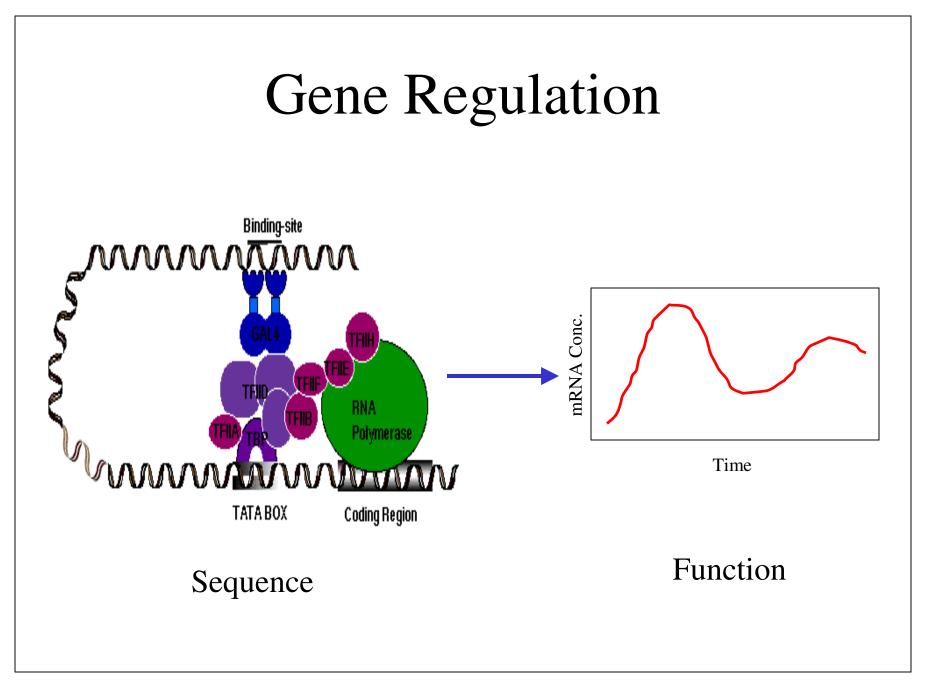
Motif Finding: Summary of Approaches

4/26/03

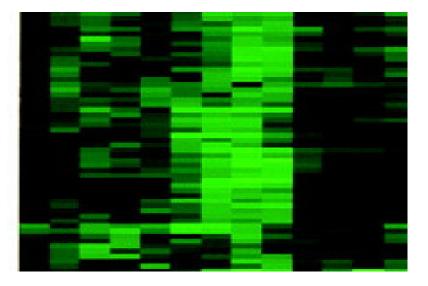
Lecture Outline

- Flashback: Gene regulation, the cis-region, and tying function to sequence
- Motivation
- Representation
 - Simple motifs
 - weight matrices
- Problem: Finding motifs in sequences
- Approaches
 - enumerative (combinatorial)
 - statistical
- Comparison of approaches
- Higher Order Motifs and Approaches



Motif Finding Motivation

Clustering genes based on their expressions groups co-expressed genes



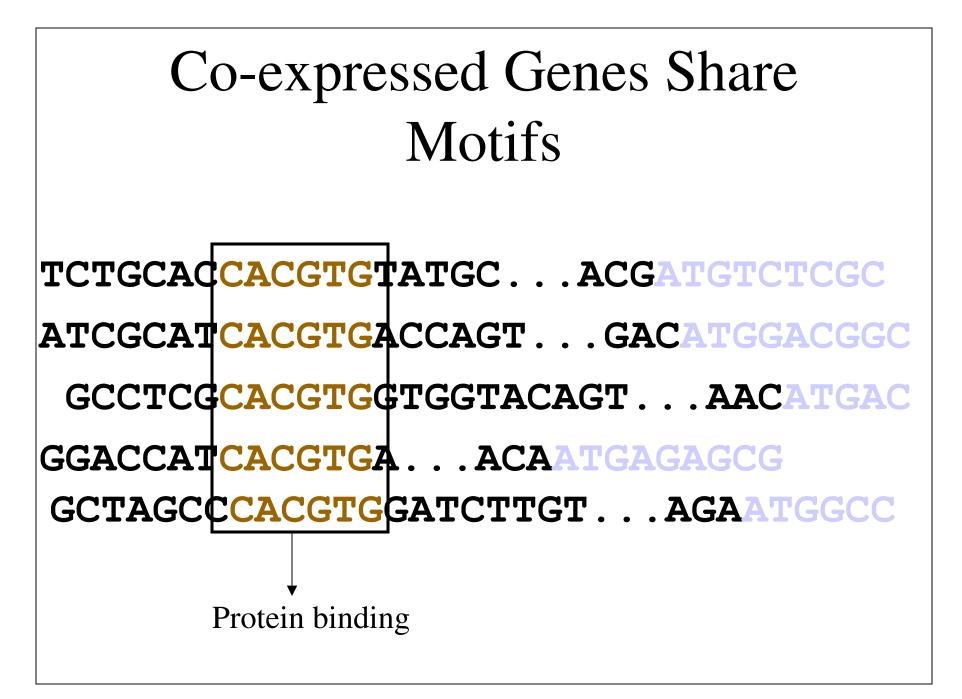
Assuming co-expressed genes are coregulated, we look in their promoter regions to find <u>conserved motifs</u>, confirming that the same TF binds to them

Co-expressed Genes Share Motifs

GTGGCTGCACCACGTGTATGC...ACGATGTCTC ACATCGCATCACGTGACCAGT...GACATGGACG CCTCGCACGTGGTGGTACAGT...AACATGACTA CTCGTTAGGACCATCACGTGA...ACAATGAGAG GCTAGCCCACGTGGATCTTGT...AGAATGGCCT

Co-expressed Genes Share Motifs

GGCTGCACCACGTGTATGC...ACGATGTCTCGC ATCGCATCACGTGACCAGT...GACATGGACGGC TCGCACGTGGTGGTACAGT...AACATGACTAAA CGTTAGGACCATCACGTGA...ACAATGAGAGCG TAGCCCACGTGGATCTTGT...AGAATGGCCTAT



Multi-site Motif

- Two-site: Dimer, dyad
- Gapped Motif
- In general, a motif is an ordered set of binding sites

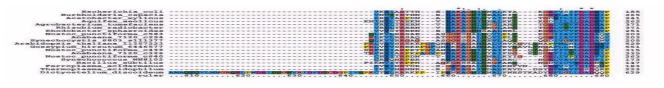
Table 3 • Dimer alignment for MCM1 binding site

> ACC....AGGA. ACC....GGAA ..CCTA...AGGA. .ACCT...AAGG. .CCT...GGAA ..CCTA...GGAA TACC...AAGG. .ACCT...AGGA. TACC...AGGA. TACC....AGGA. TACC....AGGA. TACC....GGAA

Motif Finding Problem

Given n sequences, find a motif present in many

- This is essentially multiple alignment
- Difference: multiple alignment is global
 - longer overlaps
 - constant site sizes and gaps
 - NP-complete!



Definition and Representation

- Motifs: Short sequences
- IUPAC notation -
- <u>Regular Expressions</u>
 - consensus motif
 - ACGGGTA
 - degenerate motif
 RCGGGTM
 {G|A}CGGGT{A|C}

Single-Letter Codes for Nucleotides				
Symbol	Meaning			
G	G			
А	А			
Т	T or U			
С	С			
U	U or T			
R	G or A			
Y	T, U or C			
Μ	A or C			
K	G, T or U			
S	G or C			
W	A, T or U			
Н	A, C, T or U			
В	G, T, U or C			
V	G, C or A			
D	G, A, T or U			
Ν	G, A, T, U or C			

Single Site Motif Finding

- Methods based on Position Weight Matrices (alignment)
 - Gibbs Sampling
 - Expectation Maximization
- Other Methods
 - HMMs
 - Bayesian methods
 - enumerative (combinatorial)

Popular Software:

• MEME (EM)

http://meme.sdsc.edu/meme/website/intro.html

• AlignACE (Gibbs)

http://atlas.med.harvard.edu/

• Cister (HMM)

http://zlab.bu.edu/~mfrith/cister.shtml

• YMF (combinatorial)

http://www.cs.washington.edu/homes/blanchem/software.html

• MITRA (combinatorial)

http://www.cs.columbia.edu/compbio/mitra/

Overall Idea

- Enumerate motifs
- Score motifs base on their overrepresentation in all sequences
- The highest scoring ones, if occurring at <u>surprising</u> rates, are meaningful

Problems:

- How to enumerate?
- How to score motifs?
- What is surprise?

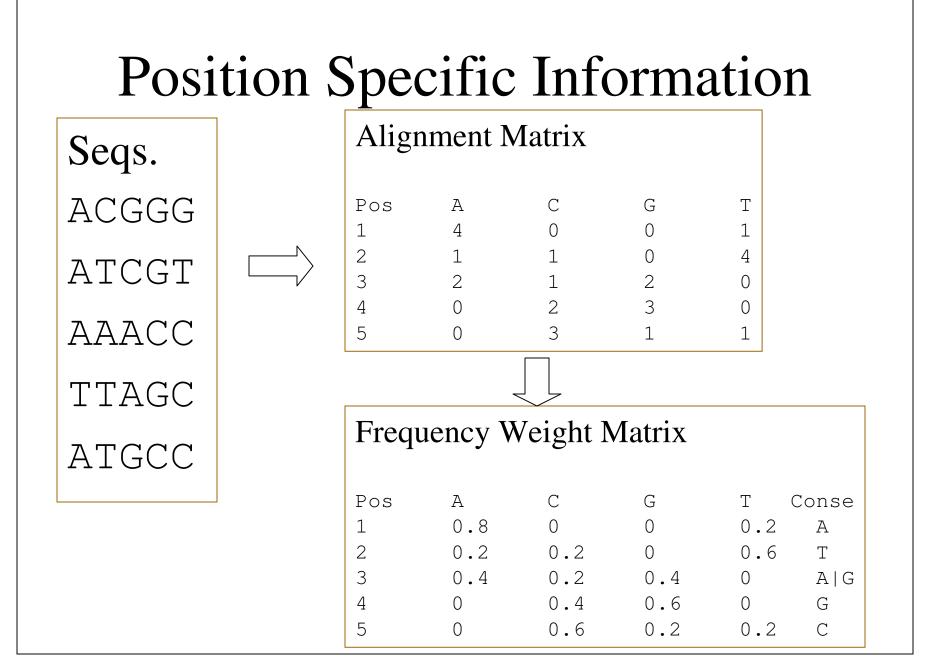
PWM, main idea

- Capture the data in PWM
- Enumerate and score <u>all patterns</u>, w

– suffix trees used to save space

- Update the PWM
- Scoring: <u>overrepresentation</u>

<u>S=observed frequency/expected frequency</u> w in genome w in given sequences



ECS289A, WQ03, Filkov

Calculating the Joint Distribution

Frequency	Weight Matrix
-----------	---------------

Pos	А	С	G	Т	Conse
1	0.8	0	0	0.2	A
2	0.2	0.2	0	0.6	Т
3	0.4	0.2	0.4	0	A G
4	0	0.4	0.6	0	G
5	0	0.6	0.2	0.2	С

Given AAATC and the Weight Matrix of the data and for the background (i.e. prior), we want to calculate the joint probability

In general this is a lot of work, because of all possible ways a motif can depend on its sub-words.

E.g. TATTA=TAT.TAITA.T.TAIT.A.T.T.A, etc.

MEME

- Use Expectation-Maximization Algorithm to fit a twocomponent mixture model to the sequence data
- Component 1 is the motif
- Component 2 is the background

Algorithm:

- 1. For each sequence s_i , (out of n)
- 2. Start with a random PWM, P_i (i.e. alignment)
- 3. Score every segment of s_i with P_i
- 4. P_i =Sum all the scores with appropriate weights
- 5. Perform EM until there is a convergence

The best 100 scoring motifs are kept overall

Gibbs Sampler

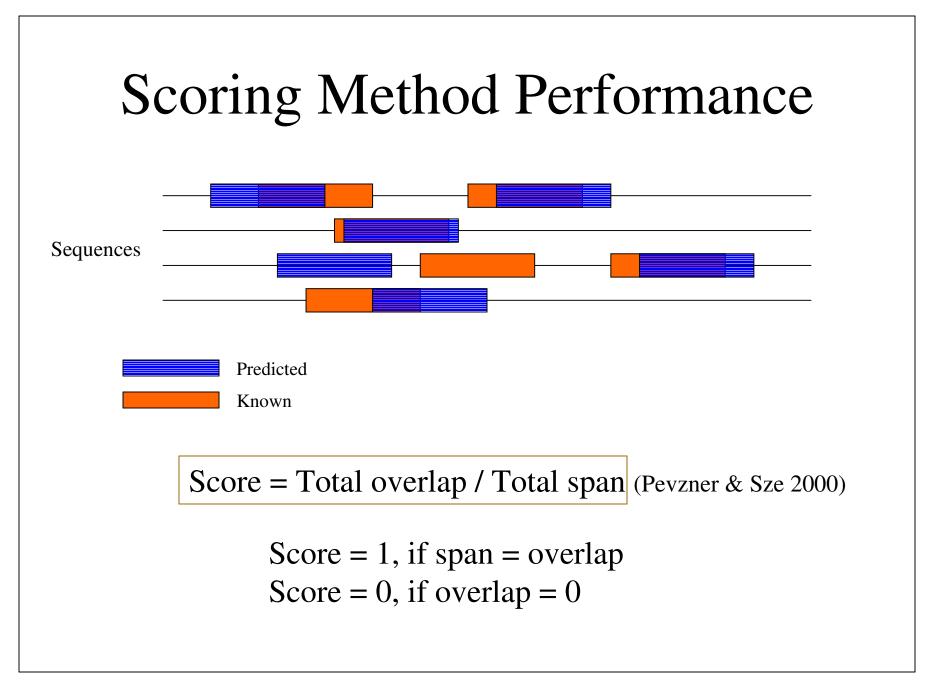
- Use a simple leave-one-out sampling strategy Algorithm
- 1. Given n sequences, s1, s2,...,sn
- 2. Randomly initialize PWM (i.e. align)
- 3. For each sequence si, take it out from the PWM
 score each segment of si with the rest of the sequences
 - put the sequence back
- Important feature: convergence

Enumeration

- Use a consensus model of motifs based on IUPAC alphabet
- Score motifs based on their significance of occurrence (vs. random)
- Clean up the found motifs to remove redundant motifs

Comparing the Methods

- Sinha and Tompa (2003)
- Scored motif finders: MEME, AlignACE and YMF
- Used synthetic sequences with planted motifs and yeast sequences
- Scored methods based on overlap of known and reported motifs



Results

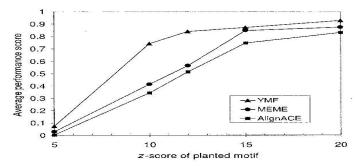


Figure 1: Performance of three motif-finding algorithms (YMF, MEME, and AlignACE) on 10 sequences of length 1000 each, with planted consensus motifs. Each point represents the average of the performance scores for a particular algorithm and for a specific z-score of the planted motif, the average being over 100 experiments, each using a different planted motif.

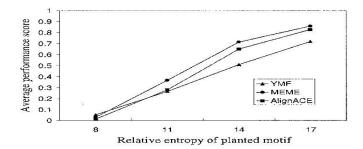


Figure 2: Performance of YMF, MEME, and Align-ACE on 10 sequences of length 1000 each, with planted weight matrix motifs. Each point represents the average of the performance scores for a particular algorithm and for a specific strength of the planted motif, the average being over 50 experiments, each using a different planted motif.

Table 1: Performance comparison of different moti finders on yeast regulons. "Size" is the number o genes in the regulon. The columns labelled "time" report the time to completion for each algorithm, in seconds.

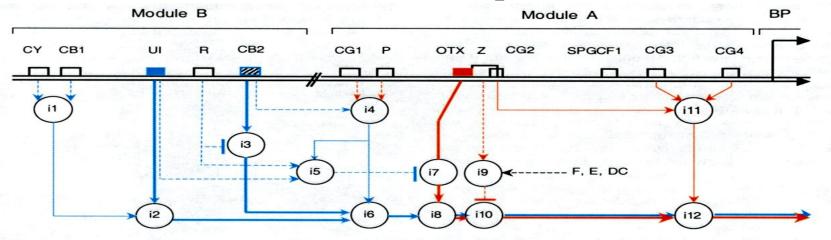
Regulon	Size	YMF		MEME		AlignACE	
Ģ		Φ_{y}	time	Φ_m	time	Φ_a	tim
ABF1	19	0.33	171	0.01	1645	0.00	28
BAS1	6	0.02	176	0.03	246	0.02	16
CAR1	12	0.31	151	0.25	771	0.20	18
CPF1	3	0.62	110	0.49	86	0.02	7
CSRE	4	0.28	125	0.32	149	0.25	7
GAL4	6	0.61	176	0.66	232	0.61	17
GATA	4	0.57	128	0.19	149	0.54	12
GCN	38	0.25	414	0.00	8523	0.00	64
GCR1	6	0.05	196	0.20	252	0.31	7
GLN3	3	0.00	129	0.00	83	0.00	10
HAP1	5	0.15	139	0.12	208	0.10	11
HAP2	4	0.00	93	0.00	150	0.02	9
HSE	6	0.39	158	0.23	247	0.31	21
MATA1	3	0.19	101	0.20	85	0.11	7
MATA2	7	0.06	197	0.36	359	0.03	17
MCB	6	0.54	122	0.15	238	0.55	22
MCM1	23	0.32	557	0.51	3532	0.50	24
MIG1	9	0.28	188	0.00	505	0.29	23
PDR3	7	0.73	174	0.43	357	0.47	13
PHO2	3	0.00	126	0.00	84	0.00	8
PHO4	5	0.26	161	0.05	209	0.22	12
RAP1	16	0.09	645	0.31	2036	0.23	26
REB1	14	0.39	396	0.34	1628	0.01	16
ROX1	3	0.00	90	0.03	83	0.00	2
RPA	3	0.20	99	0.15	80	0.00	8
SCB	3	0.60	137	0.61	85	0.84	7
SFF	3	0.00	136	0.00	80	0.05	11
STE12	4	0.60	176	0.02	144	0.71	12
TBP	17	0.00	379	0.00	2253	0.00	27
UASCAR	3	0.02	178	0.13	85	0.06	7
UASH	18	0.00	180	0.01	2301	0.00	39
UASPHR	17	0.01	556	0.02	2205	0.06	30
UIS	3	0.01	124	0.43	82	0.20	10
URS1H	13	0.57	388	0.73	1386	0.42	19
Wins		11		9		5	
$\#$ scores \geq	0.2	18		16		16	
$\#$ scores \geq		11		9		8	
#scores >		8		4		6	

Results, contd.

- Results are a mixed bag
- YMF wins more often than not
- Each wins when motifs are specific to that algorithm
- Each algorithm wins on an exclusive set of motifs
- <u>Take home lesson</u>: use all on the same data

Higher Order Motifs

• Nature of course is more complicated...



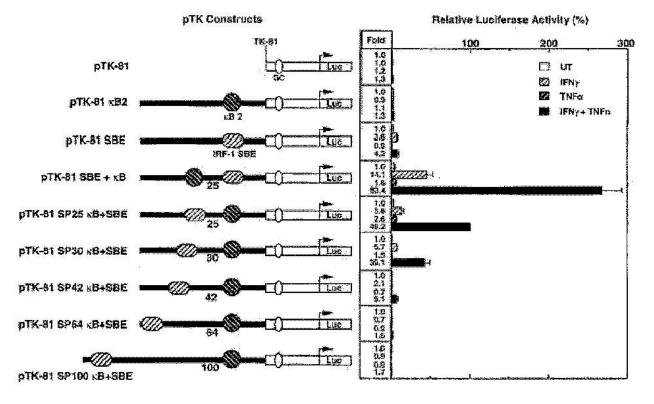
- <u>Combinatorial motifs:</u> combinations of binding sites to which an interacting group of TFs binds
- More realistic, but difficult to look for
- Sinha, 2002

What is Nature Like?

Now that we are talking about realistic motifs, what is it that we know about them from biology?

- Combinatorial motifs are sets of simple motifs separated by a stretch of DNA
- Changing the order of the simple motifs within it doesn't kill transcription, but changes it
- Changing the distance between the simple motifs usually kills transcription
- The distances between motifs are usually small (<20bp)
- The distance restriction is sometimes strict, and other times not
- Randomly distributed simple motifs do not activate transcription

Dependence of Simple Motif Pairs on Distance and Order Between Them



Ohmori et al., 1997

Finding Higher Order Motifs

Sinha (2002) reviews methods for finding higher order motifs, and groups the approaches based on their general relationship to simple motif finders

- find simple motifs and discover patterns made of these
- start with simple motifs and build higher order ones
- find higher order motifs from scratch (e.g. Marsan and Sagot, 2000)

Models of Higher Order Motifs

- The set model $\{M_1, M_2, ..., M_k\}$
- Tuples with distance constraints (M₁,M₂,d₁₂)
- Hidden Markov Model
- Boolean Combinations

Usually two step approaches:

- Enumerate the motif models
- Determine significance (Monte Carlo experiments)

Tricky Business

- All these models have a lot of parameters (e.g. distances between motifs)
- They depend on the initial choice of parameters and/or an initial set of simple motifs
- Using these tools is more of an art than science so far

Conclusions

- PWMs do well for simple motifs
- Combinatorial methods are probably doing better
- Should use all available tools to determine strong simple motifs
- Higher order motifs:
 - positive: knowing your biochemistry helps
 - negative: nobody knows the biochemistry fully!

References:

- Saurabh Sinha, Ph.D. thesis, U of Washington, 2002
- Sinha and Tompa, *Performance Comparison of Algorithms for Finding Transcription Factor Binding Sites*, BIBE 2003
- Marsan and Sagot, *Algorithms for Extracting Structured Motifs Using a Suffix Tree*, JCB, v.7, 2000, 345-362
- Ohmori et al., Journal of Biological Chemistry, 1997