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History

Kaufmann, 1970s

Studied organization and dynamics properties of
(N,k) Boolean Networks

Found out that highly connected networks behave
differently than lowly connected ones

Similarity with biological systems: they are
usually lowly connected

We study Boolean Networks as a model that
yields interesting complexity of organization and
leave out the philosophical context
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Boolean Networks

Boolean network: a graph G(V,E), annotated with a set of
states X={x. | i=1,...,n}, together Wiqg a set of Boolean
functions B={b, | i=1,...,k}, bi :{0,1} —{0,1].

Gate: Each node, v, has associated to it a function , with inputs
the states of the nodes connected to v..

Dynamics: The state of node v, at time t 1s denoted as x.(t).
Then, the state of that node at time t+1 1s given by:
xi(t + 1) = bi(Xxit, Xizyeo, Xix)

where x;; are the states of the nodes connected to v;.
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General Properties of BN:

* Fixed Topology (doesn’t change with time)
e Dynamic

e Synchronous

e Node States: Deterministic, discrete (binary)
e Gate Function: Boolean

e Flow: Information

What kind of properties do they exhibit?
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Boolean Functions

True, False: 1,0
Boolean Variables: x can be true or false
Logical Operators: and, or, not

Boolean Functions: k input Boolean
variables, connected by logical operators, 1
output Boolean value

Total number, B, of Boolean functions of k
variables: 225 (k =1, B=4; k=2, B=16; etc.)
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Wiring Diagrams and Truth

Tables

time t
A B C
fA(B) =B Q
fB(A, C) =AandC A’ Ba C,
f c (A)=notA time t+1

Boolean Network ~ Wiring Diagram

State | INPUT OUTPUT
A B C|A” B C
1 0O 0 0j0 0 1
2 0O 0 1j0 0 1
3 O 1 O0j1 0 1
4 O 1 1|1 0 1
5 I 0 0|0 O O
6 I 0 110 1 O
7 I 1 0|1 0 O
8 I 1 1}j1 1 O

Truth Table
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Reverse Engineering of BN's

e Fitting the data: given observations of the states of
the BN, find the truth table

e In general, many networks will be found

e Available algorithms:
— Akutsu et al.
— Liang et al. (REVEAL)

A, UCD WQO3




Fitting the Data

e The black box model: m (input, output) pairs

e Each pair 1s the observations of the states of
a system before and after a transitions

 The states are 0,1
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Formal Problem

An example 1s a pair of observations (1, 0;).

A node 1s_consistent with an example, if there 1s a
Boolean function such that O;=f([)

A BN 1s consistent with (7, 0,) it all nodes are
consistent with that example. Similarly, a BN 1s
consistent with EX={(1,,0,),...,(I ,0, )} 1t it 1s
consistent with each example

Problem: Given EX, n the number of nodes in

the network, and k (constant) the max indegree
of a node, find a BN consistent with the data.




AlgOrlthm (Akutsu et al, 1999)

The following algorithm is for the case of k=2, for
illustration purposes. It can easily be extended to
cases where k>2

* For each node v,

— For each pair of nodes v, and v, and

e For each Boolean function f of 2 variables (16 poss.)

— Check it Qy(v)=f(1(vy),1}(v},)) holds for all j
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Analysis of the Algorithm

Correctness: Exhaustive

Time: Examine all Boolean functions of 2
inputs, for all node trlplets and all examples

O(2- 2% - m)

For k inputs ( k 1n front 1s the 2 above, time
to access the k input observations)

Ok-2% -n*" - m)

This 1s polynomial in n, 1f k 1s constant.
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Better Algorithms?

 If indegree 1s fixed to at most k,

— the best known deterministic algorithms run in
O(mn*) time
— Randomized: O(m"“-2n*+mn**+»-3), where w is

the exponent in matrix multiplication, currently
w<2.376 (Akutsu et al., 2000)

e If indegree is close to n, the problem 1s NP-
complete (Akutsu et al., 2000)

A, UCD WQO3




Data Requirement

How many examples (I1,0) do we need to
reconstruct a Boolean Network?

If indegree unbounded 2"

If indegree<k, information theoretic aruments
yield the following bounds:

— Upper bound OQ2** - (2k+ @) -logn)

— Lower bound (2" +Klogn)

Experiments show that the constant in front of the
log n is somewhere in between, i.e. k2*
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Boolean Network Dynamics
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Nodes, States, Transitions,...

e States: Values of all variables at given time

e Values updated synchronously

e Input — Output State | INPUT OUTPUT
ABC [ABC

1 00 0 |0 0 1

2 00 1 |0 0 1

3 01 0 |1 0 1

4 0 1 1 |1 0 1

5 1 0 0 [0 0 0

6 1 0 1 [0 1 0

7 I 1 0 [1 0 0

3 I 1 1 [1 1 0

Ex. (100 = 000 — 001 — 001 ...)




Trajectories:

series of state
transitions

Attractors:
repeating
trajectories

Basin of

Attraction: all
states leading
to an attractor

BN Dynamics

'ﬁairsf::-
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// states m"mf;“'

V'@

- Al attractor state
shown in detail

transient tree
and sub—trees

One attractor basin for a BN n=13, k=3. The cycle 1s of size 7

Wuensch, PSB 1998
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N

Previous basin of attraction is one of 15 pdssible ones for n=13 and k=3.
Total of 8192 states, and attractors with periods ranging from 1 to 7 (Pictures
come from DDLab Galery, Wuensche, Santa Fe Institute)
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Why Are BNs Good tor Biology?

e Complex behavior (synergistic behavior)

— Attractor steady states which can be interpreted as
memory for the cell

— Stability and reproducibility
— Robustness

e The range of behaviors of the system 1s completely known
and analyzable (for smaller networks) and 1s much smaller
than the range of the individual variables

e QOrganizational properties:
— high connectivity (k>5) yields chaotic behavior

— Low connectivity (k=2) attractor number and median
attractor length are O(Sqrt(n))

e Simple to implement and use
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BN and Biology

Microarrays quantify transcription on a large scale.

The 1dea 1s to infer a regulation network based solely on
transcription data.

Discretized gene expressions can be used as descriptors of the
states of a BN. The wiring and the Boolean functions are
reverse engineered from the microarray data.
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BN and Biology, Cont’d.

From mRNA measures to a Regulation Network:

1 Continuous gene expression values are discretized as being
0 or 1 (on, off), (each microarray is a binary vector of the
states of the genes);

2 Successive measurements (arrays) represent successive
states of the network i.e. X(t)->X(t+1)->X(t+2)...

3 A BN is reverse engineered from the input/output pairs:
(X(t),X(t+1)), (X(t+1),X(t+2)), etc.
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[Limitations

 BNs are Boolean! Very discrete
e Updates are synchronous

e Only small nets can be reverse engineered
with current state-of-the-art algorithms
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Summary

BN are the simplest models that offer
plausible real network complexity

e Can be reverse engineered from a small
number of experiments O(log n) if the
connectivity 1s bounded by a constant. 2"
experiments needed 1f connectivity 1s high

e Algorithms for reverse engineering are
polynomial 1n the degree of connectivity
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