
ECS289A

Algorithms Preliminaries

ECS 289A – Lecture 3
1/13/03

ECS289A

What is an algorithm

• A procedure designed to perform a certain
task, or solve a particular problem

• Algorithms are recipes: ordered lists of
steps to follow in order to complete a task

• Abstract idea behind particular
implementation in a computer program

ECS289A

Algorithms in Bioinformatics

Theoretical Computer Scientists are
contributors to the genomic revolution

• Sequence comparison
• Genome Assembly
• Phylogenetic Trees
• Microarray design (SBH)
• Gene network inference

ECS289A

Algorithm Design

• Recognize the structure of a given problem:
– Where does it come from?
– What does it remind of?
– How does it relate to established problems?

• Build on existing, efficient data structures
and algorithms to solve the problem

• If the problem is difficult to solve efficiently,
use approximative algorithms

ECS289A

Problems and Solutions
In algorithmic lingo:
• Problems are very specific, general

mathematical tasks, that take variables as
input and yield variables as output.

• Particularizations (assigning values to the
variables) are called instances.

• Problem: Multiply(a,b): Given integers a
and b, compute their product a*b.

• Instance: Multiply (13, 243).

ECS289A

Algorithms produce solutions for any given
instance of a general problem

Multiply(a,b):

0) Let Product = 0

1) Take the k-th rightmost digit of b
and multiply a by it. Attach k-1 zeros
to the right, and add to Product.

2) Repeat Step 1. for all digits of b.

3) Product = a*b

Multiply (13, 243) = 3159

ECS289A

Algorithm Analysis

• Correctness
– Exact solutions require a proof of correctness
– Heuristics: approximate solutions

• Resource Efficiency (complexity)
– Time: number of steps to follow to obtain a

solution as a function of the input size
– Space: amount of memory required for the

algorithm execution
• Best, Average, and Worst Case Analysis

ECS289A

Time / Space Complexity

• Input size: how many units of
constant size does it take to represent
the input? This is dependent on the
computational model, but can be
thought of as the storage size of the
input. The input size is usually n.

• Running time: f(n) = const., n, log n,
Poly(n), en

ECS289A

Big Oh Notation

• Asymptotic upper bound on the number of
steps an algorithm takes (in the worst case)

• f(n) = O(g(n)) iff there is a constant c such
that for all large n, 0 <= f(n) <= c*g(n)

• More intuitively: f(n) is almost always less
than or equal to g(n), i.e. algorithm with t.c.
f(n) will almost never take more time than
one with t.c. of g(n)

ECS289A

Big Oh, examples

• Const. = O(1)
• 3n = O(n)
• 3n = O(n2)
• log n = O(n)
• Poly(n) = O(en)

• O(n) time algorithm is called linear
• O(Poly(n)) is polynomial
• O(en) is polynomial

ECS289A

Basic Complexity Theory

• Classification of Problems based on the
time/space complexity of their solutions

• Class P: Problems with polynomial time
algorithms t.c. = O(Poly(n))

• Class NP: (non-deterministic polynomial)
Problems whose solution instances can be
verified in Poly(n) time.

ECS289A

Complexity, contd.

• NP-complete problems: a polynomial algorithm
for one of them would mean all problems in NP
are polynomial time

• But, NO polynomial time algorithms for NP
problems are known

• P � NP? Still unsolved, although strongly
suspected true.

• NP complete problems: 3-SAT, Hamiltonian
Cycle, Vertex Cover, Maximal Clique, etc.
Thousands of NP-complete problems known

• Compendium:
http://www.nada.kth.se/~viggo/problemlist/compendium.html

ECS289A

Why All That?

• Many important problems in the real world
tend to be NP-complete

• That means exact solutions are
intractable, but for very small instances

• Proving a problem to be NP-complete is
just a first step: a good algorist would use
good and efficient heuristics

ECS289A

Popular Algorithms

• Sorting
• String Matching
• Graph Algorithms

– Graph representation: linked lists, incidence matrix
– Graph Traversal (Depth First and Breadth First)
– Minimum Spanning Trees
– Shortest Paths

• Linear Programming

ECS289A

Algorithmic Techniques

• Combinatorial Optimization Problems
– Find min (max) of a given function under given

constraints

• Greedy – best solution locally
• Dynamic Programming – best global

solution, if the problem has a nice structure
• Simulated Annealing: if not much is known

about the problem. Good general technique

ECS289A

Data Structures

• Once a given problem is digested,
algorithm design becomes an engineering
discipline: having a big toolbox and
matching the tools to the task at hand

• A major part of the toolbox are data
structures:
Data representations allowing efficient
performance of basic operations

ECS289A

Basic Opperations
• Store/Search:

– Search(x)
– Delete(x)
– Insert(x)

• Priority:
– FindMIN
– FindMAX

• Set:
– UnionSet
– FindElement

ECS289A

Basic Data Structures
• Static: arrays and matrices

– Array of n elements: a[i], 0 <= i <= n-1

– Matrix of n*n elements:
m[i][j], 0 <= i, j <= n-1

• Basic operations are O(1)

a[5]a[4]a[3]a[2]a[1]

54321

m[3][4]m[3][3]m[3][2]m[3][1]3

m[2][3]m[2][3]m[2][2]m[2][1]2

m[1][4]m[1][3]m[1][2]m[1][1]1

4321

ECS289A

Dynamic Data Structures: linked lists,
trees and balanced trees, hash tables

• No static memory allocation: items are added/deleted on
the go

• Linked Lists (basic operations are O(n)):

• Trees

Balanced tree: Height is O(logn).
Basic operations are O(log n)

NIL
b ca

ECS289A

Hash Tables

NILb ca

NILe fd

NILh ig

f(key)

a

b

c

d

e

f

g

h

i

Keys

A good hash function f(key) yields constant search time O(1).

ECS289A

Set Data Structures
• Given sets A={1,2,3,4} and B={1,3}
• Operations: Find, Union
• Example:

– Find(A,3) = yes
– Find(A,5) = no
– Find(B,3) = yes
– Union(A,B) = {1,2,3,4}

• Very efficient: almost linear in the number
of union+find operations

ECS289A

Graphs

• Graph G(V, E). V is a set of vertices, E a
set of edges

V1

V2

V5

V3

V4

V6

V = {v1, v2, v3, v4, v5, v6}

E = { (v1, v2), (v1, v5), (v1, v6),
(v2, v3), (v2, v5), (v2, v6),
(v3, v4), (v3, v5), (v3, v6) }

ECS289A

• Linked list representation:
v1: v2, v5, v6

v2: v1, v3, v5, v6
v3: v2, v4, v5, v6
v4: v3
v5: v1, v2, v3
v6: v1, v2, v3

• Adjacency Matrix Representation

V1

V2

V5
V3

V4

V6

00111V6

00111V5

00100V4

11110V3

11011V2

11001V1

V6V5V4V3V2
V1

ECS289A

A Greedy Clustering Example

ECS289A

• Clustering is a very important tool in
analysis of large quantities of data

• Clustering: Given a number of objects we
want to group them based on similarity

• Here we will work out a very simple
example: clustering points in a plane by
single-link hierarchical clustering

ECS289A

Clustering Points in the Plane

Problem 1: Given n points
in a plane, cluster them so that if the distance
between two points is less than D they are in the
same cluster
Input: D,
Output: Sets (clusters) of points C1, C2, …, Ck.

),(,),,(),,(222111 nnn yxpyxpyxp �

),(,),,(),,(222111 nnn yxpyxpyxp �

D

C1 C2

ECS289A

Algorithm Draft

• Calculate distances between point pairs

ECS289A

• Sort the distances in ascending order

………

d3,1p1p3

d3,2p2p3

d2,1p1p2

………

d4,3p3p4

d3,1p1p3

d7,5p5p7

Sort

ECS289A

Move through the sorted list of distances and add a new
point to a cluster if the distance is < D.

ECS289A

Algorithm in Detail

• Data Structure for the graph: adjacency matrix

• Data Structure for the clusters: Set (Union /
Find)

………

d3,1p1p3

d3,2p2p3

d2,1p1p2

ECS289A

Algorithm in detail
• Calculate distances O(n2)

– For all pairs i,j calculate d(i,j)
• Sort adjacency table O(n2 log n)
• Start with n sets, p1,p2,…,pn. Build a

linked-list representation of a graph:
– Get the next smallest distance, d(i,j)
– If d(i,j) >= D done
– Else Union(Find(pi),Find(pj))

• Traverse the graph to find the connected
components (DFS)

ECS289A

Algorithm Analysis

• Correctness:
– All distances less than D are added
– Clusters contain all points with distance < D to

some other point in the cluster

• Time complexity:
– Bounded above by the sorting step
– O(n2 log n)

ECS289A

Discussion

• This algorithm is known as Single-Link
Hierarchical Clustering

• It is a version of Kruskal’s Minimum
Spanning Tree Algorithm

• It is fast

ECS289A

Performance on Real Data

• Lousy: Chaining effects

ECS289A

Better Approaches

Problem 2: Given n points
in a plane, cluster them so that the distance
between any two points in a cluster is less than D

Input: D,
Output: Sets (clusters) of points C1, C2, …, Ck.

),(,),,(),,(222111 nnn yxpyxpyxp �

),(,),,(),,(222111 nnn yxpyxpyxp �

D

C1 C2

ECS289A

• This problem is equivalent to Complete
Link Hierarchical Clustering

• It can be shown to be NP-complete, with a
direct reduction from the Clique problem

• Also, this clustering approach yields many
small clusters

• We will talk about better clustering
approaches in this class

