Graph Theory

Topics: notion of a graph, connectivity, complete and bipartite graphs, planar graphs and trees

Notion of a graph

1. A simple (undirected) graph $G=(V, E)$ consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

Two vertices u and v in a graph G are called adjacent in G if $\{u, v\}$ is an edge of G. The edge $e=\{u, v\}$ is called incident with the vertices u and v.
2. The degree of a vertex v, denoted $\operatorname{deg}(v)$, is the number of edges incident with it.
3. The handshaking theorem: Let $G=(V, E)$ be a graph with e edges. Then

$$
2 e=\sum_{v \in V} \operatorname{deg}(v) .
$$

Question: How many edges are there in a graph with 10 vertices each of degree 6 ?
4. A subgraph of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.
5. The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, denoted as $G_{1} \cup G_{2}$, is the simple graph with vertex set $V_{1} \cup V_{2}$ and edges $E_{1} \cup E_{2}$.
6. Representing graphs:

- By pictures
- Using adjacency lists.
- Using adjacency matrices: Suppose that a simple graph $G=(V, E)$ with n vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=\left(a_{i j}\right)$ is the $n \times n$ zero-one matrix, and the element $a_{i j}$ is defined as

$$
a_{i j}= \begin{cases}1 & \text { if }\left\{v_{i}, v_{j}\right\} \text { is an edge of } G, \\ 0 & \text { otherwise. }\end{cases}
$$

Note that A is symmetric.

- Using incidence matrices: Suppose that a simple graph $G=(V, E)$ with n vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and m edges $e_{1}, e_{2}, \ldots, e_{m}$. The incidence matrix is the $n \times m B=\left(b_{i j}\right)$, where

$$
b_{i j}= \begin{cases}1 & \text { when edge } e_{j} \text { is incident with } v_{i}, \\ 0 & \text { otherwise }\end{cases}
$$

7. The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one and onto function f from V_{1} to V_{2} with the property that a and b in G_{1} are adjacent if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function f is called an isomorphism.
In other words, when two simple graphs are isomorphic, there is one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.
8. Theorem: Simple graphs G_{1} and G_{2} are isomorphic if and only if for some orderings of their vertices, their adjacency matrices are equal.
9. It is generally difficult to determine whether two simple graphs are isomorphic. There are n ! possible one-to-one correspondences. However we can often show that two simple graphs are not isomorphic by showing that they do not share an invariant property that isomorphic simple graphs must both have, such as the same number of vertices, edges, and degrees.

Connectivity

10. A path of length n from v_{0} to v_{n} in a graph is an alternating sequence of $n+1$ vertices and n edges beginning with v_{0} and ending with v_{n} :

$$
\left(v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{n-1}, e_{n}, v_{n}\right)
$$

where the edge e_{i} is incident with v_{i-1} and v_{i}.
When the graph is simple, we denote this path by its vertex sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$.
11. The path is a circuit (or cycle) if it begins and ends at the same vertex.
12. A graph is called connected if there is a path between every pair of distinct vertices of the graph.
13. An Euler path in G is a path containing every edge of G exactly once.

An Euler circuit in G is a circuit containing every edge of G exactly once.
14. Theorem: a connected graph has an Euler circuit if and only if each of its vertices has even degree.
15. Example: use Euler paths and circuits to solve the graph puzzles that ask you to draw a picture in a continuous motion without lifting a pencil so that no parts of the pictures is retraced. e.g. Mohammed's Scimitars.
16. A Hamilton path in G is a path that containing every vertex of G exactly once.

A Hamilton circuit in G is a circuit that containing every vertex of G exactly once.
17. Example: Around-the-world puzzle (traveling salesperson problem): is there a simple circuit contains every vertex exactly once?
18. Amazing fact: there are no known reasonable algorithm to decide if a graph is Hamiltonian. (Most computer scientists believe that no such algorithm exists.)

Complete and bipartite graphs

19. Complete graph K_{n} : a simple graph that contains exactly one edge between each pair of distinct vertices.

Examples: K_{3}, K_{5}
20. Bipartite graph: a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint nonempty sets V_{1} and V_{2} such that every edge connects a vertex in V_{1} and a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}).
21. By a complete bipartite graph, denoted as $K_{m, n}$, we mean that each vertex of V_{1} is connected to each vertex of V_{2}.
Examples: $K_{2,3}$ and $K_{3,3}$.

Planar graphs

22. A graph is called planar if it can be drawn in the plane without any edges crossing. Such a drawing is called a planar representation of graph.
23. A pictural representation of a planar graph splits the plane into regions (faces), including an unbounded region.

Euler's formula: let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then

$$
r=e-v+2 .
$$

24. If a graph is planar, so will be any graph obtained by removing an edge $\{u, v\}$ and adding a new vertex $\{w\}$ together with edges $\{u, w\}$ and $\{w, v\}$. Such an operation called elementary subdivision.

Two graphs G_{1} and G_{2} are called homeomporhic if they can be obtained from the same graph by a sequence of elementary subdivisions.
25. Kuratowaski's Theorem. A graph is nonplanar if and only if it contains a subgraph homeomorphic to $K_{3,3}$ or K_{5}.
26. Theorem [Appel, Haken 1989]. Every planar graph is 4-coloable.

Trees

27. A tree is a connected graph with no simple circuits.
28. Theorem: A graph is a tree if and only if there is a unique simple path between any two of its vertices.
29. Let G be a graph with $n>1$ vertices. Then the followings are equivalent:
(a) G is a tree.
(b) G is a cycle-free and has $n-1$ edges
(c) G is connected and has $n-1$ edges.
