1. Introduction
2. Combinations with Repetitions
2.1. For $M$ kinds of objects, the number of combinations of $r$ such objects is $\mathrm{C}(r+M-1, r)=\binom{r+M-1}{r}$

$$
=\mathrm{C}(r+M-1, M-1)=\binom{r+M-1}{M-1}=\frac{(r+M-1)!}{r!(M-1)!} .
$$

2.1.1. Such combinations with repetitions are called "multisets."
2.2. Example: How many 3 -combinations, with repetition allowed, can be selected from $\{1,2,3,4\}$.
2.2.1. List: $[\{1,1,1\} ;\{1,1,2\} ;\{1,1,3\} ;\{1,1,4\} ;\{1,2,2\} ;\{1,2,3\} ;\{1,2,4\} ;\{1,3,3\} ;\{1,3,4\} ;\{1,4$, $4\} ;\{2,2,2\} ;\{2,2,3\} ;\{2,2,4\} ;\{2,3,3\} ;\{2,3,4\} ;\{2,4,4\} ;\{3,3,3\} ;\{3,3,4\} ;\{3,4,4\} ;\{4,4$, 4\}] for 20 multisets.
2.2.2. Think of representing the combinations using three |'s to separate the different categories, and three $x$ 's indicating the choice. So $\{1,1,2\}$ would be " $x x|x| \mid$ ", $\{2,3,4\}$ would be " $|x| x \mid x$ ", and $\{3,3,4\}$ would be "||xx|x". So we must place three $x$ 's in any of six positions. Note that there are $M-1$ dividers, so the total places is $r+M-1$. The combinations of choosing 3 from six, $\binom{6}{3}=\frac{6!}{3!(6-3)!}=$ $\frac{6 * 5 * 4}{3 * 2}=20=C(r+M-1, r)$.
3. Ordered and Unordered Partitions
3.1. The number $m$ of ordered partitions of a set $S$ with $n$ elements into $r$ cells $\left[A_{1}, A_{2}, \ldots A_{r}\right]$ where for each $i, n\left(A_{i}\right)=n_{i}$, is: $m=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$
3.2. Example: Ten students needed to be placed in 3 rooms to take a test. The first room holds 2 students, the second holds 3 students, and obviously the last room holds 5 students. How many ways can the students be placed in the three rooms?
3.2.1. There are $\binom{10}{2}$ ways to fill the first room, which leaves $\binom{8}{3}$ ways to fill the second room, and $\binom{5}{5}=1$ ways to fill the last room. So, by the product rule we have $m=\binom{10}{2}\binom{8}{3}=\frac{10!}{2!8!} * \frac{8!}{3!5!}=\frac{10!}{2!3!5!}=\frac{10 * 9 * 8 * 7 * 6}{2 * 3 * 2}=10 *$ $9 * 4 * 7=2520$.
4. Inclusion-Exclusion Principle Revisited (skipped)
5. Pigeonhole Principle Revisited (skipped)
6. Recurrence Relations
6.1. A "recurrence relation" for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is an equation that relates each term $a_{n}$ to one or more of its predecessors in the sequence, namely, $a_{n-1}, a_{n-2}, \ldots, a_{n-i}$ where $i$ is an integer with $n-i \geq 0$.
6.1.1. For Fibonacci, $i=2$, since $a_{n}=a_{n-1}+a_{n-2}$
6.1.2. For compound interest, $i=1$, since $a_{n}=(1+$ interest $) a_{n-1}$
6.2. There may be many sequences that satisfy a recurrence relation, e.g. both $2,3,5,8 \ldots$ and $7,8,15,23,38 \ldots$ satisfy the Fibonacci recurrence relation.
6.3. The "initial conditions" for such a recurrence relation specify the values of $a_{0}, a_{1}, a_{2}, \ldots, a_{i-1}$, if $i$ is a fixed integer, or $a_{0}, a_{1}, a_{2}, \ldots, a_{m}$, where $m$ is an integer with $m \geq 0$, if $i$ depends on $n$.
6.3.1. A given set of initial conditions for a recurrence relation may specify a unique sequence.
6.4. A formula for $a_{n}$ in terms of $n$ and not of the previous terms, is called a "solution" of the recurrence relation.
6.4.1. Example: The sequence of Catalan numbers arise in a remarkable variety of different contexts of combinatorics. The solution to Catalan recurrence relation is $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ for $n \geq 1$
For example, $C_{n}$ is the number of different ways $n+1$ factors can be completely parenthesized (or the number of ways of associating $n$ applications of a binary operator). For $n=3, C_{n}=5$, and we have the following five different parenthesizations of four factors: $((a b) c) d,(a(b c)) d,(a b)(c d), a((b c) d), a(b(c d))$.
Show that the Catalan sequence satisfies the recurrence relation $F_{n}=\frac{4 n-2}{n+1} F_{n-1}$ for all $n \geq 2$.

We must first determine the initial condition for the recurrence relation. $C_{1}=\frac{1}{1+1}\binom{2}{1}=\frac{1}{2} * \frac{2}{1 * 1}=1$, so we will let $F_{1}=1$.
Now we will use induction to prove the assertion.
Basis step: $C_{2}=\frac{1}{2+1}\binom{2 * 2}{2}=\frac{1}{3} * \frac{4 * 3}{2}=2$, and $F_{2}=\frac{4 * 2-2}{2+1} * 1=\frac{6}{3}=2$, so $C_{2}=F_{2}$ which is what we needed to show for the basis step.
Inductive hypothesis: $C_{k}=F_{k}$, that is $\frac{1}{k+1}\binom{2 k}{k}=F_{k}$
We must show that $C_{k+1}=F_{k+1}$, that is $\frac{1}{(k+1)+1}\binom{2(k+1)}{k+1}=\frac{4(k+1)-2}{(k+1)+1} F_{k}$ by starting with the left side of the equation and showing that it is equal to the right side by using the inductive hypothesis.

| Assertion | Reason |
| :--- | :--- |
| $\frac{1}{(k+1)+1}\binom{2(k+1)}{k+1}$ | left side of inductive conclusion |
| $=\frac{1}{(k+1)+1} \frac{(2(k+1))!}{(k+1)!(k+1)!}$ | by the formula for $n$ choose $r$ |
| $=\frac{1}{(k+1)+1} \frac{2(k+1)(2 k+1) 2 k!}{(k+1) k!(k+1) k!}$ | by definition of factorial |
| $=\frac{1}{(k+1)+1} \frac{2(k+1)(2 k+1) k!}{(k+1)(k+1) k!k!}$ | by rearranging factors |
| $=\frac{1}{(k+1)+1} \frac{2(k+1)(2 k+1)}{k+1} \frac{1}{k+1}\binom{2 k}{k}$ | by the formula for $n$ choose $r$ |
| $=\frac{1}{(k+1)+1} \frac{2(k+1)(2 k+1)}{k+1} F_{k}$ | by the inductive hypothesis |
| $=\frac{2(2 k+1)}{((k+1)+1)} F_{k}$ | by collecting terms and cancelling a k+1 term |
| $=\frac{4(k+1)-2}{((k+1)+1)} F_{k}$ | by rearranging factors. QED |

## 7. Linear Recurrence Relations with Constant Coefficients

7.1. A recurrence relation of order k is a function of the form: $a_{n}=\Phi\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}, n\right)$
7.2. A "linear $\mathrm{k}^{\text {th }}$ order recurrence with constant coefficients" is a recurrence relation of the form:
$a_{n}=C_{1} a_{n-1}+C_{2} a_{n-2}+\ldots+C_{k} a_{n-k}+f(n)$ where $C_{1}, C_{2}, \ldots, C_{k}$ are constants with $C_{k} \neq 0$, and $f(n)$ is a function of $n$.
7.2.1. "Linear" $=$ There are no powers or products of the $a_{i}$ 's.
7.2.2. "Constant coefficients" $=$ The constants, $C_{1}, C_{2}, \ldots, C_{k}$ are constants, and not dependent on $n$.
7.2.3. "Homogenous" $=$ If $f(n)=0$.
7.3. We can solve for $a_{n}$, if given initial $k$ values of $a_{n-1}, a_{n-2}, \ldots, a_{n-k}$.
8. Solving Second-order Homogenous Linear Recurrence Relations
8.1. Theorem 6.8: Suppose the characteristic polynomial $\Delta(x)=x^{2}-s x-t$ of the second-order homogenous linear recurrence relation with constant coefficients: $a_{n}=s a_{n-1}+t a_{n-2}$, has distinct roots $r_{1}$ and $r_{2}$. Then the general solution of the recurrence relation follows, where $c_{1}$ and $c_{2}$ are arbitrary constants: $a_{n}=c_{1} r_{1}{ }^{n}+c_{2} r_{2}{ }^{n}$ with $c_{1}$ and $c_{2}$ computed from initial conditions.
8.2. The sequence for Example 6.10 in the book is incorrect it should be: 1, 2, 7, 20, 61, 182
8.3. Example \#1: Find the solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$ and $a_{1}=7$.
8.3.1. This is in the form $a_{n}=s a_{n-1}+t a_{n-2}$ where $s=1$ and $t=2$.
8.3.2. The characteristic equation is $\Delta(x)=x^{2}-s x-t=x^{2}-x-2=(x-2)(x+1)$, so the distinct roots are $r_{1}=2$, and $r_{2}=-1$.
8.3.3. From Theorem 6.8, the general form of the solution is $a_{n}=c_{1} r_{1}{ }^{n}+c_{2} r_{2}{ }^{n}=c_{1} 2^{n}+c_{2}(-1)^{n}$
8.3.4. From the initial conditions we have

$$
\begin{aligned}
& a_{0}=2=c_{1} 2^{0}+c_{2}(-1)^{0}=c_{1}+c_{2} \\
& a_{1}=7=c_{1} 2^{1}+c_{2}(-1)^{1}=2 c_{1}-c_{2}
\end{aligned}
$$

8.3.5. Solving using $c_{1}=2-c_{2}$ we have $a_{1}=7=2\left(2-c_{2}\right)-c_{2}=4-2 c_{2}-c_{2}=4-3 c_{2}$ so $3=-3 c_{2}$, and thus $c_{2}=-$ 1 , and $c_{1}=2-c_{2}=2-(-1)=3$
8.3.6. The solution of the recurrence relation is $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}=3 * 2^{n}-(-1)^{n}$
8.4. Example \#2: Find the solution for $f_{n}=f_{n-1}+f_{n-2}$, with the initial conditions $f_{0}=0$, and $f_{1}=1$. Fibonacci
8.4.1. This is in the form $a_{n}=s a_{n-1}+t a_{n-2}$ where $s=1$ and $t=1$.
8.4.2. The characteristic equation is $\Delta(x)=x^{2}-s x-t=x^{2}-x-1$, from the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ we have $r_{1}=\frac{1+\sqrt{5}}{2}$, and $r_{2}=\frac{1-\sqrt{5}}{2}$
From Theorem 6.8, the general form of the solution is $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
8.4.3. From the initial conditions we have

$$
\begin{aligned}
& f_{0}=0=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{0}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{0}=c_{1}+c_{2} \\
& f_{1}=1=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{1}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{1}
\end{aligned}
$$

8.4.4. Solving using $c_{1}=-c_{2}$, we have $f_{1}=1=-c_{2}\left(\frac{1+\sqrt{5}}{2}\right)+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)=c_{2}\left(\frac{-1-\sqrt{5}+(1-\sqrt{5})}{2}\right)=c_{2}\left(\frac{-2 \sqrt{5}}{2}\right)=-c_{2} \sqrt{5}$, so $c_{2}=\frac{-1}{\sqrt{5}}$ and $c_{1}=\frac{1}{\sqrt{5}}$
8.4.5. The solution for the Fibonacci recurrence is $f_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}{ }^{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
8.5. Solutions when Roots of the Characteristic Polynomial are Equal, Theorem 6.9: Suppose the characteristic polynomial $\Delta(x)=x^{2}-s x-t$ of the second-order homogenous linear recurrence relation with constant coefficients: $a_{n}=s a_{n-1}+t a_{n-2}$, has only one root $r_{0}$. Then the general solution of the recurrence relation follows, where $\mathrm{c}_{1}$ and $\mathrm{c}_{2}$ are arbitrary constants: $a_{n}=c_{1} r_{0}{ }^{n}+c_{2} n r_{0}{ }^{n}$ with $c_{1}$ and $c_{2}$ computed from initial conditions.
8.6. Example \#3: Find the solution for the recurrence $a_{n}=6 a_{n-1}-9 a_{n-2}$ with the initial conditions $a_{0}=1$, and $a 1=6$.
8.6.1. This is in the form $a_{n}=s a_{n-1}+t a_{n-2}$ where $s=6$ and $t=9$.
8.6.2. The characteristic equation is $\Delta(x)=x^{2}-s x-t=x^{2}-6 x-9=(x-3)^{2}$, so there is only one root, $r_{0}=3$.
8.6.3. From Theorem 6.9, the general form of the solution is $a_{n}=c_{1} r_{0}{ }^{n}+c_{2} n r_{0}{ }^{n}=c_{1} 3^{n}+c_{2} n 3^{n}$
8.6.4. From the initial conditions we have

$$
\begin{aligned}
& a_{0}=1=c_{1} 3^{0}+c_{2} * 0^{*}(3)^{0}=c_{1} \\
& a_{1}=6=c_{1} 3^{1}+c_{2} * 1^{*}(3)^{1}=3 c_{1}+3 c_{2}
\end{aligned}
$$

8.6.5. From $a_{0}$ we know $c_{1}=1$, so $a_{1}=6=3+3 c_{2}$, thus $3=3 c_{2}$, and $1=c_{2}$
8.6.6. The solution for the recurrence is $a_{n}=c_{1} r_{0}^{n}+c_{2} n r_{0}^{n}=1 * 3^{n}+1 * n 3^{n}=(1+n) 3^{n}$
9. Solving General Homogeneous Linear Recurrence Relations (skipped)

