ECS 20 Chapter 6, Advanced Counting Techniques, Recursion

1. Introduction
2. Combinations with Repetitions

2.1. For M kinds of objects, the number of combinations of r such objects is C(r + M -1, r) =(r + ]:[ B 1)

_ _ (T + M =1\ _ (r+M-1)!
—C(r+M—1,M—1)—( M-1 )_r!(M—l)!'

2.1.1. Such combinations with repetitions are called “multisets.”

2.2. Example: How many 3-combinations, with repetition allowed, can be selected from {1, 2, 3, 4}.

221 List: [{1, 1,1} {1, 1,2}, {1, 1, 3}; {1, 1, 4}; {1, 2, 2}; {1, 2, 3}; {1, 2, 4}; {1, 3, 3}; {1, 3, 4}; {1, 4,
4}:42,2,2},{2,2,3},{2,2,4},{2,3,3};{2,3, 4}, {2, 4,4}, {3,3,3}; {3, 3,4}, {3, 4, 4}; {4, 4,
4%}] for 20 multisets.

2.2.2. Think of representing the combinations using three |’s to separate the different categories, and three
x’s indicating the choice. So {1, 1, 2} would be “xx|x||”, {2, 3, 4} would be “|x|x|x”, and {3, 3, 4}
would be “||xx|x”. So we must place three x’s in any of six positions. Note that there are M — 1

dividers, so the total places is r + M — 1. The combinations of choosing 3 from six, (g) = 3'(6613)| =

Sl =20=Cr+M-17).

3. Ordered and Unordered Partitions

3.1. The number m of ordered partitions of a set S with n elements into r cells [A;, A,,...A/] where for each i, n(A) = n;,
. n!
issm =

nqyinyl.ng!
3.2. Example: Ten students needed to be placed in 3 rooms to take a test. The first room holds 2 students, the second

holds 3 students, and obviously the last room holds 5 students. How many ways can the students be placed in the
three rooms?

3.2.1. There are (120

; _ (10 (8\ _ 10! 8 _ 10! _ 10x9+8x7x6 _
to fill the last room. So, by the product rule we have m = ( 9 ) (3) = Tm T aE s s = 10 *
9x4x7=2520.

4. Inclusion-Exclusion Principle Revisited (skipped)
5. Pigeonhole Principle Revisited (skipped)
6. Recurrence Relations
6.1. A “recurrence relation” for a sequence ay, ay, a», ... is an equation that relates each term a, to one or more of its
predecessors in the sequence, namely, a,.1,an.2, ..., @ Where i is an integer with n—i > 0.
6.1.1. For Fibonacci, i = 2, since a, = a1 + an2
6.1.2. For compound interest, i = 1, since a, = (1 + interest)a,;

6.2. There may be many sequences that satisfy a recurrence relation, e.g. both 2, 3, 5, 8... and 7, 8, 15, 23, 38... satisfy
the Fibonacci recurrence relation.

6.3. The “initial conditions” for such a recurrence relation specify the values of ay, ai, a,, ..., a1, if i is a fixed integer,
or ag, ai, ay, ..., am, Where m is an integer with m > 0, if i depends on n.
6.3.1. A given set of initial conditions for a recurrence relation may specify a unique sequence.
6.4. A formula for a, in terms of n and not of the previous terms, is called a “solution” of the recurrence relation.
6.4.1. Example: The sequence of Catalan numbers arise in a remarkable variety of different contexts of

. . . . . 1
combinatorics. The solution to Catalan recurrence relation is C,, = — (27?) forn>1

) ways to fill the first room, which leaves (2) ways to fill the second room, and (g) = 1 ways

For example, C, is the number of different ways n +1 factors can be completely parenthesized (or the number of
ways of associating n applications of a binary operator). For n =3, C, =5, and we have the following five
different parenthesizations of four factors: ((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).

Show that the Catalan sequence satisfies the recurrence relation E, = %Fn_l foralln> 2.



We must first determine the initial condition for the recurrence relation. ¢; = - (2) =1.2 = 1, so we will

1+1\1 2 1x1
letF,=1.
Now we will use induction to prove the assertion.
Basis step: C, = i(z X 2) =128 2,and F, = 22 1=2= 2, 50 C, = F, which is what we needed to
241\ 2 3 2 2+1 3

show for the basis step.

. N .1 2k _
Inductive hypothesis: C;, = F, that is m( A ) =F
_ . 1 2(k + 1)\ _ 4k+1)-2 . . .
We must show that Cy.; = Fy4q, that is (k+1)+1( e+ 1 ) = rDr1 F,, by starting with the left side of the

equation and showing that it is equal to the right side by using the inductive hypothesis.

Assertion Reason
1 (Z(k + 1)) left side of inductive conclusion
(k+D)+1\ k41
_ 1 (2(k+1))! by the formula for n choose r
(k+1)+1 (k+1D)!(k+1)!
—_ 1 2(k+1)(2k+1)2k! by definition of factorial
(k+1D)+1 (k+Dk!(k+1D)k!
__ 1 2(k+1)(2k+1)2k! by rearranging factors
(k+1D)+1 (k+1)(k+1Dk!lk!
__ 1 2(k+1)(2k+1)i(2k) by the formula for n choose r
(k+1)+1 k+1 k+1\ k
— 1 2(k+D@k41) o by the inductive hypothesis
- k
(k+1)+1 k+1
_ _2Q@k+1) by collecting terms and cancelling a k+1 term
((k+1)+1) K
_ Ak+1)-2 by rearranging factors. QED
(k+D)+1) " *

7. Linear Recurrence Relations with Constant Coefficients
7.1. A recurrence relation of order k is a function of the form: a, = ®@(a,.1, ana, ..., @nk, N)
7.2. A “linear k™ order recurrence with constant coefficients” is a recurrence relation of the form:
a, = Cian 1 + Coan, + ... + Cyanyg + f(n) where Cy, C,, ..., Cy are constants with Cy # 0, and f(n) is a function of n.
7.2.1. “Linear” = There are no powers or products of the a;’s.
7.2.2. “Constant coefficients” = The constants, Cy, C, ..., Cy are constants, and not dependent on n.
7.2.3. “Homogenous” = If f(n) = 0.
7.3. We can solve for a,, if given initial k values of a4, an2, ..., @nx.
8. Solving Second-order Homogenous Linear Recurrence Relations
8.1. Theorem 6.8: Suppose the characteristic polynomial A(x) = x? — sx — t of the second-order homogenous linear
recurrence relation with constant coefficients: a, = sa,; + ta,,, has distinct roots r; and r,. Then the general
solution of the recurrence relation follows, where ¢; and ¢, are arbitrary constants: a, = ¢;r;," + c,r," with ¢; and ¢,
computed from initial conditions.
8.2. The sequence for Example 6.10 in the book is incorrect it should be: 1, 2, 7, 20, 61, 182
8.3. Example #1: Find the solution for a, = a1 + 2a,, witha; =2 and a; = 7.
8.3.1. Thisis in the form a, = sa,.; + ta,o, wheres=1and t = 2.
8.3.2. The characteristic equation isA(X) = X* —sx —t = x> —x -2 = (x - 2)(x + 1), so the distinct roots are r, = 2,
and r, = -1.
8.3.3. From Theorem 6.8, the general form of the solution is a, = ¢yry" + C,r," = ¢12" + ¢(-1)"
8.3.4. From the initial conditions we have
a=2 = 2°+ cy(-1)° = ¢; +C,
a=7=c2' +cy(-1)' =2¢, - ¢,
8.3.5. Solving usingc, =2-c,wehavea; =7=2(2-¢;)—-¢c; =4-2¢,—C, = 4-3¢,50 3 =-3Cy, and thus ¢, = -
l,andc;=2-¢,=2-(-1)=3
8.3.6. The solution of the recurrence relation is a, = cir;" + cr," = 3*%2" — (-1)"



8.4. Example #2: Find the solution for f, = f,; + f,,, with the initial conditions f, = 0, and f; = 1. Fibonacci

8.4.1. Thisis in the form a, = sa,; + ta,o, wheres=1and t = 1.
8.4.2. The characteristic equation is A(X) = x* — sx —t = x* — x — 1, from the quadratic formula

—b+Vb%-4ac 1+ 1-

== 27T \we have 1y = ‘/_ candr, = 18
2a 2

14+v/5n

From Theorem 6.8, the general form of the solution is a, = ¢ir;" + c,r," = ¢;(

1—/5\n
)+ Go(0)
8.4.3. From the initial conditions we have

fo— = C1(1+\/_) +C ( ) =C, +C,

fi=1 —q€”3+c< 2!

8.4.4. Solving using ¢; = -C,, we have f; =1 = -cz(“‘/_) + ¢yt ‘/_)z cz(_l_ﬁz(l_ﬁ))z cz(_zz‘/g)z-czx/g, SO czz:/—é

_ 1

and ¢;= NG
. . . P n 1+V/5\n 1 ,1—V5

8.4.5. The solution for the Fibonacci recurrence is f, = cir;" + c,r," \/_( ) \/‘(T)

8.5. Solutions when Roots of the Characteristic Polynomial are Equal, Theorem 6.9: Suppose the characteristic
polynomial A(x) = x? — sx —t of the second-order homogenous linear recurrence relation with constant
coefficients: a, = sa,.; + ta,.,, has only one root rp. Then the general solution of the recurrence relation follows,
where ¢; and ¢, are arbitrary constants: a, = ¢;r" + c,nry" with ¢; and ¢, computed from initial conditions.

8.6. Example #3: Find the solution for the recurrence a, = 6a,.; — 9a,., with the initial conditions a, = 1, and al = 6.

8.6.1. Thisis in the form a, = sa,.; + ta,, wheres=6and t=9.
8.6.2. The characteristic equation is A(X) = X* —sx —t = x* —6x — 9 = (x - 3)%, so there is only one root, ro = 3.
8.6.3. From Theorem 6.9, the general form of the solution is a, = csry" + conry" = ¢,3" + ¢,n3"
8.6.4. From the initial conditions we have
ay=1=¢,3"+c,*0*(3)° = ¢,
a; = 6 =¢,3" + ¢, *1*(3)" = 3¢, + 3¢,
8.6.5. From ag we know c; =1,s0a; =6 =3 + 3c,, thus3=3c,, and 1 = ¢,
8.6.6. The solution for the recurrence is a, = Ciro" + conry” = 1*3"+ 1*n3" =
9. Solving General Homogeneous Linear Recurrence Relations (skipped)

1+ n)3"



