











# How Did They Do It?

It all started with choosing the right organism / genes and using the right technology:

- The organism of choice *sea urchin* because of its simplicity (the embryos are see-through and have ~1000 cells)
- The gene of choice *endo16* because it codes for a protein that has a visible phenotypic effect

# The Search for k, the number of inputs

- DNA sequencing
- DNA construct assembly by gene fusion / DNA enzyme restriction / restriction fragment cloning
- Injection of exogenous DNA into and extraction of nuclear material from embryos
- DNA-protein interaction analysis through gel shift / oligonucleotide competition / affinity chromatography



# Step-by-Step Identification of Binding Sites

- Nuclear extracts were obtained @24h of development, when the gene is expressed fully
- Nested sets of probes were built out of given subfragments of the cis-region by successive restriction enzyme digestion
- The probes were exposed to the 24h nuclear extract
- DNA/protein complexes formed in these reactions were displayed using gel shift





# MODULARITY

"An experimental definition of a cis- regulatory **module** is a fragment of DNA containing multiple transcription factor target sites, which when tested in a gene transfer protocol produces some particular subelement of the overall pattern of expression of the gene." Eric Davidson



Once the "players" in the cis-region have been identified, ED et al. went on to uncover their interplay

They asked: how do the parts of the cisregion fit in the whole picture?

To answer this they had to break down the cis-region into smaller components and analyze their individual functions

# The Technology: DNA-Expression Constructs To measure the cis-region fragments' activity they developed the following techniques:

- tagging the fragments with a reporter gene (DNA constructs)
- injecting the constructs in the embryos
- observing the concentration of the reporter protein

### **DNA Constructs**

DNA constructs were created by fusing a reporter gene to fragments of the gene's upstream DNA region (the proximal part) containing the basal promoter fragment

The DNA constructs were injected in the embryos and 75% of them successfully replicated clonally together with the host's DNA

# The CAT Reporter Protein

The reporter protein used was the CAT protein because:

- it is readily detectable
- it has a short half life (compared to the experiments' time-line), and
- its concentration is proportional to its coding gene's mRNA concentration





# Experimental Framework

ED et al. performed numerous experiments as follows: in each experiment

- an expression construct representing a fragment of the cis-region were prepared,
- copies of it were injected in the embryos, and
- the resulting CT graphs (i.e. CAT concentration @ 20h, 30h, 50h, 60h, and 70h) were observed





- A natural way to break the cis-region was down the lines of the pre-identified modules
- A natural way of making constructs was to remove single or groups of modules











The conclusion drawn from the curve similarity was that the overall cis-region transcription can be decomposed into activities of its parts:

"The overall function of the *Endo16 cis*regulatory system is the sum of the functions of the individual modules and of the specific interactions among them" (D4)

# Refining the Experiments

- The tinkering continued on a finer scale: they added another dimension-mutation of individual binding sites
- A mutation was effectively an elimination of a binding site
- The resulting CT graphs, again, had similar characteristics
- Note: a total of 2<sup>40</sup>~1000 billion experiments are necessary to cover the whole input

### Summary of Results

endo16:

- Only some constructs result in transcription
- Simple relationships between CT graphs observed (similar absolute behavior, but for a constant multiplier)
- A few of the single binding site constructs induce transcription; they are called *kinetic drivers*
- Groups of binding sites act together to permit/prevent transcription downstream

### **Functional Calculus**

We will introduce the following notation to describe the D-Inference:

- Let x and y be groups of contiguous binding sites from the cis-region, that have not been eliminated in the experiment
- Let xy be their union, and let F(z) be the CT graph of the construct z, where z is x or y

# D-Inference Laws

• To relate constructs with sub-constructs through their CT graphs, ED et al. used a simple least squares modeling scheme (one free parameter):

F(xy) = Lambda \* G(F(x),F(y))where G(a,b) could be a, b, a+b, or a\*b

• Out of the finite number of models on the right, the one that had "the best" fit (smallest rms. Error of model to reality) was chosen as "the model"



# Vector Space of Kinetic Driver Dimension 3

The 3 kinetic drivers: F(UI), F(CB2), and F(OTX) for a Basis in the Functional space. Every other CT graph is a (restricted) linear combination of the Drivers



## Linear/Boolean Inferential Model

- The resulting transcription of the *endo16* cisregion is a linear combination of the CT graphs of the 3 kinetic drivers: F(UI), F(CB2), and F(OTX)
- This model predicts the exact transcription rate for any cis-trans interference of the cis-region

# Transcription is a Linear/Boolean Combination of the Driver Signals Another way to write their program is in a functional form: $R(t) = c_1 c_4 c_5 c_6 \cdot F(UI) + c_2 c_4 c_5 c_6 \cdot F(CD2) + c_3 c_5 c_6 \cdot F(OTX), \text{ where}$ $1, \text{ if } CX \cap CD1$ $c_1 = \left\{\frac{1}{2}, \text{ otherwise}\right\}$ $c_2 = \left\{\frac{1}{1.5}, \text{ otherwise}\right\}$ Where ``if (X)'' is true $c_3 = \left\{\frac{0}{1.5}, \text{ otherwise}\right\}$ $c_4 = \left\{\frac{0}{9}, \text{ otherwise}\right\}$ $c_5 = \left\{\frac{0}{1.5}, \text{ otherwise}\right\}$ $c_5 = \left\{\frac{0}{1.5}, \text{ otherwise}\right\}$

# D-Network of a Single Gene

The cis-region is an *information processing logic*, with inputs the states of the binding sites, and output a functional relationship of the driver signals

The processing elements, nodes or gates, are groups of binding sites which have two states: active and inactive, in each state exhibiting a different effect on the driver signals (factor multiplication)

The nodes of the network can be of different arrity

# Inferring a Single Gene D-Network

Inferring a D-Network from a cis-region means finding the kinetic drivers and all the nodes

- If there are no constraints on the nodes we may need  $2^k$  experiments, where k is # of binding sites
- But as ED et al. showed, the cis-region program is a function of its parts, and the parts are modular
- This top-down hierarchy, together with the small number of kinetic drivers, implies that in fact significantly fewer than 2<sup>k</sup> experiments may suffice
- A viable assumption: the nodes are contiguous groups of binding sites

### Networks the Davidson Way

How does ED extend the model of single gene transcription to gene networks?

Three different levels of gene networks:

- single gene network (endo16)-predicting the transcription rates
- multiple gene network view from the genome specificity relationships
- peripheral gene network view from the organism
   phenotypic relationship

### Endo 16 """Inference in Detail: Module A









| Example Models                                                        |            |      |            |
|-----------------------------------------------------------------------|------------|------|------------|
| Model†                                                                | ε (% max)* | λ‡   | λ/function |
| ΒΑ=Β•λ                                                                | 0.227 (2%) | 4.2  | 4.2        |
| $\overline{BA} = (B+A) \cdot \lambda$                                 | 9.07 (24%) | 1.6  | 1.6        |
| $\overline{BA} = A \cdot \lambda$                                     | 6.49 (17%) | 0.69 | 0.83       |
| $\overline{\text{GBA}}=\overline{\text{GB}}\cdot\lambda$              | 1.99 (8%)  | 3.1  | 3.1        |
| $\overline{\text{GBA}}=\overline{\text{BA}}\cdot\lambda$              | 4.35 (17%) | 0.78 | 0.78       |
| $\overline{GBA} = \overline{BA} \cdot G \cdot \lambda$                | 3.58 (14%) | 0.39 | 0.62       |
| GBA=A•B•G•λ                                                           | 4.65 (18%) | 0.26 | 0.64       |
| $\overline{\text{GBA}}=\overline{\text{GB}}\cdot\text{A}\cdot\lambda$ | 3.97 (15%) | 0.50 | 0.70       |
| $\overline{\text{GBA}} = (G + B + A) \cdot \lambda$                   | 4.40 (17%) | 1.23 | 1.23       |
| $\overline{\text{GBA}}=B\cdot A\cdot \lambda$                         | 3.09 (12%) | 0.59 | 0.77       |
| $\overline{\text{GBA}} = \overline{\text{GBA}} (J_m) \cdot \lambda$   | 7.0 (9%)   | 1.42 | 1.42       |































# Goals Sequence-based gene network Uncover positive and negative regulatory relationships among the genes Group genes in gene batteries Identify domains of regulation and genes involved in corresponding development

# Inference Procedure

- 0) Start with a small number of known regulatory genes and their regulatory relationships
- 2) Perturb regulatory expressions
- 2) Observe changes
- 3) Postulate relationships based on changes
- 4) Handle indirect influences