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[ ecture Outline

Flashback: Gene regulation, the cis-region, and
tying function to sequence

Motivation

Representation
— Simple motifs
— weight matrices

Problem: Finding motifs in sequences
Approaches

— enumerative (combinatorial)
— statistical

Comparison of approaches
Higher Order Motifs and Approaches
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Gene Regulation

Binding:site

mRNA Conc.

TATABOX Coding Region

Sequence

Time

Function

ECS289A, WQO3, Filkov




Motif Finding Motivation

Clustering genes based on
their expressions groups
co-expressed genes

Assuming co-expressed genes are co-
regulated, we look in their promoter regions
to find conserved motifs, confirming that
the same TF binds to them
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Co-expressed Genes Share
Motifs

GTGGCTGCACCACGTGTATGC. . .ACG
ACATCGCATCACGTGACCAGT. . .GAC
CCTCGCACGTGGTGGTACAGT. . .AAC
CTCGTTAGGACCATCACGTGA. . .ACA
GCTAGCCCACGTGGATCTTGT. . .AGA
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Co-expressed Genes Share

Motifs

GGCTGCACCACGTGTATGC. .
ATCGCATCACGTGACCAGT. .
TCGCACGTGGTGGTACAGT. ..
CGTTAGGACCATCACGTGA. .
TAGCCCACGTGGATCTTGT. .

.AC
.GA

.AC
.AG
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Co-expressed Genes Share
Motifs

TCTGCAQCACCTGTATGC. . .ACG
ATCGCATCACGTGACCAGT. . .GAC
GCCTCGCACGTGGTGGTACAGT . . .AAC

GGACCATCACGTGA. . .ACA
GCTAGCCCACGTGGATCTTGT. . .AGA

|

Protein binding
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Multi-site Motit

Table 3 « Dimer alignment

* Two-site: Dimer, dyad for MCM1 binding site
20 LY DiHINGSTES

* Gapped Motift ace. | aean

..CCTA. . .AGGA,

e In general, a motif is an CeorlMoann
. . NI ] 4 DRI
ordered set of binding TACC. . AAGS. .
. JACCT, L. GGA
A .
sites race. . oon
TACC. . ... AGGAH

ECS289A, WQO3, Filkov




Motif Finding Problem

Given n sequences, find a motif
present in many

e This 1s essentially multiple alignment

e Difference: multiple alignment i1s global
— longer overlaps
— constant site sizes and gaps

— NP-complete!
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Definition and
Representation

e Motifs: Short sequences

e JUPAC notation

e Regular Expressions

— consensus motif
ACGGGTA

— degenerate motif
RCGGGTM

{GIA}JCGGGTH{AIC)

>

Single-Letter Codes for Nucleotides

Symbol

Z U< ®WmE v RZ<®SOA>Q

Meaning

G

A

TorU

C

UorT
Gor A
T,UorC
AorC

G, TorU
GorC

A, TorU
A C, TorU
G, T,UorC
G,Cor A
G, A, TorU
G, A, T,UorC
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Single Site Motif Finding

 Methods based on Position Weight Matrices

(alignment)

— Gibbs Sampling

— Expectation Maximization
e Other Methods

— HMMs

— Bayesian methods

— enumerative (combinatorial)
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Popular Software:

MEME (EM)

http://meme.sdsc.edu/meme/website/intro.html
AlignACE (Gibbs)
http://atlas.med.harvard.edu/
Cister (HMM)
http://zlab.bu.edu/~mfrith/cister.shtml
YMF (combinatorial)
http://www.cs.washington.edu/homes/blanchem/software.html

MITRA (combinatorial)

http://www.cs.columbia.edu/compbio/mitra/
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Overall Idea

e Enumerate motifs

e Score motifs base on their overrepresentation in
all sequences

e The highest scoring ones, 1f occurring at surprising
rates, are meaningful

Problems:
- How to enumerate?

- How to score motifs?
- What 1s surprise?
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PWM, main 1dea

Capture the data in PWM

Enumerate and score all patterns, w

— suffix trees used to save space
Update the PWM

Scoring: overrepresentation

S= obse/rvgd frequency/expect‘eg frequency

. A Ww 1n genome
W 1n given sequences
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Position Specitic Information

Seqs.

ACGGG
ATCGT
AAACC
TTAGC

ATGCC

—

Alignment Matrix

Pos A C G T

1 4 0 0 1

2 1 1 0 4

3 2 1 2 0

4 0 2 3 0

5 0 3 1 1
Frequency Weight Matrix

Pos A C G T Conse
1 0.8 0 0 0.2 A

2 0.2 0.2 0 0. T

3 0.4 0.2 0.4 0 A|G
4 0 0.4 0.6 0 G

5 0 0.6 0.2 0. C




Calculating the Joint Distribution

Frequency Weight Matrix

Pos A C G T Conse
1 0.8 0 0 0.2 A
2 0.2 0.2 0 0.6 T
3 0.4 0.2 0.4 0 AlG
4 0 0.4 0.6 0 G
5 0 0.6 0.2 0.2 C

Given AAATC and the Weight Matrix of the data and
for the background (i.e. prior), we want to calculate the
joint probability

In general this is a lot of work, because of all possible
ways a motif can depend on its sub-words.

E.g. TATTA=TAT.TAITA.T.TAIT.A.T.T.A, etc.
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MEME

 Use Expectation-Maximization Algorithm to fit a two-
component mixture model to the sequence data

e Component 1 1s the motif
e Component 2 1s the background

Algorithm:

1 For each sequence s, (out of n)

2 Start with a random PWM, P, (i.e. alignment)
3. Score every segment of s, with P,

4 P.=Sum all the scores with appropriate weights
5. Perform EM until there is a convergence

The best 100 scoring motifs are kept overall
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Gibbs Sampler

 Use a simple leave-one-out sampling strategy

Algorithm

1. Given n sequences, sl, s2,...,sn

2.  Randomly initialize PWM (i.e. align)

3. For each sequence si, take it out from the PWM

- score each segment of si with the rest of the
sequences

- put the sequence back

 Important feature: convergence

ECS289A, WQO3, Filkov




Enumeration

e Use a consensus model of motifs based on
IUPAC alphabet

e Score motifs based on their significance of
occurrence (vs. random)

e Clean up the found motifs to remove
redundant motifs
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Comparing the Methods

Sinha and Tompa (2003)

Scored motif finders: MEME, AlignACE
and YMF

Used synthetic sequences with planted
motifs and yeast sequences

Scored methods based on overlap of known
and reported motifs
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Scoring Method Performance

Sequences

[ 1 Predicted
[ Known

Score = Total overlap / Total span (Pevzner & Sze 2000)

Score = 1, if span = overlap
Score =0, if overlap =0
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Results

Table 1: Performance comparison of different moti
finders on yeast regulons. “Size” is the number o

1 TR genes in the regulon. The columns labelled “time’
0.9 - 9 report the time to completion for each algorithm, iz
£ o8 - i seconds.
B 0.7
=1
£ 0.6
% 0.5 Regulon Size Y MY MMENME Align ACE
E o4 B, time Do, time D fim
@ . ABEFL 15 G.33 171 .01 1645 0.00 28
§92 g A YMF BAS1 6  0.02 176 0.03 246  0.02 16
£ oz | CARL iz _0.31 151 0.25 771 0.20 i8
0.1 —_— - CPF1 3 0.62 110 0.49 26 0.02 T
o ; - = i C5RE 4 0.28 125 0.32 149 0.25 T
5 10 15 20 GAL4 8 .61 176 0.66 232 0.61 17
zZ-score of planted motif GATA 4 0.57 128 0.19 149 0.54 12
Figure 1: Performance of three motif-finding algo- gggl 32 8(2)2 4{;2 ggg 82;3 gg? 63
rithms {(YMF, MEMFE, and AlignACE) on 10 se- QLN a 0.00 129 o.00 83 0.00 10
quences of length 1000 each, with planted consensus HAPL 5 O.15 139 0.12 208 0.10 11
motifs. Fach point represents the average of the per- HAPZ2 4 0.00 93 .00 150 6.02 9
formance scores for a particular algorithm and for a HSE & 0.39 158 G.23 547 G.31 a1
specific z-score of the planted motif, the average being MATAL 3 0.19 101 0.20 a5 o.11 -
over 100 experiments, each using a different planted MLATA e 0.06 197 0.26 359 .03 17
motif. MCB 6 0.54 122 0.15 238 0.55 22
MOML 23 0.32 557 0.51 3532 .50 24
MIEGT 9 0.28 188 .00 505 Q.29 23
q - o PDR3 i 0.73 174 0.43 357 Q.47 13
& 0.9 PHO2 3 0.00 126 .00 84 G.00 8
§ 0.8 | PHOA4 5 0.26 161 G.05 209 0.22 12
g 6.7 4 RAPI1 16 0.09 645 .31 2036 0.23 26
= ars REBI1 14 0.39 396 0.34 1628 .01 16
% Py ROX1 3 0.00 30 .03 83 .00 2
'E 0'4 | RPA 3 0.20 99 0.15 B0 a.00 8
A SavtaE SCB 3 0.60 137 .81 85 0.84 7
55 0:3 1 [—H\AEME SFF 3 0.00 136 0.00 80 0.05 11
E o2 = ANGNACE STEL2 4 0.60 176 0.02 144 Q.71 12
= o . TBP 17 0.00 379 0.00 2253  0.00 27
i 5 Y s * P TVASCAR 3 0.02 173 0.13 85 .06 i
. . TASH 18 .00 180 .01 2301 .00 39
Relatvegnropirof planfedinotif UASPHR 17  0.01 556  0.02 2205 0.06 30
UIs 3 0.01 124 .43 82 Q.20 10
Figure 2: Performance of YMF, MEME, and Align- UR31H 13 0.57 388 0.73 1386 0.42 19
ACE on 10 seguences of length 1000 each, with planted Wins 11 o 5
weight matrix motifs. Fach point represents the av- #Facores = 0.2 18 16 16
erage of the performance scores for a particular algo- #scores = 0.33 11 9 8
rithm and for a specific strength of the planted motif, Fscores > 0.5 & 4 6

the average being over 50 experiments, each using a
different planted motif.
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Results, contd.

Results are a mixed bag
YMF wins more often than not

Each wins when motifs are specific to that
algorithm

Each algorithm wins on an exclusive set of
motifs

Take home lesson: use all on the same data
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Higher Order Motifts

e Nature of course 1s more complicated...

Module B Module A BP
— -
cy cB1 ul R cB2 cG1 P OTX Z CG2 SPGCF1 CG3 cGa
M = — | | — 1 >
' g ' :
& — G
° ________ F, E, DC
: !
. @

e Combinatorial motifs: combinations of binding
sites to which an interacting group of TFs binds

e More realistic, but difficult to look for
e Sinha, 2002
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What 1s Nature Like?

Now that we are talking about realistic motifs,
what 1s it that we know about them from biology?

— Combinatorial motifs are sets of simple motifs
separated by a stretch of DNA

— Changing the order of the simple motifs within it
doesn’t kill transcription, but changes it

— Changing the distance between the simple motifs
usually kills transcription

— The distances between motifs are usually small (<20bp)

— The distance restriction 1s sometimes strict, and other
times not

— Randomly distributed simple motifs do not activate
transcription
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Dependence of Simple Motitf Pairs on
Distance and Order Between Them

PTK81
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Ohmori et al., 1997
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Finding Higher Order Motifs

Sinha (2002) reviews methods for finding

higher order motifs, and groups the

approaches based on their general

relationship to simple motif finders

— find simple motifs and discover patterns made
of these

— start with simple motifs and build higher order
ones

— find higher order motifs from scratch (e.g.
Marsan and Sagot, 2000)
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Models of Higher Order Motifs

* The set model {M;,M,,....M, }

e Tuples with distance constraints
(MI’M2’d12)

 Hidden Markov Model

e Boolean Combinations

Usually two step approaches:
- Enumerate the motif models
- Determine significance (Monte Carlo experiments)
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Tricky Business

* All these models have a lot of parameters
(e.g. distances between motifs)

* They depend on the 1nitial choice of
parameters and/or an 1nitial set of simple
motifs

e Using these tools 1s more of an art than
science so far
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Conclusions

e PWMs do well for simple motifs

e Combinatorial methods are probably doing
better

* Should use all available tools to determine
strong simple motifs

e Higher order motifs:
— positive: knowing your biochemistry helps

— negative: nobody knows the biochemistry fully!
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