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Classification vs. Clustering

• Classification: 
– Goal: Placing objects (e.g. genes) into 

meaningful classes
– Supervised

• Clustering: 
– Goal: Discover meaningful classes
– Unsupervised
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Classification vs. Clustering

• Classification
– Needs meta-data
– Can detect “weaker” patterns, but may be 

biased

• Clustering
– No need for extra information
– Patterns need to be strong in order to be 

discovered
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More a priori knowledge helps in 
identifying weaker patterns in data
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Clustering

Data

Distance based 
cluster assignment

Clustering

Unsupervised learning step
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Clustering

Further clustering reveals only very strong signals
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Learning Methods in Computational 
Functional Genomics

Supervised 
(Classification)
(a) Single Feature
– Naïve bayes classifier

(b) Multiple Features
– Nearest Neighbor
– Decision Trees
– Gaussian Processes
– Neural Nets
– Support Vector Machines

Unsupervised 
(Clustering)

(a) Single Feature
– Nearest Neighbor
– Agglomerative Clustering 

(hierarchical)
– Partitional Clustering

• K-Means
• SOM

(b) Multiple Features
– Plaid Models
– Biclustering



ECS289A

Classification

1.Linear nearest neighbor model

2.Support Vector Machines
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Molecular Classification of Cancer
(Golub et al, Science 1999)

Overview: General approach for cancer 
classification based on gene expression 
monitoring

The authors address both:
- Class Prediction (Assignment of tumors to 
known classes)
- Class Discovery (New cancer classes)
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Cancer Classification

• Helps in prescribing necessary treatment
• Has been based primarily on 

morphological appearance
• Such approaches have limitations: similar 

tumors in appearance can be significantly 
different otherwise

• Needed: better classification scheme!
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Cancer Data

• Human Patients; Two Types of Leukemia
– Acute Myeloid Leukemia
– Acute Lymphoblastic Leukemia

• Oligo arrays data sets (6817 genes):
– Learning Set, 38 bone marrow samples, 

27 ALL, 11 AML
– Test Set, 34 bone marrow samples, 

20 ALL, 14 AML
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Classification Based on 
Expression Data

1. Selecting the most informative genes
• Class Distinctors
• Used to predict the class of unclassified genes

2. Class Prediction (Classification)
• Given a new gene, classify it based on the most 

informative genes

3. Class Discovery (Clustering)
• Using Self Organizing Maps discover new classes of 

genes
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1. Selecting “Class Distinctor” 
Genes

The goal is to select a number of genes 
whose expression profiles correlate
significantly well with an idealized class 
distinction, c

The class distinction is indicative of the 
two classes, and is uniformly high in the 
first (1=AML), and uniformly low for the 
second (0=ALL)

The correlation is calculated as: 
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Where µi’s and �i’s are the means and standard deviations of the log of 
expression levels of gene g for the samples in class AML and ALL.
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Sufficient Information for          
Class Distinction?

To test whether there are informative genes based on c, the significance of 
having highly correlated gene patterns to c was assessed by neighborhood 
analysis

Neighborhood analysis showed that 1100 genes were more highly correlated 
with the AML-ALL class distinction than would be expected by chance 
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Selecting Informative Genes

• Large values of |P(g,c)| indicate strong 
correlated

• Select 50 significantly correlated, 25 most 
positive and 25 most negative ones

• Selecting the top 50 could be possibly bad:
– If AML gene are more highly expressed than 

ALL
– Unequal number of informative genes for each 

class
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2. Class Prediction
• Given a sample, classify it in AML or ALL
• Method: 

– Each of the fixed set of informative genes makes a prediction
– The vote is based on the expression level of these genes in the new 

sample, and the degree of correlation with c
– Votes are summed up to determine

• The winning class and
• The prediction strength (ps)
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Validity of Class Predictions

• Leave-one-out Cross 
Validation with the 
initial data

• Validation on an 
independent data set 
(test)
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List of Informative Genes
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3. Class Discovery

• What if the AML-ALL class distinction was 
not known before hand? Could we 
discover it automatically?

• Golub et al used an SOM clustering to 
discover two classes, and finer subclasses
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Finer Classes
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Conclusions

• Linear nearest-neighbor discriminators are 
quick, and identify strong informative signals well

• Easy and good biological validation
But
• Only gross differences in expression are found. 

Subtler differences cannot be detected
• The most informative genes may not be also 

biologically most informative. It is almost always 
possible to find genes that split samples into two 
classes
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Support Vector Machines

• Inventor: V. N. Vapnik, late seventies
• Area of Origin: Theory of Statistical Learning
• In short: AI + Statistics
• Have shown promissing results in many areas:

– OCR
– Object recognition
– Voice recognition
– Biological sequence data analysis
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Feature Space

Kernel Methods Basics
KM can be used as classifiers for data classes 
with complex discrimination boundaries
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Original Space

Kernel Functions map the data to higher dimensions 
where the discrimination boundary is simpler
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Linear Learning Machines

Binary classification problem
– Given: n training pairs, (<xi>, yi), where 

<xi>=(xi1,xi2,…,xik) is an input vector, and 
yi=+1/-1, is the corresponding classification 
into two classes H+ and H-

– Out: A label y for a new vector x, as a function 
of the training pairs

y=D(x,(<xi,yi>))
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Linear Discriminator Function

The classification of new examples, x, is 
based on all the previous ones, weighted by:
– λi, measuring the importance of example i, 

and
– The kernel K(xi,x), measuring the similarity of 

new example x to the training xi
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Linear Classification
• Learn the class labels, yi, on the training 

set
– The Perceptron algorithm
– Optimization: 0,1 Integer program
– Many possible consistent classifiers

• Classify a new example, x, based on which 
side of the classifier line it is
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Discriminators and Support 
Vectors
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Discriminator (Line)

Support vectors

Goal: To find good discriminators by maximizing the margins

Margins of the training set
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Non-Linear Case

• Notice that the data during training 
appears only as a dot product

• Kernel functions, 
• Thus, the original data can be mapped, 

with a suitable mapping φ, to a space in 
which the discrimination task is easier

• All we need is such a decomposable 
Kernel function K

)()(),( jiji xxxxK φφ ⋅=
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Possible Kernel Functions

)tanh( :KernelNetwork  Neural

 :Kernel Basis Radial

1  :kernels Polynomial

2

2

2

κµ +

⋅+

−

j
t

i

�

xi-xj

m
ji

xx

e

)xx(



ECS289A

Practical Considerations When 
Training the SVMs

• Computationally expensive to compute 
the Kernel function for each pair of 
elements

• Solution: Use only part of the data, 
preferably the part that contributes most 
to the decision boundary

• How do we do that? Heuristics
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Using SVMs to Classify Genes 
Based on Microarray Expression

“Knowledge-based analysis of microarray 
gene expression data by using support 
vector machines”, Brown et al., PNAS 
2000

A method of functionally classifying genes 
based on DNA Microarray expression data 
based on the theory of SVMs.
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Method

• A training data set
– (1) genes that are known to have the same 

function, f, and
– (2) genes that are known to have a different 

function than f
• Such a training set can be obtained from 

publicly available data sources
• Use the SVM machinery on the above and 

predict known and new examples, and 
compare to other classification methods
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Data

• Yeast genes
• Training data

– 2467 genes
– 79 hybridiztion exp.

• Test Data
– 6221 genes (including all above)
– 80 hybridization exp. (65 from above + 15 others)

• Functional classifications
– Five functional classes from MYGD
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Kernels and Other Methods

• Kernels used
– Polynomial, degrees 1, 2, and 3
– Radial

• Compared to four other methods
– Parzen windows
– Fisher’s linear discriminant
– Two decision tree learners

• Tested false positives, false negatives, true 
positives, true negatives, and overall perf.
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Results
-The SVMs outperform 
the other methods.

-Unannotated genes 
were predicted to be in 
functional classes

- Some functional 
classes cannot be 
predicted with SVMs
possibly because they 
have little to do with gene 
expression
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