.

The service architect can include operations tagged with the
r e q u e s t modifier keyword to provide an extra communication
path between cfient and server adaplets that is associated with
the current CORBA invocation. The body of client and server
advice can be programmed to add request messages by using
the " t h a t " reference which exposes the interface of request op-
erations available to a client adaplet by the server adaplet and
vice versa. In object-oriented languages the service programmer
will derive adaplet implementations from a generated abstract
base class which includes an appropriately typed member vari-
able named " t h a t " . " t h a t " is automatically bound to a gen-
erated stub that implements RMCI semantics for each request
operation.

Advice and request play different roles in adapting the dy-
namic execution of a distributed application. Advice operations
are used to add behavior at points in the program determined by
pointcut based deployment. Although the addition and removal
of advice can occur dynamically at runtime it is still based on re-
ferring to static elements in the IDL interface. Pointcuts create a
connection between cfient programs and client adaplets or server
objects and server adaplets only. The connection between client
adaplets and server adaplets is made through request messages
and is completely dynamic. The request messages serve both
to convey additional information and invoke behavior to process
the information.

The exact mechanism by which the original client and server
programs are modified can be platform-dependent; heterogene-
ity is allowed. Several options are possible, including source-
code weaving, generating customized stub components, or mod-
ifying the middleware. The transmission format of request mes-
sages, however, is standardized because it must be understood
by the DADO runtime on heterogeneous hosts. Our experi-
mental implementation relies on packing request messages into
the s e r v i c e C o n t e x t of a CORBA invocation. The s e r v i c e -
c o n t e x t is part of the CORBA protocol format for commu-
nicating invocation specific information between ORBs. Natu-
rally, the generated request and advice typing environments are
standardized, using the usual OMG IDL language mappings.

5.3 Binding and Deployment

Once built, a service can be integrated with appfications
by specifying a binding, which is done using a pointcut lan-
guage. This process involves one platform-independent tool,
which matches the pointcuts against a known set of component
interfaces, and produces a digested match-table in XML format;
and a Separate platform-dependent means for actually ensunng

that the adaplets get triggered when the pointcuts get activated.

The pointcut language extends the AspectJ pointcut language
to specify client or server side pointcuts, extending the AspectJ
regular expression syntax for the declaration of generic or cross-
cutting behavior. Matching of pointcuts with invocations could
be done off-line or on-line. The current DADO tool (the point-
cuts pre-processor) matches pointcuts (against the IDLs of the
application objects) at compile-time. This tool identifies all the
IDL level events requiring adaplet intervention, and also the in-
formation in the events that should be made available to each
adaplet. The output of the preprocessor is a representation of
all the event/action matches as an AST (represented as XML).
We call this Intermediate Joinpoint Representation (IJR). (Note
Although this matching happens at compile-time, services with
pointcuts that are already compiled into IJR can be added or
removed at runtime). Of course, future tool (and associated run-
time) support could allow new point cuts to be created and in-
serted at run-time.

In order to trigger adaplet behavior at runtime, application
code must somehow be modified, or execution intercepted to
capture the right events. A wide range of binary and source-
code, static and dynamic instrumentation mechanisms have
been reported [6, 37, 17, 30]. Middleware, also, can support
highly dynamic reflective mechanisms [3]; Duclos, Estublier
and Morat [13] have build a "component virtual machine" that
allows great flexibility in instrumentation.

In keeping with the 797-/philosophy, we allow heterogeneity
in the implementation of the triggering mechanism. Thus while
the pointcut specifies the "high-level design" of the binding, dif-
ferent implementation strategies are possible. Currently, sev-
eral instrumentation mechanisms are supported for translating
DADO pointcuts (in IJR form) into actual trigger mechanisms.
For Java, we use AspectJ [17] to insert the necessary trigger code
into generated stubs and skeletons (thus avoiding the need for
appfication implementation source code. For C++, we make use
of a range of mechanisms, including TAO's smart proxies [42],
and the Portable Interceptor standard in CORBA; this approach
is also compatible with binary-only application components, and
can work in any language, even one that does not support source-
code or binary instrumentation mechanisms. However, both ap-
proaches require that adaplets be written in the same language
as the application objects. Removing this restriction is certainly
possible, but would require adaplets to engage a large segment
of the middleware stack for cross-language interoperabifity with
application components. Naturally, client- and server-side adap-
lets, even if using different languages, different instrumentation
mechanisms, are fully inter-operable, and portable. The adaplet
programmer remains agnostic with respect to the actual instru-
mentation mechanism that is used to trigger the adaplet. An
adaplet can communicate with other adaplets (the matched one,
or any others that it has a handle to) using the DAIDL inter-
face description. In our implementation, this is accomplished
through appropriate code generation; the generated code pumps
data around by packaging it into the untyped service context ob-
ject (See [25], Chapter 21) API in CORBA.

179

Client

rr

t ~

6
8

Server

-T

S
/

)

Figure 3. Remote Multiple Contextual Invocation Client-server
application object interactions are mediated by "T" (transaction)
and "S" security adaplets. Gray semi-circles denote generated
marshaling code. Initial client invocation (1) is diverted by the
interceptor in turn to each adaplet (2,4) until finally arriving (6)
at the ORB. Adaplets use marshaling code for their invocations
(3,5). Each adaplet may enqueue several one-way messages (for
the server-side adaplets) which are piggy-backed as a request
queue through the normal middleware invocation (7) over the
WAN to the server side. The process occurs in reverse on the
server side, with the requests in the queue being delivered to
the corresponding adaplets. Likewise, server-side adaplets may
enqueue messages to the client side adaplets which are piggy-
backed on the invocation response.

5.4 Remote Multiple Contextual Invocation

Remote multiple contextual invocation (RMCI) in DADO
gives service developers more ways of programming interac-
tions between client-side and server-side adaplets. Consider that
a client adaplet may require different types of actions to be taken
at the server side. As a very simple example, a per-use payment
service adaplet attached to a server object might accept e-cash
payments, or a credit card. Another example is authentication.
It could be based on kerberos-style tokens, or on a simple pass-
word. We could include both options as possible parameters, in
a single method signature, along with an extra flag to indicate
the active choice; this leads to poorly modularized methods with
many arguments. Rather, we take the "distributed object" phi-
losophy of supporting different requests at a single server object;
we allow adaplets on either side to support several different re-
quests. As another illustration of the use of requests, consider
a generic caching service, (implemented using DADO adaplets)
which can for example be attached to a stock quotation server
(this example is discussed in more detail in Section 6). Client-
side advice can cache values and return them instead of going
to the server for each request. However, the server may want to
communicate a "time-out" interval back to the client, so that it
can adjust the time-out period for cached quotes based on mar-

ket volatility. So it would be useful to have a special client-side
request method that the server can invoke when it needs to adjust
the time-out value.

DADO adaplets support a special type of one-way, asyn-
chronous "piggy-backed" message that are sent along with an in-
vocation (from client to server) or a response (vice versa). Since
multiple services can be present simultaneously, the requests are
queued on each client and packaged with the original invocation
for dispatch at a server side adaplet. This also works in reverse
for requests going from the server-side adaplet to the client-side
adaplet. The keyword " r e q u e s t " in the DAIDL adaplet inter-
face can be used to designate operations as having RMCI se-
mantics.

In figure 3 we show application objects using both a security
and a transaction service. Note the presence of corresponding
adaplets for each service on both the client and server side. Ad-
aplets might include both advice and request methods; the fig-
ure illustrates how the client side advice gets executed in turn.
Each client adaplet may enqueue multiple requests to be exe-
cuted by the server side adaplets. The requests are collected into
a queue that gets piggy-backed onto the regular middleware in-
vocation and passed through to the server side. The RMCI des-
ignation thus arises from Multiple Remote requests contained
within the single Invocation Context. The implementations of
these requests (regardless of adaplet 's location) have full reflec-
tive access to the current active invocation, via provided APIs.
Of course, if the information needed by the adaplet is known
statically, there is no need to use reflection.

On the server side, the designated advice adaplet methods for
each adaplet get executed, as are the enqueued requests. The
server side adaplets may also enqueue requests to be executed
by the client side. This feature can be used to pass information
back to client-side adaplets; we illustrate with a performance
monitoring example where server-side time-stamps are passed
back to the client via a request adaplet method.

In essence, RMCI provides a form of dynamic per-invocation
adaptation as in Lasange[39] while supporting type-checked in-
teractions and modular design through IDL declaration.

5.5 Transparent Late Service Binding

In a WAN environment such as the internet, where servers are
discovered at run-time, clients cannot predict the set of services
provided by (or required by) a particular server until it is located.
Static approaches that install new services based only on type
information cannot easily provide this kind of late binding.

When server objects are associated with a DADO service
(this can happen dynamically, from the command-line or at de-
ployment time via configuration files) they are assigned an ex-
ternal object reference that is used by the client side run-time to
detect the applicable services. Essentially, the references encode
information about the adaplets associated with this object s. This
information is used by the Dado interception logic on the client-
side to transparently engage the corresponding client-side adap-
lets. Our implementations use different triggering mechanisms,

5Using CORBA this is possible with Tagged IOR Components.

180

5
i

3_ /
Figure 4. Late-binding service adaptations (1) Server object,
with Security and Transaction adaplets, named " b l " of type
" B i l l " is registered with a Naming service. The identifiers
"Transaction" and "Security" are tagged to the external object
reference. When client looks up object named "b2", the re-
turned object reference (2) is intercepted by Dado component.
Dado attempts (3) to find client-side adaplets for "Transaction"
and "Authentication" from client-side factory. Factory creates
and binds transactions (T) and security (S) adaplets to client ap-
plication object.

depending on the platform, to achieve this.This process is illus-
trated in figure 4. When an application object registers itself with
a naming service, the reference encodes all active services (Ar-
row 1). Subsequently, a retrieved reference (2) is intercepted by
the DADO runtime, which decodes the applicable service iden-
tifiers from the reference. It then instructs the local factory to
create instances of the corresponding client-side adaplets, and
injects them into the execution path of invocations originating
from the client. Our current implementation assumes that the
possible set of pointcuts used by servers are known statically.
Different sets can be uniquely identified in the server reference.
In the future we plan to address dynamic client-side detection of
pointcut configurations.

If the service deployment at a server object changes dynam-
ically, it re-registers with the naming service to alert future
clients. If service deployment changes at a server while current
clients are still active, the server can throw a DADO-specific ex-
ception upon their next invocation. This exception encapsulates
information about the new server configuration. The client-side
DADO runtime then responds by transparently reconstructing
the set of client-side adaplets so that interactions may continue.

5.6 Adaplet Instance Considerations

A service developer may need to control the granularity of
how server objects and clients are affected by adaplets. This may
be necessary to conserve resources, by not creating too many
adaplet instances, or for associating state in adaplets with partic-
ular application object instances. Currently, we provide a mech-
anism for associating adaplets on a one-per-ORB basis (i.e., a

singleton) or on a one-per-POA 6 basis. We plan to add sup-
port for per-object adaplets in the future; currently, per-object
adaplet instantiation is only possible by placing objects in sepa-
rate POA's.

6. Examples

We now present some sample applications of DADO. All
of these examples have been implemented with a Java client
on JacORB and a server on TAt . For space reasons only the
DAIDL interface descriptions are presented.

6.1 Round-Trip Performance

Consider a simple performance monitor in a particular client
software. One can easily write code (e.g., using interceptors, see
[24], or [25], Chap. 21) to attach to the client that will record
the time each invocation leaves and response arrives. But the
client may also want the invocation arrival-time at the server and
the reply sending-time in order to compute the actual processing
time. This scenario demands more cohesion between interact-
ing client and server interceptors. This service requires three
critical elements: clients must be able to ask the server for tim-
ing statistics for some, not all, invocations. Servers must return
data through a type-checked interface. Clients need some way
to modify existing software to add logic for requesting timing
statistics; different means should be allowable. Finally, client-
and server- adaptations should be coordinated; clients will not
request timing statistics from servers unable to provide them.

adaplet Timing {
client {

advice void timedOperation () ;
request timeResult(in long long received,

in long long sent);
};

server {
request timeRequest () ;

};

crosscut TimeAll : liming {
client {

before call(*) :
void timedOperationO;

};
};

DADO service developers first write the DAIDL interfaces
(above the line) of the client and server adaplets, and implement
them for target languages (utilizing DAIDL tools and run-time
libraries). The client adaplet has two methods. One, timedOp-
e r a e i o n is an advice method that can be bound to an applica-
tion method. The other, timeResult is a request method that is
used by the server-side adaplet to report back the timing results.

6The Portable Object Adapter is a container abstraction available in CORBA
for associating policies (such as thread policies) with a number of server objects.

181

This timeResult request message can be included with the orig-
inal response by the server and will be dispatched to the client
side adaplet before the client application receives the response.
The implementation of t i raedOperat ion on the client side can
dynamically decide whether to invoke that. timeRequest or
not; we note again that the special variable tha t , denoting the
(other) matched adaplet is implicitly made available to both
client/server adaplets.

When t h a t . timeRequest is invoked by the client side ad-
vice a request message is added to the original invocation and
dispatched to the server side adaplet before the server object re-
ceives the original invocation. The server adaplet can respond
to a timeRequest by taking two timing measurements to deter-
mine the actual execution time for that application method invo-
cation; it can then report the result back to the client, using the
t ha t . t imeResul t client-side request. We note that the imple-
mentation of the advice is responsible for invoking the request;
there is thus no explicit modeling of this detail at the IDL level.
For instance, consider a client that would like to time one out
of every ten invocations. This logic could be programmed into
the timed0peration advice by an adaplet programmer. It would
be inappropriate to introduce this type of implementation detail
at the IDL level. Thus the service programmer decides when
request messages are triggered; however, the IDL model does
allow request messages to be marshaled and triggered in a het-
erogeneous, yet type-checked manner.

To deploy Timing adaplets for a given application object,
the server-side would make the service available by register-
ing a server Timing adaplet component with the servers' object
adapter. When clients become aware of those server objects, the
DADO run-time will automatically deploy client adaplets based
on the clients deployment preferences (see the c r o s s c u t decla-
ration above). In this deployment the client would like all invo-
cations to be intercepted by timedOperation as indicated by the
wildcard. The server side doesn't need to specify any additional
pointcut instructions, as the operation tiraeRequest is invoked
by the client-side adaplet.

6.2 Client-Side Cache

Systems are often built without performance optimizations
such as caching in mind. However, it would be nice to lever-
age some off-the-shelf caching behavior, without requiring ex-
tensive modifications to client and server code. We consider a
feature whereby clients can cache data associated with a partic-
ular server. Consider a stock-quote server, which provides ac-
cessor and mutator methods. The accessor methods are called
by clients, and mutators would be called by a data provider to
"pump" data into the quote server. We would like to cache the
returned quote value at the client side. When the server returns
data it associates a time-to-live (TI'L) value with the data, for
use by the client. An invocation will be serviced using cached
data from the client (without contacting the server) as long as
the T r L has not expired. The server will adjust its TTL value
heuristically depending on the frequency of calls (from its data
provider) to its mutator method.

adaplet Cache {
server {

request requestTTL();
advice void trackWrite(in string key);

};
client {

advice any_type readcache(in string key);
request putTTL(in long ttl);

};};

The DAIDL interface for the Cache adaplet specifies two
operations, t r a c k W r i t e a n d r e q u e s t T T L . T h e client-side cache
adaplet issues requestTTr, along with accessor operations for
which it has no cached data. The server adaplet sends back the
TTL value associated with the invocation, back along with the
data response; it does this by issuing a putTWr, request to the
client. The server adaplet estimates the TTL values heuristi-
cally by timing the mutator operations that it receives from its
stock quote providers. The t r a c k f f r i t e is the advice that is trig-
gered to calculate T r L based on mutate operation frequency.
The client-side advice r e a d c a c h e performs the caching opera-
tion. The keyword any_type gives readcache access to the re-
turn value, as a generic CORBA any, of the operations on which
it is deployed. This design requires that the operation to be
cached, the accessor operation, uses a string "unique key" ar-
gument to determine the returned data. This fits our scenario
where clients access stock quote prices based on stock market
symbols but may require a different interface for other applica-
tions. Consider a simple s tockOuotes server with operations
setO and getO. We could apply the adaplet advice hooks to in-
troduce caching using the following deployment f i le ,

crosscut StockCache : Cache {

client {
around call(float StockQuotes: : getQ(key)) :

any.type readcache(in string key);
};
server {

before call(void StockQuotes: :setQ(key, in float)) :
void track Writes(in string key);

};

};

The key arguments serve to match parameters in the applica-
tion operations with parameters for use by the advice.

6.3 S e c u r i t y P o l i c y

Now consider our security policy example (Section 2). Here,
servers must restrict access to some operations, based both on
clients' identity, and their previous history of use. Clients must
be registered with a particular server for some duration. After
this time has expired, clients can register with another server.
This prevents clients from contacting and obtaining the same
services fraudulently from multiple servers. Clients authenticate
themselves using a cryptographic token. It is the clients respon-
sibility to obtain an A u t h e n t i c : : T o k e n which is a cryptographic

182

object representing the verification of the clients identity. The
implementation of the con tac tAuthen t i c advice in the client
adaplet is responsible for this; this advice can be bound to appli-
cation methods that must be mediated by this security policy.

Since the authentication token is specific to this service, we
must include server-side request operations in the adaplet to
transmit this information to the server side. The server adaplet
has two request operations available for receiving the authen-
tication information. The first time a client contacts a server,
she must register (commit) to that server for a specified time in-
terval. The request operation r e g i s t e r is for use by first time
clients and includes a parameter for the duration of registration.
The implementation of this registration will validate the authen-
tication token and check with a centralized registration server
(not shown here) to make sure that the client isn ' t fraudulently
registered with a different service provider.

For subsequent application object invocations within the reg-
istered duration, the client uses the second request operation au-
thenticInfo, to transmit the authentication token. Now, every
server operation that needs to be mediated by this security pol-
icy must trigger the policy enforcement mechanism, to check
that the client is authentic, registered and still within the regis-
tration interval. The server operations that need to be restricted
should be mapped to the Wall server adaplet operation check
with a deployment description(not shown). An implementation
of this advice can implement the policy.

adaplet Wall {
server {

request authenticInfo(in Authentic::Token tok);
request register(in Authentic::Token tok,

in long duration);
advice void check()

raises(NotRegistered,NoAccess);
};
client {

advice contactAuthentic();
};

};

The check implementation (in some host programming lan-
guage) will contact a registration server (IDL not shown) to en-
sure that a client can be served. If not, (if authentication token,
or registration is invalid) the operation should raise the NoAc-
cess exception 7. However, if this client is not registered with
any of the servers in the group, or if the required registration
interval with the current server has passed, check can throw a
Not Registered exception. This gives the implementation of
con tac tAuthen t i c a chance to catch this exception and retry
the operation by sending along a request for a new registration
interval (which will succeed as long as the client hasn't fraud-
ulently registered elsewhere). Catching exceptions and retrying
operations is made possible by structuring advice around origi-
nal invocations in a fashion similar to the Decorator pattern.

The server side advice, check , and the client-side advice ,
con tac tAuthent ic , Can be bound to any operation that must be

7These are implemented as a run-time CORBA: : S y s t e m E x c e p t i o n s be-
cause they occur inside of the original target operation.

policy-mediated. Implementations can choose to cache secu-
rity information as appropriate. However, we note that once the
server has implemented and deployed the check advice correctly
it does not have to trust the client-side advice at all; also, if the
authentication service uses public-key authentication, the client-
side advice does not have to leak any authentication secrets (e.g.,
private key) outside the client's machine.

All examples above have been implemented with the cfient in
Java, and the server in C++. Further details of our current im-
plementation are described in the following section. Full source
code is available on http : / / rickshaw, cs. ucdavis, edu.

7. Performance Study

The data presented is in the style of micro-benchmarks: we
measure the incremental effect of the actual additional marshal-
ing work induced by the new "plumbing" code (generated by
DADO compilers), as well as other DADO runtime machinery
for dispatching adaplet advice and request. For this reason, we
use dummy advice and request methods that don't do any com-
putation, so that we can focus primarily on the actual overhead
of the DADO runtime machinery.

The measurements were taken for a single client server pair.
The cfient machine was a 1.80 GHz Intel Pentium with 1GB
main memory running Linux 7.1. The client middleware was
JacORB 1.4 on JDK 1.4. The server machine was an 800 Mhz
Intel Pentium Laptop with 512MB main memory running Mi-
crosoft Windows 2000. Server software used TAO 1.2 com-
piled in C++ Visual Studio. Client-side advice is invoked us-
ing modified stubs; a portable interceptor dispatches requests on
the server side. The DAIDL interface to the adaplet used for
performance measurement is shown below. The actual IDL in-
terface that is bound to is not important, since we are actually
just measunng the additional overhead of the adaplet run-time
infrastructure; in this case, we use a simple interface with a sin-
gle, synchronous method that takes a string and doesn't return
anything (not shown here).

adaplet Test{
client {

advice void grabArg(in string arg);
};

server {
request putArg(in string arg);

};

crosscut TestStringArg : Test {
client {

before call(* *(arg)) :
void grobArg(in string arg);

};
};

As can be seen above, there is one client-side advice and one
server side request. The client-side advice is bound to every
method call (with a single argument of type s t r i n g) on every

183

object by the pointcut. In our implementation, the client-side
advice simply captures the string argument from the invocation
and calls the server side request, passing along the stnng argu-
ment. The server side advice receives the string argument, and
simply just passes control to the server application object. So the
overhead we are measuring (beyond the normal CORBA invo-
cation overhead) includes the additional cost of 1) intercepting
the invocation on the client-side, 2) dispatching the client-side
advice, 3) executing the client-side request stub, 4) marshaling
the additional data transmitted by the request into the Se rv±ce-
c o n t e x t , 5) transmitting the additional data over the wire 6)
unmarshaling the data on the server side 7) dispatching and ex-
ecuting the request implementation on the server side. All mea-
surements given above are for round-trip delays for a simple in-
vocation that sends a "hello world" stnng. The data is averaged
over 1000 invocations, and is given in milliseconds.

Experiment 100 Base-T Wireless II
1. Vanilla CORBA 0.65 3.49
2. with 1 advice,
1 request 1 4.17
3. with 10 advice,
No request 0.68 3.65
4. with 10 advice,
10 request 1.52 7.45
5. Vanilla CORBA with
equivalent raw
data Payload for 1.38 7.27
10 requests

The first row is the plain unloaded CORBA call, as a base-
line for comparison. The second row is a CORBA call with one
adaplet advice, and one additional request. In the third row, we
show the effect of "artificially" forcing a dummy advice (that
doesn't transmit any requests) to dispatch 10 times. The fourth
row shows the effect of executing the advice shown on the sec-
ond row 10 times, thus forcing 10 request messages. The crit-
ical fifth row shows an interesting comparison: it measures the
plain CORBA call, with additional data loaded into the service
context, exactly equivalent to 10 request messages, without any
adaplet code whatsoever. This row corresponds to the precise
straw-man comparison for sending data sans DADO, and cor-
responds to the way interceptor-based services (such as Trans-
actions and Real-Time, as per [25], page 30 of Chap. 13) are
currently programmed.

As can be seen, the advice itself, which does not send any
data, does not induce very large overheads (comparing rows 1
and 3, it's about 5% in both cases for 10 advice invocations)
The overhead for sending requests is largely due to the base cost
of transmitting data over the service context. By comparing the
100-Base-T and Wireless measurements one can see the dimin-
ishing cost of marshaling as the benefits of reduced latency from
piggybacked requests increases. The motivation of RMCI is to
provide type-checkable interactions and modularization of ser-
vice features, we feel these measurements show the feasibility
of this approach.

8. C l o s e l y R e l a t e d W o r k

In this section, we discuss closely related work and compare
them in greater detail with DADO.

Dassault Syst~mes CVM The Dassault Syst~mes Component
Virtual Machine (DS CVM) [13] is targeted at container-based
systems, and allows the implementation of custom container
services. The DSCVM comprises an efficient, flexible CVM
that essentially supports a meta-object protocol which can be
used for instrumentation of middleware-mediated events. This
allows the CVM to support the triggering of advice when the
CVM executes specific events such component method invoca-
tions. Pointcut "trigger" specifications are implemented using
the DSCVM events. Advice can be bound to patterns of these
events, and thus be used to implement services.

DADO is complementary to DS CVM in that DADO allows
elements of crosscutting services to be placed on the client site
in a coordinated manner, for reasons argued earlier. DADO
also operates outside of a component/container model in "bare-
bones" CORBA; thus it must (and does) allow heterogeneity in
the implementation of triggering mechanisms such as source
transformations, binary editing etc. (See Section 5.3). The
heterogeneity assumption also influences our design of type-
checked information exchange between client and server adap-
lets, using generated stubs and skeletons (Section 5.1).

QuO The Quality of Objects (QuO) [21, 40] project aims to
provide consistent availability and performance guarantees for
distributed objects in the face of limited or unreliable compu-
tation and network resources. QuO introduces the notion of a
"system condition", which is a user-definable measure of the
system, such as load, network delay etc. System conditions can
transition between "operating region"s which are monitored by
the run-time environments. The novelty in QuO is that adap-
tations can be conditionally run to respond not only to normal
middleware events, but also to region transitions.

QuO's version of adaplets are confined to a single system.
Unlike DADO, Quo provides no special support for commu-
nicating information from a client-side adaplet to a server-side
adaplet.
Lasagne Lasagne[39] is a framework for dynamic and selec-
tive combination of extensions in component based applications.
Each component can be wrapped with a set of decorators to re-
fine the interaction behavior with other components. Every dec-
orator layer is tagged with an extension identifier. Clients can
dynamically request servers to use different sets of decorators at
run-time. An innovative aspect of Lasagne is the usage of exten-
sion identifiers to consistently turn on and off adaptive behavior.
However, the use of the decorator-style constrains all extensions
to have the same interface. Any additional extension-specific in-
formation must be communicated using a "context" object, with-
out the benefits of typechecking or automated marshaling.
Software Architecture In software architecture, connec-
tors [22, 27, 1] have proven to be a powerful and useful model-
ing device. Connectors reify the concern of interaction between

184

components, and are a natural foci for some crosscutting con-
cerns. Implementations of architectural connectors have also
been proposed [12, 31, 11, 35]. Some of these provide spe-
cific services [31, 11, 35] over 737-/middleware, such as security.
Our work can be viewed as providing a convenient implementa-
tion vehicle for different connector-like services in a heteroge-
neous environment. The DAIDL language and compiler allow
service builders to write client and server adaplets that provide
many kinds of"connector-style" functionality, while the DAIDL
"plumbing" handles the communication details. Furthermore,
the pointcut language allows a flexible way of binding this func-
tionality to components, using pattern matching to bind events
to adaplets. The question as to whether connector specifications
(e.g., in an ADL) can be translated to DAIDL specifications
and pointcuts is interesting, and we hope to address it in future
research.

9. Conclusion

We conclude here with several observations about DADO, it's
limitations, and our plans for future work.
"Client-Server". First, we note that when we repeatedly discuss
"client" and "server" adaplets, we are speaking of client-server
roles in a synchronous RPC-style connector.t Thus DADO is
not specific to a client-server architectural style. In fact DADO
adaplets may be bound to CORBA oneway calls, which are es-
sentially asynchronous messages.
Design Choices. The design space of a convenient framework to
implement 737-/crosscutting services is quite large, comprising
many dimensions such as synchronization mechanisms, scope
of data, and the handling of exceptions. The current implemen-
tation of DAIDL has made some reasonable choices, but other
choices will need to be explored as other appfication demands
are confronted. Some examples: "service-scoped" state, i.e.,
state that is implicitly shared between adaplets; services whose
scope transcends a matched stub-skeleton adaplets; other (e.g.,
synchronous) interactions between adaplets. We would like to
implement an adaplet-per-object instance policy as well. Cur-
rently, only run-time exceptions are supported for adaplets-- in
the Java mapping, better static checking would be desirable.
Implementation Limitations. Currently our implementation has
some limits. As outlined earlier, the marshaling needs further
optimization. The Portable Interceptor approach to trigger ad-
vice prevents the modification of invocation arguments or return
values; thus non-orthogonal [17] services that do affect these
values must be programmed with source or binary transforms.
We need to broaden our base to more languages . .NET is cur-
rently not supported, but it could be interesting. CLR [38] would
allow us to write adaplets for CLR applications in any CLR com-
pliant language.
Service interactions. Feature interactions are a difficult open
research issue that DADO services must deal with eventually.
We note here that it is currently possible to program interactions
between two DADO services: one can write a third service that
pointcuts adaplets in each, and responds to the triggering of both
by preventing one from running, changing argument values, re-

turn values etc. However, we do still not have enough experience
with this approach, and it remains future work.

In conclusion, DADO is an approach to programming cross-
cutting concerns in distributed heterogeneous systems based on
placing "adaplets" at the points where the application interacts
with the middleware. It supports heterogeneous implementation
and triggering of adaplets, allows client- and server- adaplets to
communicate in a type-checked environment using automated
marshaling, provides flexibifity in communication between ad-
aplets, allows flexible binding, and late deployment of adaplets
on to application objects. While much work remains to be done,
we befieve that the current version of DADO provides many fea-
tures of interest to the software engineering community. Source
code for Java using JacORB and C++ using TAO with MSVC++
is available on-line at http://fickshaw.cs.ucdavis.edu.

10. Acknowledgments

Eric Wohlstadter's and Stoney Jackson's work was supported
in part by a United States Department of Education Govern-
ment Assistance in Areas of National Need (DOE-GAANN)
grant #P200A980307 and also from the NSF 0204348. Premku-
mar Devanbu gratefully acknowledge support from the NSF ITR
Program, Grant No. 0085961. This material is also based in part
upon work sponsored by SPAWAR and the Defense Advanced
Research Projects Agency under Contract Number N66001-00-
8945. The content of the information does not necessarily reflect
the position or the policy of the Government and no official en-
dorsement should be inferred. We would also like to thanks the
anonymous reviewers for their detailed comments on our draft.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connec-
tion. ACM Transactions on Software Engineering and Methodol-
ogy, 6(3), 1997.

[2] B. Balzer. Transformational implementation: An example. IEEE
Transactions on Software Engineering, 7(1), 1981.

[3] G. Blair and R. Campbell, editors. Reflective Middleware, 2000.
[4] L. Capra, W. Emmefich, and C. Mascolo. Reflective middleware

solutions for context-aware applications. In International Confer-
ence on Metalevel Architectures and Separation of Crosscutting
Concerns (Reflection), 2001.

[5] W. Cazzola and M. Ancona. mChaRM: a reflective middleware
for communication-based reflection, technical report disi-tr-00-
09, disi, universit degli studi di genova, 2000.

[6] S. Chiba. A metaobject protocol for C ++. In Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
1995.

[7] S. Chiba. Load-time structural reflection in Java. In European
Conference on Object Oriented Programming, 2000.

[8] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An effi-
cient component model for the construction of adaptive middle-
ware. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Process-
ing (Middleware), 2001.

185

[9] Y. Coady, A. Brodsky, D. Brodsky, J. Pomkoski, S. Gudmund-
son, J. S. Ong, and G. Kiczales. Can AOP support extensibility
in client-server architectures? In Proceedings, ECOOP Aspect-
Oriented Programming Workshop, 2001.

[10] N. Coskun and R. Sessions. Class objects in SOM. IBM Personal
Systems Developer, Summer 1992.

[11] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Using off-the-
shelf middleware to implement connectors in distributed archi-
tectures. In International Conference on Software Engineering,
1999.

[12] S. Ducasse and T. Richner. Executable connectors: towards
reusable design elements. In Foundation of Software Engineer-
ing, 1997.

[13] F. Duclos, J. Estublier, and P. Morat. Describing and using non
functional aspects in component based applications. In Inter-
national Conference on Aspect-Oriented Software Development,
2002.

[14] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software
with generic software wrappers. In IEEE Symposium on Security
and Privacy, 1999.

[15] W. Harrison, H. Ossher, and P. Tarr. Symmetrically and assym-
metrically organized paradigms of program transformation. Un-
published manuscript, 2002.

[16] F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and
M. Steckerrneier. Aspectix: a quality-aware, object-based mid-
dleware architecture. In Proc. of the 3rd IFIP Int. Conf. on Dis-
trib. Appl. and Interoperable Sys., 2001.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In European Confer-
ence on Object Oriented Programming, 2001.

[18] F. Kon, M. Romfin, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes,
and R. H. Campbell. Monitoring, Security, and Dynamic Con-
figuration with the dynarnicTAO Reflective ORB. In IFIP/ACM
International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware), 2000.

[19] S. Liang, P. Hudak, and M. Jones. Monad transformers and mod-
ular interpreters. In Symposium on Principles of Programming
Languages, 1995.

[20] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
aspectual components. Technical Report NU-CCS-99-01, Col-
lege of Computer Science, Northeastern University, Boston, MA,
March 1999.

[21] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas,
and K. Anderson. QuO Aspect languages and their rnntime inte-
gration. In Proceedings of the Fourth Workshop on Languages,
Compilers and Runtime Systems for Scalable Components, 1998.

[22] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a tax-
onomy of software connectors. In International Conference on
Software engineering, 2000.

[23] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Sepa-
rating features in source code: An exploratory study. In Interna-
tional Conference on Software Engineering, 2001.

[24] P. Narasimhan, L. Moser, and P. Mellior-Smith. Using intercep-
tors to enhance CORBA. IEEE Computer, July 1999.

[25] Object Management Group. CORBA 3.0 Specification, 3.0 edi-
tion.

[26] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Jac: A flex-
ible framework for aop in java. In International Conference on
MetaleveI Architectures and Separation of Crosscutting Concerns
(Reflection), 2001.

[27] D.E. Perry and A. L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4),
1992.

[28] E Rivard. Smalltalk: a reflective language. In Proceedings, Re-
flection, 96.

[29] E. Roman, S. Ambler, and T. Jewell. Mastering Enterprise Jav-
aBeans. Wiley, 2001.

[30] T. Romer, G. V. D. Lee, A. Wolman, W. Wong, H. Levy, B. N.
Bershad, and J. B. Chen. Instrumentation and optimization of
Win32/Intel executables using etch. In Usenix Windows NT Work-
shop, 1997.

[31] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik. Abstractions for software architecture and tools to
support them. Software Engineering, 21(4), 1995.

[32] J. Siegel. CORBA 3 Fundamentals and Programming. Wiley
Press, 2000.

[33] Y. Smaragdakis and D. Batory. Implementing layered designs
with mixin layers. In European Conference on Object Oriented
Programming, 1998.

[34] T. S. Souder and S. Mancoridis. A tool for securely integrating
legacy systems into a distributed environment. In Working Con-
ference on Reverse Engineering, 1999.

[35] B. Spitznagel and D. Garlan. A compositional approach to con-
strutting connectors. In Working IEEE/IFIP Conference on Soft-
ware Architecture (WISCA), 2001.

[36] P. L. Tart, H. Ossher, W. H. Harrison, and S. M. S. Jr. N degrees
of separation: Multi-dimensional separation of concerns. In In-
ternational Conference on Software Engineering, 1999.

[37] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. Openjava:
A class-based macro system for java. In OOPSLA Workshop on
Reflection and Software Engineering, 1999.

[38] A. Troelsen. C#and the .NET Platform. Apress, 2001.
[39] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N. Jor-

gensen. Dynamic and selective combination of extensions in
component-based applications. In International Conference on
Software Engineering, 2001.

[40] R. Vanegas, J. Zinky, J. LoyaU, D. Karr, R. Schantz, and
D. Bakken. Quo's rnntime support for quality of service in dis-
tributed objects. In International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing (Middleware),
1998.

[41] R.J. Walker and G. C. Murphy. Implicit context: easing software
evolution and reuse. In Foundations of Software Engineering,
2000.

[42] N. Wang, K. Parameswaran, and D. Schmidt. The design and per-
formance of meta-programming mechanisms for object request
broker middleware. In Conference on Object-Oriented Technolo-
gies and Systems (COOTS), 2000.

[43] E. Wohlstadter. Crosscutting adaptation in distributed heteroge-
nous systems. Ph.D. thesis proposal, 2002.

[44] E. Wohlstadter, B. Toone, and P. Devanbu. A framework for flex-
ible evolution in distributed heterogeneous systems. In Interna-
tional Workshop on Principles of Software Evolution (4 pages),
2002.

186

