
ECS 20 Chapter 6, Advanced Counting Techniques, Recursion  
 
1. Introduction 
2. Combinations with Repetitions 

2.1. For M kinds of objects, the number of combinations of r such objects is C(r + M – 1, r) =�𝑟 + 𝑀 − 1
𝑟 �  

= C(r + M – 1, M – 1) =  �𝑟 +𝑀 − 1
𝑀− 1 � = (𝑟+𝑀−1)!

𝑟!(𝑀−1)!
. 

2.1.1. Such combinations with repetitions are called “multisets.” 
2.2. Example: How many 3-combinations, with repetition allowed, can be selected from {1, 2, 3, 4}. 
2.2.1. List: [{1, 1, 1}; {1, 1, 2}; {1, 1, 3}; {1, 1, 4}; {1, 2, 2}; {1, 2, 3}; {1, 2, 4}; {1, 3, 3}; {1, 3, 4}; {1, 4, 

4}; {2, 2, 2}; {2, 2, 3}; {2, 2, 4}; {2, 3, 3}; {2, 3, 4}; {2, 4, 4}; {3, 3, 3}; {3, 3, 4}; {3, 4, 4}; {4, 4, 
4}] for 20 multisets. 

2.2.2. Think of representing the combinations using three |’s to separate the different categories, and three 
x’s indicating the choice.  So {1, 1, 2} would be “xx|x||”, {2, 3, 4} would be “|x|x|x”, and {3, 3, 4} 
would be “||xx|x”.  So we must place three x’s in any of six positions.  Note that there are M – 1 

dividers, so the total places is r + M – 1. The combinations of choosing 3 from six, �6
3� = 6!

3!(6−3)!
=

6∗5∗4
3∗2

= 20 = 𝐶(𝑟 + 𝑀 − 1, 𝑟). 
3. Ordered and Unordered Partitions 

3.1. The number m of ordered partitions of a set S with n elements into r cells [A1, A2,…Ar] where for each i, n(Ai) = ni, 
is: 𝑚 = 𝑛!

𝑛1!𝑛2!…𝑛𝑟!
 

3.2. Example: Ten students needed to be placed in 3 rooms to take a test.  The first room holds 2 students, the second 
holds 3 students, and obviously the last room holds 5 students.  How many ways can the students be placed in the 
three rooms? 

3.2.1. There are �10
2 � ways to fill the first room, which leaves �8

3� ways to fill the second room, and �5
5� = 1 ways 

to fill the last room.  So, by the product rule we have 𝑚 = �10
2 � �

8
3� = 10!

2!8!
∗ 8!
3!5!

= 10!
2!3!5!

= 10∗9∗8∗7∗6
2∗3∗2

= 10 ∗

9 ∗ 4 ∗ 7 = 2520. 
4. Inclusion-Exclusion Principle Revisited (skipped) 
5. Pigeonhole Principle Revisited (skipped) 
6. Recurrence Relations 

6.1. A “recurrence relation” for a sequence a0, a1, a2, … is an equation that relates each term an to one or more of its 
predecessors in the sequence, namely, an-1,an-2, …, an-i where i is an integer with n – i ≥ 0.   

6.1.1. For Fibonacci, i = 2, since an = an-1 + an-2 
6.1.2. For compound interest, i = 1, since an = (1 + interest)an-1 

6.2. There may be many sequences that satisfy a recurrence relation, e.g. both 2, 3, 5, 8… and 7, 8, 15, 23, 38… satisfy 
the Fibonacci recurrence relation. 

6.3. The “initial conditions” for such a recurrence relation specify the values of a0, a1, a2, …, ai-1, if i is a fixed integer, 
or a0, a1, a2, …, am, where m is an integer with m ≥ 0, if i depends on n.   

6.3.1. A given set of initial conditions for a recurrence relation may specify a unique sequence. 
6.4. A formula for an in terms of n and not of the previous terms, is called a “solution” of the recurrence relation. 

6.4.1. Example: The sequence of Catalan numbers arise in a remarkable variety of different contexts of 
combinatorics.  The solution to Catalan recurrence relation is 𝐶𝑛 = 1

𝑛+1
�2𝑛
𝑛 � for n ≥ 1 

For example, Cn is the number of different ways n +1 factors can be completely parenthesized (or the number of 
ways of associating n applications of a binary operator).  For n = 3, Cn = 5, and we have the following five 
different parenthesizations of four factors: ((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).   
Show that the Catalan sequence satisfies the recurrence relation 𝐹𝑛 = 4𝑛−2

𝑛+1
𝐹𝑛−1 for all n ≥ 2. 



We must first determine the initial condition for the recurrence relation.  𝐶1 = 1
1+1

�2
1� = 1

2
∗ 2
1∗1

= 1, so we will 
let F1 = 1. 
Now we will use induction to prove the assertion. 
Basis step: 𝐶2 = 1

2+1
�2 ∗ 2

2 � = 1
3
∗ 4∗3

2
= 2, and 𝐹2 = 4∗2−2

2+1
∗ 1 = 6

3
= 2, so C2 = F2 which is what we needed to 

show for the basis step. 
Inductive hypothesis: 𝐶𝑘 = 𝐹𝑘 , 𝑡ℎ𝑎𝑡 𝑖𝑠 1

𝑘+1
�2𝑘
𝑘 � = 𝐹𝑘 

We must show that 𝐶𝑘+1 = 𝐹𝑘+1, 𝑡ℎ𝑎𝑡 𝑖𝑠 1
(𝑘+1)+1

�2(𝑘 + 1)
𝑘 + 1

� = 4(𝑘+1)−2
(𝑘+1)+1

𝐹𝑘 by starting with the left side of the 
equation and showing that it is equal to the right side by using the inductive hypothesis. 
 
Assertion Reason 

1
(𝑘+1)+1

�2(𝑘 + 1)
𝑘 + 1

�  left side of inductive conclusion 

= 1
(𝑘+1)+1

�2(𝑘+1)�!
(𝑘+1)!(𝑘+1)!

 by the formula for n choose r 

= 1
(𝑘+1)+1

2(𝑘+1)(2𝑘+1)2𝑘!
(𝑘+1)𝑘!(𝑘+1)𝑘!

 by definition of factorial 

= 1
(𝑘+1)+1

2(𝑘+1)(2𝑘+1)2𝑘!
(𝑘+1)(𝑘+1)𝑘!𝑘!

 by rearranging factors 

= 1
(𝑘+1)+1

2(𝑘+1)(2𝑘+1)
𝑘+1

1
𝑘+1

�2𝑘
𝑘 �  by the formula for n choose r 

= 1
(𝑘+1)+1

2(𝑘+1)(2𝑘+1)
𝑘+1

𝐹𝑘  by the inductive hypothesis 

= 2(2𝑘+1)
�(𝑘+1)+1�

𝐹𝑘  by collecting terms and cancelling a k+1 term 

= 4(𝑘+1)−2
�(𝑘+1)+1�

𝐹𝑘  by rearranging factors. QED 

 
7. Linear Recurrence Relations with Constant Coefficients 

7.1. A recurrence relation of order k is a function of the form: an = Φ(an-1, an-2, …, an-k, n) 
7.2. A “linear kth order recurrence with constant coefficients” is a recurrence relation of the form: 

an = C1an-1 + C2an-2 + … + Ckan-k + f(n) where C1, C2, …, Ck are constants with Ck ≠ 0, and f(n) is a function of n. 
7.2.1. “Linear” = There are no powers or products of the ai’s. 
7.2.2. “Constant coefficients” = The constants, C1, C2, …, Ck are constants, and not dependent on n. 
7.2.3. “Homogenous” = If f(n) = 0. 

7.3. We can solve for an, if given initial k values of an-1, an-2, …, an-k. 
8. Solving Second-order Homogenous Linear Recurrence Relations 

8.1. Theorem 6.8:  Suppose the characteristic polynomial ∆(x) = x2 – sx – t of the second-order homogenous linear 
recurrence relation with constant coefficients: an = san-1 + tan-2, has distinct roots r1 and r2.  Then the general 
solution of the recurrence relation follows, where c1 and c2 are arbitrary constants: an = c1r1

n
 + c2r2

n
 with c1 and c2 

computed from initial conditions. 
8.2. The sequence for Example 6.10 in the book is incorrect it should be: 1, 2, 7, 20, 61, 182 
8.3. Example #1: Find the solution for an = an-1 + 2an-2 with a0 = 2 and a1 = 7. 

8.3.1. This is in the form an = san-1 + tan-2 where s = 1 and t = 2. 
8.3.2. The characteristic equation is ∆(x) = x2 – sx – t =  x2 – x – 2 = (x - 2)(x + 1), so the distinct roots are r1 = 2, 

and r2 = -1. 
8.3.3. From Theorem 6.8, the general form of the solution is an = c1r1

n
 + c2r2

n = c12n
 + c2(-1)n 

8.3.4. From the initial conditions we have  
a0 = 2 = c120

 + c2(-1)0 = c1 +c2 
a1 = 7 = c121 + c2(-1)1 = 2c1 – c2 

8.3.5. Solving using c1 = 2 – c2 we have a1 = 7 = 2(2 – c2) – c2 = 4 – 2c2 – c2 =  4 – 3c2 so 3 = -3c2, and thus c2 = -
1, and c1 = 2 – c2 = 2 – (-1) = 3 

8.3.6. The solution of the recurrence relation is an = c1r1
n
 + c2r2

n
  = 3*2n – (-1)n 



8.4. Example #2: Find the solution for fn = fn-1 + fn-2, with the initial conditions f0 = 0, and f1 = 1.  Fibonacci 
8.4.1. This is in the form an = san-1 + tan-2 where s = 1 and t = 1. 
8.4.2. The characteristic equation is ∆(x) = x2 – sx – t = x2 – x – 1, from the quadratic formula  

𝑥 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎

 we have r1 = 1+√5
2

, and r2 = 1−√5
2

  

From Theorem 6.8, the general form of the solution is an = c1r1
n

 + c2r2
n = c1(

1+√5
2

)n
 + c2(

1−√5
2

)n 
8.4.3. From the initial conditions we have  

f0 = 0 = c1(
1+√5
2

)0
 + c2(

1−√5
2

)0  = c1 +c2 

f1 = 1 = c1(
1+√5
2

)1
 + c2(

1−√5
2

)1  

8.4.4. Solving using c1 = -c2,  we have f1 = 1 = -c2�
1+√5
2
� + c2(

1−√5
2

)= c2(
−1−√5+�1−√5�

2
)= c2(

−2√5
2

)=-c2√5, so c2=
−1
√5

 

and c1= 1
√5

 

8.4.5. The solution for the Fibonacci recurrence is fn = c1r1
n

 + c2r2
n

  = 1
√5

(1+√5
2

)n
 - 

1
√5

(1−√5
2

)n 

8.5. Solutions when Roots of the Characteristic Polynomial are Equal, Theorem 6.9:  Suppose the characteristic 
polynomial ∆(x) = x2 – sx – t of the second-order homogenous linear recurrence relation with constant 
coefficients: an = san-1 + tan-2, has only one root r0.  Then the general solution of the recurrence relation follows, 
where c1 and c2 are arbitrary constants: an = c1r0

n
 + c2nr0

n
 with c1 and c2 computed from initial conditions. 

8.6. Example #3: Find the solution for the recurrence an = 6an-1 – 9an-2 with the initial conditions a0 = 1, and a1 = 6. 
8.6.1. This is in the form an = san-1 + tan-2 where s = 6 and t = 9. 
8.6.2. The characteristic equation is ∆(x) = x2 – sx – t =  x2 –6x – 9 = (x - 3)2, so there is only one root, r0 = 3. 

8.6.3. From Theorem 6.9, the general form of the solution is an = c1r0
n

 + c2nr0
n = c13n

 + c2n3n 
8.6.4. From the initial conditions we have  

a0 = 1 = c130
 + c2*0*(3)0 = c1 

a1 = 6 = c131 + c2 *1*(3)1 = 3c1 + 3c2 
8.6.5. From a0 we know c1 = 1, so a1 = 6 = 3 + 3c2, thus 3 = 3c2, and 1 = c2 
8.6.6. The solution for the recurrence is an = c1r0

n
 + c2nr0

n = 1*3n
 + 1*n3n = (1 + n)3n 

9. Solving General Homogeneous Linear Recurrence Relations (skipped) 


