Integers and Integer Algorithms

1. If a and b are integers with $a \neq 0$, we say a divides b if there is an integer k such that $b=a k$. a is called a factor of b and b is a multiple of a.
Notation: $a \mid b$ when a divides b. $a \nless b$ when a does not divide b.
2. Examples: (a) $3 \mid 12$. (b) 3×7.
3. Theorem: Let a, b, c be integers, then

- if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
- if $a \mid b$, then $a \mid b c$ for all integers c
- if $a \mid b$ and $b \mid c$, then $a \mid c$

Proof: (do-it-yourself)
4. Theorem ("The Division Algorithm"): given integers $a, d>0$, there is a unique q and r, such that

$$
a=d \cdot q+r, \quad 0 \leq r<d .
$$

d is referred to as "divisor", q is "quotient" and r is "remainder".
5. Modular arithmetic: $a \bmod d=r=$ the remainder after dividing a by d.
6. Examples:
(a) $7 \bmod 3=1$, since $7=3 \cdot 2+1$. (b) $3 \bmod 7=3$, since $3=7 \cdot 0+3$
(c) $-133 \bmod 9=2$, since $-133=9 \cdot(-15)+2$. (Note: the remainder $r=a \bmod d$ cannot be negative. Consequently, in this example, the remainder is not -2 , even though $-11=3 \cdot(-3)-2$, because $r=-2$ does not satisfy $0 \leq r<3$.)
7. If a and b are integers, and m is a positive integer, then a is congruent to b modulo m if $m \mid(a-b)$. notation: $a \equiv b(\bmod m)$
8. Examples: (a) $17 \equiv 5(\bmod 6)$, (b) $24 \not \equiv 14(\bmod 6)$.
9. Mudular arithmetic: If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $(\mathrm{a}) a+c \equiv b+d(\bmod m)$.
$a c \equiv b d(\bmod m)$
10. A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p. e.g.: $2,3,5,7,11,13, \ldots$ are primes.
11. The Fundamental Theorem of Arithmetic ("prime factorization"): Every positive integer greater than 1 can be written uniquely as the product of primes, where the prime factors are written in order of increasing size.
For examples: (a) $100=2 \cdot 2 \cdot 5 \cdot 5=2^{2} \cdot 5^{2}$. (b) $999=3 \cdot 3 \cdot 3 \cdot 37=3^{3} \cdot 37$. (c) $1024=2^{10}$
12. Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor (gcd) of a and b. notation: $\operatorname{gcd}(a, b)=d$.
13. Examples:
(a) $\operatorname{gcd}(24,36)=12$, since the positive common divisors of 24 and 36 are $1,2,3,4,6,12$.
(b) $\operatorname{gcd}(17,22)=1$, since 17 is a prime. (c) $\operatorname{gcd}(1,123)=1(d) \operatorname{gcd}(0,321)=321$
14. If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime.
15. First algorithm for computing $\operatorname{gcd}(a, b)$:

1) compute the prime factorization $a=2^{n_{1}} 3^{n_{2}} 5^{n_{3}} \ldots$
2) compute the prime factorization $b=2^{m_{1}} 3^{m_{2}} 5^{m_{3}} \cdots$
3) $\operatorname{gcd}(a, b)=2^{\min \left\{n_{1}, m_{1}\right\}} 3^{\min \left\{n_{2}, m_{2}\right\}} 5^{\min \left\{n_{3}, m_{3}\right\}} \ldots$
16. Example: $120=2^{3} \cdot 3 \cdot 5$ and $500=2^{2} \cdot 5^{3}$
$\operatorname{gcd}(120,500)=2^{\min \{3,2\}} 3^{\min \{1,0\}} 5^{\min \{1,3\}}=2^{2} 3^{0} 5^{1}=20$
17. Theorem: Let $a=b q+r$, where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Proof: If we can show the following set identity:
$(*) \quad$ "the set of common divisors of a and $b "=$ "the set of common divisors of b and r "
Then we will have shown that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$, since both pairs must have the same greatest common divisor.
To show (*),

- let $d \mid a$ and $d \mid b$, then $d \mid b q$. It follows that then $d \mid a-b q$. Therefore $d \mid b$ and $d \mid r$.
- On the other hand, let $d \mid b$ and $d \mid r$, then $d \mid b q$. It follows that then $d \mid b q+r$. Therefore, $d \mid a$ and $d \mid b$.

18. Let $r_{0}=a$ and $r_{1}=b$. When we successively apply "The Division Algorithm", we obtain

$$
\begin{aligned}
a=r_{0} & =r_{1} \cdot q_{1}+r_{2}, & & 0 \leq r_{2}<r_{1}=b, \\
r_{1} & =r_{2} \cdot q_{2}+r_{3}, & & 0 \leq r_{3}<r_{2}, \\
& \vdots & & \\
r_{n-2} & =r_{n-1} \cdot q_{n-1}+r_{n}, & & 0 \leq r_{n}<r_{n-1}, \\
r_{n-1} & =r_{n} \cdot q_{n}+0 . & &
\end{aligned}
$$

Eventually, a remainder of zero must occur, since the sequence of remainders $a=r_{0}>r_{1}>r_{2}>$ $\cdots \geq 0$ cannot contain more than a terms. i.e. $n \leq a$, As a result, by the theorem, it follows that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

19. The Euclidean algorithm
```
procedure gcd(a,b: positive integers)
x := a
y := b
while y /= 0
    r := x mod y
        x := y
        y := r
end while
return x % x is the gcd(a,b)
```

20. Complexity: the number of divisions required by the Euclidean algorithm is $O(\log b)$, where $a \geq b>0$
