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Integers and Integer Algorithms

1. If a and b are integers with a 6= 0, we say a divides b if there is an integer k such that b = ak. a

is called a factor of b and b is a multiple of a.

Notation: a | b when a divides b. a 6 | b when a does not divide b.

2. Examples: (a) 3 | 12. (b) 3 6 | 7.

3. Theorem: Let a, b, c be integers, then

• if a | b and a | c, then a | (b + c)

• if a | b, then a | bc for all integers c

• if a | b and b | c, then a | c

Proof: .... (do-it-yourself)

4. Theorem (“The Division Algorithm”): given integers a, d > 0, there is a unique q and r, such
that

a = d · q + r, 0 ≤ r < d.

d is referred to as “divisor”, q is “quotient” and r is “remainder”.

5. Modular arithmetic: a mod d = r = the remainder after dividing a by d.

6. Examples:

(a) 7 mod 3 = 1, since 7 = 3 · 2 + 1. (b) 3 mod 7 = 3, since 3 = 7 · 0 + 3

(c) −133 mod 9 = 2, since −133 = 9 · (−15) + 2. (Note: the remainder r = a mod d cannot be
negative. Consequently, in this example, the remainder is not −2, even though −11 = 3 · (−3)−2,
because r = −2 does not satisfy 0 ≤ r < 3.)

7. If a and b are integers, and m is a positive integer, then a is congruent to b modulo m if m|(a− b).

notation: a ≡ b (mod m)

8. Examples: (a) 17 ≡ 5(mod 6), (b) 24 6≡ 14(mod 6).

9. Mudular arithmetic: If a ≡ b (mod m) and c ≡ d (mod m), then (a) a + c ≡ b + d (mod m). (b)
ac ≡ bd (mod m)

10. A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

e.g.: 2, 3, 5, 7, 11, 13, ... are primes.

11. The Fundamental Theorem of Arithmetic (“prime factorization”): Every positive integer greater
than 1 can be written uniquely as the product of primes, where the prime factors are written in
order of increasing size.

For examples: (a) 100 = 2 · 2 · 5 · 5 = 22 · 52. (b) 999 = 3 · 3 · 3 · 37 = 33 · 37. (c) 1024 = 210

12. Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called the
greatest common divisor (gcd) of a and b. notation: gcd(a, b) = d.

13. Examples:

(a) gcd(24, 36) = 12, since the positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, 12.

(b) gcd(17, 22) = 1, since 17 is a prime. (c) gcd(1, 123) = 1 (d) gcd(0, 321) = 321
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14. If gcd(a, b) = 1, then a and b are relatively prime.

15. First algorithm for computing gcd(a, b):

1) compute the prime factorization a = 2n13n25n3 · · ·

2) compute the prime factorization b = 2m13m25m3 · · ·

3) gcd(a, b) = 2min{n1,m1}3min{n2,m2}5min{n3,m3} · · ·

16. Example: 120 = 23 · 3 · 5 and 500 = 22 · 53

gcd(120, 500) = 2min{3,2}3min{1,0}5min{1,3} = 223051 = 20

17. Theorem: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof: If we can show the following set identity:

(*) “the set of common divisors of a and b” = “the set of common divisors of b and r”

Then we will have shown that gcd(a, b) = gcd(b, r), since both pairs must have the same greatest
common divisor.

To show (*),

• let d | a and d | b, then d | bq. It follows that then d | a − bq. Therefore d | b and d | r.

• On the other hand, let d | b and d | r, then d | bq. It follows that then d | bq + r. Therefore,
d | a and d | b. 3

18. Let r0 = a and r1 = b. When we successively apply “The Division Algorithm”, we obtain

a = r0 = r1 · q1 + r2, 0 ≤ r2 < r1 = b,

r1 = r2 · q2 + r3, 0 ≤ r3 < r2,

...

rn−2 = rn−1 · qn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = rn · qn + 0.

Eventually, a remainder of zero must occur, since the sequence of remainders a = r0 > r1 > r2 >

· · · ≥ 0 cannot contain more than a terms. i.e. n ≤ a, As a result, by the theorem, it follows that

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn

19. The Euclidean algorithm

procedure gcd(a,b: positive integers)

x := a

y := b

while y /= 0

r := x mod y

x := y

y := r

end while

return x % x is the gcd(a,b)

20. Complexity: the number of divisions required by the Euclidean algorithm is O(log b), where
a ≥ b > 0
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