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a) Oligonucleotide and b) Spotted Arrays
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Microarray Data
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• Each entry is the relative 
expression of a gene in 
test vs. control. 

• Ratio of the color 
intensities green/red 
(Cy3/Cy5) (spotted)

•Single color intensity 
(Affy) 
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• Fishing Expeditions vs. Hypotheses: differentially 
expressed genes

• Part/Whole Genome Hypotheses: cell/tissue 
classification

• Gene Expression vs. Gene Function: guilt by 
association (co-regulation)

• Transcription Regulation
• Fingerprinting
• Genome analysis
• Gene Circuitry

What Can We Do With 
Microarray Data?
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How Do We Do Those Things?

• Single Gene Differential Expression
• Similarity in Expression Patterns of Genes 

and Experiments (Classification)
• Co-regulation of Genes: function and 

pathways (Clustering)
• Network Inference (Modeling)
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Types of Microarray Data 
Experiments

• Control vs. Test
• Time-wise

– Snapshots (each experiment is different 
conditions)

– Time-Course Experiments (each experiment is 
a time-point)

• Gene-knockout (perturbation experiments)
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Microarray Data Properties

• A lot of data, but not enough!
• Many genes and few conditions (the 

dimensionality curse)
• Very few repeats (2, 3, 4, mainly)
• Data from different experiments difficult to 

compare: control conditions are different
• Inaccurate at low intensities
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Microarray Standard (MAIME)

• Environmental Conditions
• Control Conditions
• Test Conditions
• Data
• Data Processing (if any)
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Distribution of Observed Values
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Distribution of Observed Values
is ~ log-normal

log (Color Intensity) or log R/G is 
a good estimator of differential 

expression

But one can do better by properly accounting for all 
systematic sources of error
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Microarray Data Analysis
(stats)

1. Data Acquisition and Visualization
– Image quantification (spot reading)
– Dynamic Range and spatial effects
– Scatterplots
– Systematic sources of error

2. Error models and data calibration
3. Identification of differentially expressed genes

– Fold test
– T-test
– Correction for multiple testing
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1. Clustering
2. Classification
3. Local Pattern Discovery
4. Projection Methods

– PCA
– SVD

Microarray Data Analysis
(discovery, next classes)
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1. Data Visualization
• Image quantification (spot reading)

Huber et al
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• Dynamic Range and spatial effects

Huber et al
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Huber et al
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Scatterplots
• Visual Aids for Data Calibration
• Plotting Red vs Green Expression

Huber et al
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Scatterplots
• Plotting Average vs. Differential Expression

– A = log R+log G
– M = log R - log G

• Variance is increasing for low intensities, consequently 
it is difficult to capture lowly expressed genes

Huber et al
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Sources of Error

• Spotting errors (tips, robot arm etc.)
• Imbalance in Red/Green Intensities
• PCR yield variance
• Preparation protocols (RNA degrading)
• Scanner and image analysis
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2. Error Models for Data Calibration 
(normalization)

• Identification and removal of systematic 
sources of variation

• Constant Variance across all intensities

• To allow within slide and between slide 
data comparison
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A Simple, Realistic Model for 
Reducing Systematic Error

ε++=
==

bxaY

xY abundance True  intensity, Measured 

a is an additive factor, corresponding to systemic effects 
stemming from the experimental medium and does not 
result from x

b is a gain factor resulting from the relationships between 
the abundance, x, and the rest of the experiment, i.e. 
color, detector gain, hybridization, etc.

ε is a normally distributed random error
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Realistic Assumptions in the Model 
Yield Better Normalization

• The driving idea behind the model is to 
capture the variation of the variance at low 
intensities

• The normalcy assumptions are good 
approximations of real data
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Fitting the Data

• Estimating the parameters of the model
• a, b, etc.
• Possible approaches: 

– least squares fit
– Regression analysis
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Consequences of the model

• log Yr/Yg is no longer the best estimator for log 
xr/xg.

• The appropriate measure of differential 
expression becomes
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This estimator has a constant variance 
across the range of intensities

Huber et al
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3. Identification of Differentially 
Expressed Genes in Replicated 

Microarray Experiments
Which genes are 
expressed differentially 
in different 
experiments?

False Negatives
(wrongly not identified)

False Positives
(wrongly identified)

0

0

2,1

011Gene 2

101Gene 1

2,21,21,1
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Statistical Tests

• Simple Fold Test
• Student t-test
• Wilcoxon rank sum
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Simple Fold Accounting

• A gene is differentially expressed up 
(down) if log R/G > 2 (< 0.5)

• Not good for low and high intensities 
(because the distribution of log-expression 
values has tails! )
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Student-t test
Null Hypotheses Rejection:

– Hj = mean expression levels are equal for control and 
treatment for gene j, j=1,…,k

– Let x1
c,…,xnc

c and x1
t,…,xnt

t be the normalized expression 
levels of nc and nt samples, respectively, in the control 
and test groups

– t-test for gene j

deviation standard  the and average  theis  where
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p-values

• Hj is rejected if the significance of the t-test 
score is high, i.e. the probability of it 
happening at random is low (based on the 
Student-t distribution)

• Probability of happening at random: 
� > 5%
Rejection probability:
� < 0.5 %
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Correction for Multiple Hypotheses

• Even at small �, say 0.5, when testing 1000 
genes for differential expression we get 5 
hits at random: high amount of false 
positives

• Correcting for testing k hypothesis:
Bonferoni correction:

p = min( k*pt , 1 )
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Alternatives to Bonferoni

• Bonferoni is a very conservative correction, 
resulting in too many false negatives

• Westfall and Young step-down adjusted p-
values

• Not as conservative, but computationally 
intensive
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Alternatives for Student-t for 
Small Number of Replicates

• Regularized t-statistic
– Estimate additional observations based on the 

overall data

• Full Bayesian Approaches
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Adjusted vs. Unadjusted p-values

Dudoit et al
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Microarray Data Standard

• Beyond systematic errors, microarray data 
from every experiment is different:
– Environment
– Experiment design
– Data processing

• A Microarray Data standard is needed: 
MIAME: the minimal set of information 
about a microarray experiment
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