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What is an algorithm

• A procedure designed to perform a certain 
task, or solve a particular problem

• Algorithms are recipes: ordered lists of 
steps to follow in order to complete a task

• Abstract idea behind particular 
implementation in a computer program
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Algorithms in Bioinformatics

Theoretical Computer Scientists are 
contributors to the genomic revolution

• Sequence comparison
• Genome Assembly
• Phylogenetic Trees
• Microarray design (SBH)
• Gene network inference
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Algorithm Design

• Recognize the structure of a given problem:
– Where does it come from?
– What does it remind of? 
– How does it relate to established problems?

• Build on existing, efficient data structures 
and algorithms to solve the problem

• If the problem is difficult to solve efficiently, 
use approximative algorithms
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Problems and Solutions
In algorithmic lingo:
• Problems are very specific, general 

mathematical tasks, that take variables as 
input and yield variables as output. 

• Particularizations (assigning values to the 
variables) are called instances. 

• Problem: Multiply(a,b): Given integers a 
and b, compute their product a*b.

• Instance: Multiply (13, 243).
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Algorithms produce solutions for any given 
instance of a general problem

Multiply(a,b):

0) Let Product = 0

1) Take the k-th rightmost digit of b 
and multiply a by it. Attach k-1 zeros 
to the right, and add to Product.

2) Repeat Step 1. for all digits of b.

3) Product = a*b

Multiply (13, 243) = 3159
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Algorithm Analysis

• Correctness
– Exact solutions require a proof of correctness
– Heuristics: approximate solutions

• Resource Efficiency (complexity)
– Time: number of steps to follow to obtain a 

solution as a function of the input size
– Space: amount of memory required for the 

algorithm execution
• Best, Average, and Worst Case Analysis
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Time / Space Complexity

• Input size: how many units of 
constant size does it take to represent 
the input? This is dependent on the 
computational model, but can be 
thought of as the storage size of the 
input. The input size is usually n.

• Running time: f(n) = const., n, log n, 
Poly(n), en
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Big Oh Notation

• Asymptotic upper bound on the number of 
steps an algorithm takes (in the worst case)

• f(n) = O(g(n)) iff there is a constant c such 
that for all large n, 0 <= f(n) <= c*g(n)

• More intuitively: f(n) is almost always less 
than or equal to g(n), i.e. algorithm with t.c. 
f(n) will almost never take more time than 
one with t.c. of g(n)
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Big Oh, examples

• Const. = O(1)
• 3n = O(n)
• 3n = O(n2)
• log n = O(n)
• Poly(n) = O(en)

• O(n) time algorithm is called linear
• O(Poly(n)) is polynomial
• O(en) is polynomial
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Basic Complexity Theory 

• Classification of Problems based on the 
time/space complexity of their solutions

• Class P: Problems with polynomial time 
algorithms t.c. = O(Poly(n))

• Class NP: (non-deterministic polynomial) 
Problems whose solution instances can be 
verified in Poly(n) time.
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Complexity, contd.

• NP-complete problems: a polynomial algorithm 
for one of them would mean all problems in NP 
are polynomial time

• But, NO polynomial time algorithms for NP 
problems are known

• P � NP? Still unsolved, although strongly 
suspected true.

• NP complete problems: 3-SAT, Hamiltonian 
Cycle, Vertex Cover, Maximal Clique, etc. 
Thousands of NP-complete problems known

• Compendium:
http://www.nada.kth.se/~viggo/problemlist/compendium.html
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Why All That?

• Many important problems in the real world 
tend to be NP-complete

• That means exact solutions are 
intractable, but for very small instances

• Proving a problem to be NP-complete is 
just a first step: a good algorist would use 
good and efficient heuristics
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Popular Algorithms

• Sorting
• String Matching
• Graph Algorithms

– Graph representation: linked lists, incidence matrix
– Graph Traversal (Depth First and Breadth First)
– Minimum Spanning Trees
– Shortest Paths

• Linear Programming
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Algorithmic Techniques

• Combinatorial Optimization Problems
– Find min (max) of a given function under given 

constraints

• Greedy – best solution locally
• Dynamic Programming – best global 

solution, if the problem has a nice structure
• Simulated Annealing: if not much is known 

about the problem. Good general technique
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Data Structures

• Once a given problem is digested, 
algorithm design becomes an engineering 
discipline: having a big toolbox and 
matching the tools to the task at hand

• A major part of the toolbox are data 
structures:
Data representations allowing efficient 
performance of basic operations
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Basic Opperations
• Store/Search:

– Search(x)
– Delete(x)
– Insert(x)

• Priority:
– FindMIN
– FindMAX

• Set:
– UnionSet
– FindElement
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Basic Data Structures
• Static: arrays and matrices

– Array of n elements: a[i], 0 <= i <= n-1

– Matrix of n*n elements:
m[i][j], 0 <= i, j <= n-1 

• Basic operations are O(1)

a[5]a[4]a[3]a[2]a[1]

54321

m[3][4]m[3][3]m[3][2]m[3][1]3

m[2][3]m[2][3]m[2][2]m[2][1]2

m[1][4]m[1][3]m[1][2]m[1][1]1

4321
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Dynamic Data Structures: linked lists, 
trees and balanced trees, hash tables

• No static memory allocation: items are added/deleted on 
the go

• Linked Lists (basic operations are O(n)):

• Trees 

Balanced tree: Height is O(logn). 
Basic operations are O(log n)

NIL
b ca
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Hash Tables

NILb ca

NILe fd

NILh ig

f(key)

a

b
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h

i

Keys

A good hash function f(key) yields constant search time O(1). 
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Set Data Structures
• Given sets A={1,2,3,4} and B={1,3}
• Operations: Find, Union
• Example: 

– Find(A,3) = yes
– Find(A,5) = no
– Find(B,3) = yes
– Union(A,B) = {1,2,3,4}

• Very efficient: almost linear in the number 
of union+find operations
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Graphs

• Graph G(V, E). V is a set of vertices, E a 
set of edges 

V1

V2

V5

V3

V4

V6

V = {v1, v2, v3, v4, v5, v6}

E = {  (v1, v2), (v1, v5), (v1, v6), 
(v2, v3), (v2, v5), (v2, v6), 
(v3, v4), (v3, v5), (v3, v6)   }
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• Linked list representation: 
v1: v2, v5, v6

v2: v1, v3, v5, v6
v3: v2, v4, v5, v6
v4: v3
v5: v1, v2, v3
v6: v1, v2, v3 

• Adjacency Matrix Representation

V1

V2

V5
V3

V4

V6

00111V6

00111V5

00100V4

11110V3

11011V2

11001V1

V6V5V4V3V2
V1
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A Greedy Clustering Example
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• Clustering is a very important tool in 
analysis of large quantities of data

• Clustering: Given a number of objects we 
want to group them based on similarity

• Here we will work out a very simple 
example: clustering points in a plane by 
single-link hierarchical clustering
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Clustering Points in the Plane

Problem 1: Given n points
in a plane, cluster them so that if the distance 
between two points is less than D they are in the 
same cluster
Input: D,
Output: Sets (clusters) of points C1, C2, …, Ck.

),(,),,(),,( 222111 nnn yxpyxpyxp �

),(,),,(),,( 222111 nnn yxpyxpyxp �

D

C1 C2
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Algorithm Draft

• Calculate distances between point pairs
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• Sort the distances in ascending order

………

d3,1p1p3

d3,2p2p3

d2,1p1p2

………

d4,3p3p4

d3,1p1p3

d7,5p5p7

Sort
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Move through the sorted list of distances and add a new 
point to a cluster if the distance is < D.
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Algorithm in Detail

• Data Structure for the graph: adjacency matrix

• Data Structure for the clusters: Set (Union / 
Find)

………

d3,1p1p3

d3,2p2p3

d2,1p1p2
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Algorithm in detail
• Calculate distances O(n2)

– For all pairs i,j calculate d(i,j)
• Sort adjacency table O(n2 log n)
• Start with n sets, p1,p2,…,pn. Build a 

linked-list representation of a graph: 
– Get the next smallest distance, d(i,j)
– If d(i,j) >= D done
– Else Union(Find(pi),Find(pj))

• Traverse the graph to find the connected 
components (DFS)
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Algorithm Analysis

• Correctness: 
– All distances less than D are added
– Clusters contain all points with distance < D to 

some other point in the cluster

• Time complexity: 
– Bounded above by the sorting step
– O(n2 log n) 
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Discussion

• This algorithm is known as Single-Link 
Hierarchical Clustering

• It is a version of Kruskal’s Minimum 
Spanning Tree Algorithm

• It is fast
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Performance on Real Data

• Lousy: Chaining effects
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Better Approaches

Problem 2: Given n points
in a plane, cluster them so that the distance 
between any two points in a cluster is less than D 

Input: D,
Output: Sets (clusters) of points C1, C2, …, Ck.

),(,),,(),,( 222111 nnn yxpyxpyxp �

),(,),,(),,( 222111 nnn yxpyxpyxp �

D

C1 C2
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• This problem is equivalent to Complete 
Link Hierarchical Clustering

• It can be shown to be NP-complete, with a 
direct reduction from the Clique problem

• Also, this clustering approach yields many 
small clusters

• We will talk about better clustering 
approaches in this class 


