Microarray Data Analysis:
Discovery

Lecture 5
Classification
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Classification vs. Clustering

e Classification:

— Goal: Placing objects (e.g. genes) into
meaningful classes

— Supervised

 Clustering:
— Goal: Discover meaningful classes
— Unsupervised
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Classification vs. Clustering

* Classification
— Needs meta-data

— Can detect “weaker” patterns, but may be
biased

 Clustering

— No need for extra information

— Patterns need to be strong in order to be
discovered
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More a priori knowledge helps in
identifying weaker patterns in data
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Clustering
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Clustering

Further clustering reveals only very strong signals
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Learning Methods in Computational

Functional Genomics

Unsupervised
(Clustering)

(a) Single Feature

—  Nearest Neighbor
Agglomerative Clustering

Supervised
(Classification)

(a) Single Feature
— Naive bayes classifier

(b) Multiple Features (hierarchical)

— Nearest Neighbor —  Partitional Clustering
— Decision Trees « K-Means

— Gaussian Processes « SOM

— Neural Nets (b) Multiple Features

— Support Vector Machines —  Plaid Models

—  Biclustering
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Classification

1.Linear nearest neighbor model

2.Support Vector Machines
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Molecular Classification of Cancer
(Golub et al, Science 1999)

Overview:

The authors address both:

- Class Prediction (Assignment of tumors to
known classes)

- Class Discovery (New cancer classes)
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Cancer Classification

-elps Iin prescribing necessary treatment

-Has been based primarily on
morphological appearance

Such approaches have limitations: similar
tumors in appearance can be significantly
different otherwise

Needed: better classification scheme!
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Cancer Data

 Human Patients; Two Types of Leukemia
— Acute Myeloid Leukemia
— Acute Lymphoblastic Leukemia

 Oligo arrays data sets (6817 genes):

— Learning Set, 38 bone marrow samples,
27 ALL, 11 AML

— Test Set, 34 bone marrow samples,
20 ALL, 14 AML
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Classification Based on
Expression Data

1. Selecting the most informative genes
« Class Distinctors
« Used to predict the class of unclassified genes

2. Class Prediction (Classification)

« @Given a new gene, classify it based on the most
informative genes

3. Class Discovery (Clustering)

« Using Self Organizing Maps discover new classes of
genes
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1. Selecting “Class Distinctor”
Genes

The goal is to select a number of genes

whose expression profiles correlate AML AL

significantly well with an idealized class
distinction, ¢ ¢ =(11.1,1,1,1,0,0,0,0,0,0)

The class distinct@on ig indicati\_/e o.f the dene, (e et . e
two classes, and is uniformly high in the

first (1=AML), and uniformly low for the ]
second (0=ALL) gene2=(e], €283, . .. ,312) '||_I H H|'| HH |'

The correlation is calculated as:
P(g,¢)= (i, — 1t,) (0, = 0,)

Where p’s and o;'s are the means and standard deviations of the log of
expression levels of gene g for the samples in class AML and ALL.
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Sufficient Information for
Class Distinction?

To test whether there are informative genes based on c, the significance of
having highly correlated gene patterns to ¢ was assessed by neighborhood
analysis

Neighborhood analysis showed that 1100 genes were more highly correlated
with the AML-ALL class distinction than would be expected by chance
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Selecting Informative Genes

» Large values of |P(g,c)| indicate strong
correlated

» Select 50 significantly correlated, 25 most
positive and 25 most negative ones

» Selecting the top 50 could be possibly bad:

— If AML gene are more highly expressed than
ALL

— Unequal number of informative genes for each
class
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2. Class Prediction

« @Given a sample, classify it in AML or ALL
* Method:

— Each of the fixed set of informative genes makes a prediction

— The vote is based on the expression level of these genes in the new
sample, and the degree of correlation with ¢

— Votes are summed up to determine
« The winning class and
» The prediction strength (ps)

AML  ALL Weight

HamL ! Mall
gene, [ ! > V1 Wy
gene, | — | V2 wo
genes | -(—: | Vg w3
gene, | : B> V4 Wy
gene: | : > Vs wsg

ECS289A




Validity of Class Predictions

 Leave-one-out Cross

Validation with the o
Initial data
 Validation on an g _:*_ T

iIndependent data set
(test)
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Ist of Informative Genes
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3. Class Discovery

« What if the AML-ALL class distinction was
not known before hand? Could we
discover it automatically?

» Golub et al used an SOM clustering to
discover two classes, and finer subclasses
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Finer Classes

HALL ®AML
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Conclusions

* Linear nearest-neighbor discriminators are
quick, and identify strong informative signals well

« Easy and good biological validation

But

« Only gross differences in expression are found.
Subtler differences cannot be detected

« The most informative genes may not be also
biologically most informative. It is almost always
possible to find genes that split samples into two
classes
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Support Vector Machines

Inventor: V. N. Vapnik, late seventies
Area of Origin: Theory of Statistical Learning
In short: Al + Statistics

Have shown promissing results in many areas:
— OCR

— Obiject recognition

— Voice recognition

— Biological sequence data analysis
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Kernel Methods Basics

KM can be used as classifiers for data classes
with complex discrimination boundaries

Kernel Functions map the data to higher dimensions

where the discrimination boundary 1s simpler

yL

Original Space

Discriminating Function

P(x;)

D (x) v

mapping L |e
/ Li

Feature Space
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Linear Learning Machines

Binary classification problem

— Given: ntraining pairs, (<x;>, y;), where
<X>=(X;;,Xi5,---,Xy) 1S @n input vector, and
y=+1/-1, Is the corresponding classification
into two classes H, and H.

— Qut: A label y for a new vector x, as a function
of the training pairs

y=D(x,(<x,y>))
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Linear Discriminator Function

The classification of new examples, x, Is
based on all the previous ones, weighted by:

— A, measuring the importance of example |,
and

— The kernel K(x;,x), measuring the similarity of
new example x to the training x;

Y = D(x) = ZyiliK(xl.,x)
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Linear Classification

 Learn the class labels, y,, on the training
set
— The Perceptron algorithm
— Optimization: 0,1 Integer program
— Many possible consistent classifiers

» Classify a new example, x, based on which
side of the classifier line it is

y=D(x,(<x;,>,y,))=<<y>x>+b

= Zn: y,Xx; +b
i=1
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Discriminators and Support
Vectors

Discriminator (Line)

»

A

Margins of the training set

N s

Support vectors

Goal: To find good discriminators by maximizing the margins
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Non-Linear Case

Notice that the data during training
appears only as a dot product
Kernel functions, K(x;,x;,)=¢(x,) ¢(x;)

Thus, the original data can be mapped,

with a suitable mapping ¢, to a space In
which the discrimination task I1s easier

All we need is such a decomposable
Kernel function K
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Possible Kernel Functions

Polynomial kernels: (1+x; - x; )"

_‘xi-xj‘z

Radial Basis Kernel :e 27

Neural Network Kernel : tanh(sx; x; + )
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Practical Considerations When
Training the SVMs

« Computationally expensive to compute
the Kernel function for each pair of
elements

 Solution: Use only part of the data,
preferably the part that contributes most
to the decision boundary

« How do we do that? Heuristics
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Using SVMs to Classify Genes
Based on Microarray Expression

“Knowledge-based analysis of microarray
gene expression data by using support
vector machines”, Brown et al., PNAS
2000

A method of functionally classifying genes
based on DNA Microarray expression data
based on the theory of SVMs.
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Method

A training data set

— (1) genes that are known to have the same
function, f, and

— (2) genes that are known to have a different
function than f
« Such a training set can be obtained from
publicly available data sources

« Use the SVM machinery on the above and
predict known and new examples, and
compare to other classification methods
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Data

Yeast genes

Training data

— 2467 genes

— 79 hybridiztion exp.

Test Data

— 6221 genes (including all above)

— 80 hybridization exp. (65 from above + 15 others)

Functional classifications
— Five functional classes from MYGD
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Kernels and Other Methods

« Kernels used
— Polynomial, degrees 1, 2, and 3
— Radial
« Compared to four other methods
— Parzen windows
— Fisher’s linear discriminant
— Two decision tree learners

« Tested false positives, false negatives, true
positives, true negatives, and overall pert.
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Results

Table 1. Comparisan

-The SVMs outperform
the other methods.

-Unannotated genes
were predicted to be in
functional classes

- Some functional
classes cannot be
predicted with SVMs
possibly because they
have little to do with gene
expression

of errar rates for wvarious classification

methods
Class FAetihod P Fi TP T SN
T D-p 1 SWhA 13 5 12 2,43 1=
- 2 5wl 7 k=] s 2,442 =]
D-p 3 SWhv Ll k= a8 2,49 12
Radial 5%WhkA1 5 =] 2 2,445 11
Parzen e 12 = 2,446 &
FLI> =] 1 7 2,441 5
4.5 7 17 0 2,443 =i
RACHC Y E 16 1 2.4496 —1
Resp C-p 1 SWiv 15 7 22 2,422 =1
D-p & 5w i 7 2= 2,430 2o
B-p 3 SWhi 5] s 22 2,431 =8
Radial 5w 5 11 19 2,432 33
FParzen 22 10 20 2415 15
FLD 10 10 20 2,427 30
Lad. 3821 18 17 13 2,419 =2
MC 12 26 a2 2,425 -~
Ribo - 1 5% A 1< = TTe 2,332 224
D 2 5w 9 2 119 2,337 9
i3 3 SV rFa = 118 2,339 229
Radial SWhT =3 5 116 2.340 226
FParzen [ 8 113 2,330 220
FLE 15 = 116 2,331 217
c4a.5 37 21 100 2.315 T69
AT Z& 25 oS Z.320 164
Prot D52 T SWhA 21 7 =5 2,417 35
D 2 5WhA ] = 7 2,426 48
D-p 2 SWVRA 3 = 27 Z. 229 51
Radial Swh 2 =2 27 2,430 52
Farzen 21 = 3240 2,471 3o
FLD ) 12 23 2,425 39
a5 7T 10 25 2,415 33
P 10 = 13 2,422 peX =1
Hist E-p 1 SWRA a 2 =] 2,455 18
B-p £ SWivl o ped a 2.156 8
D-p 3 5%WhA L& ] =2 = 2,456 15
Rachial 5w Q 2 9 2,456 18
Parzen =z = 8 =2, 454 14
FLD Qa 3 =2 Z. 456 16
4.5 2 2 b= 2,454 16
MIC 1 2 5 & 2,454 1a
HTH D-p 1 5wha SO T4 2 2,391 — 56
D 2 SWha 3 16 o Z. 448 -3
Do 3 SWhi 1 16 Q 2,450 -1
Radial swiha a 16 L8] 2.451 a
Parzen 14 16 Lol 2.437F — 14
FLD 14 =] Q 2.437F —14
4.5 2 15 Qa 2,499 -
PACTHC T =] 1& Q 2,445 — &
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