Microarray Data Analysis: Discovery

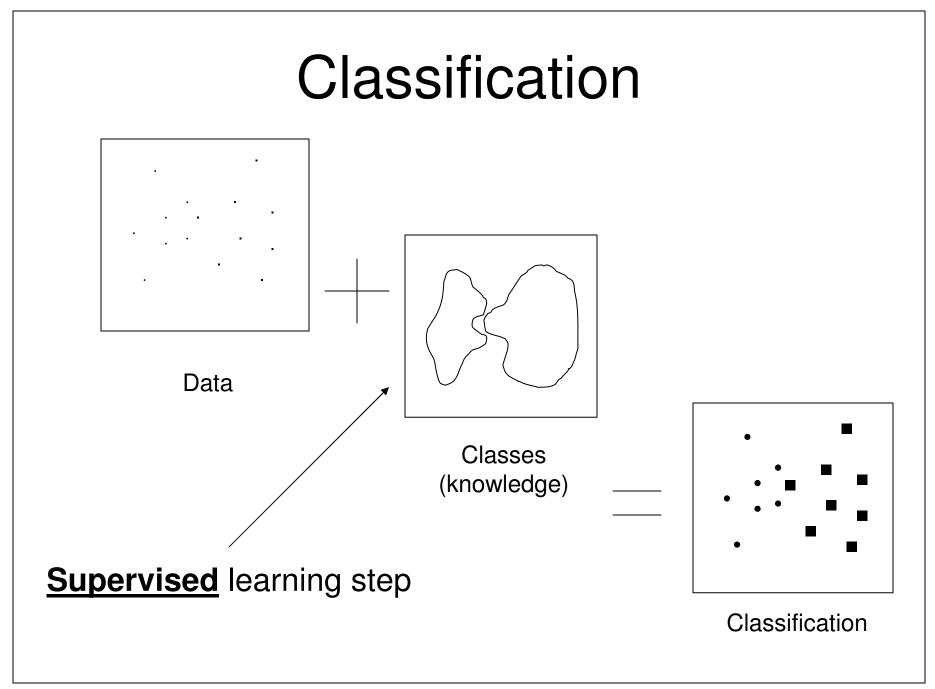
Lecture 5 Classification

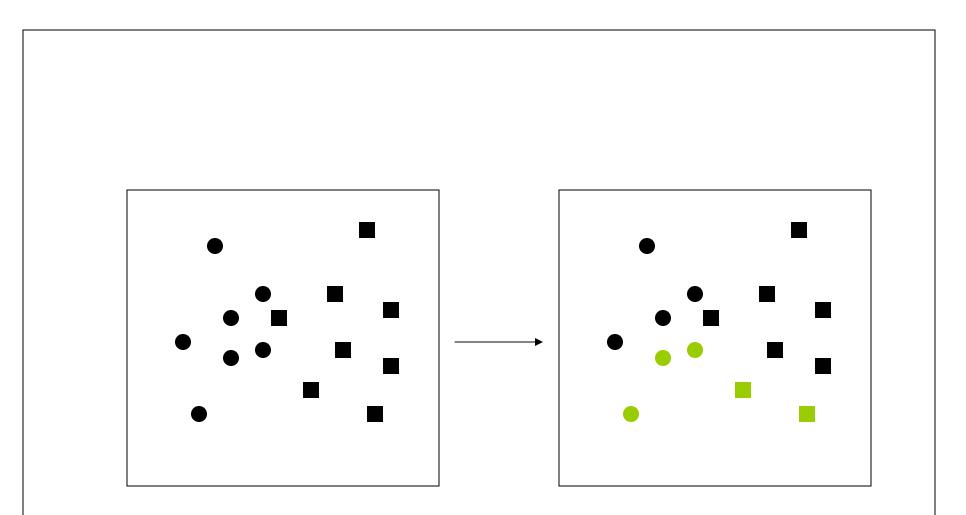
Classification vs. Clustering

- Classification:
 - Goal: Placing objects (e.g. genes) into meaningful classes
 - <u>Supervised</u>
- Clustering:
 - Goal: Discover meaningful classes
 - <u>Unsupervised</u>

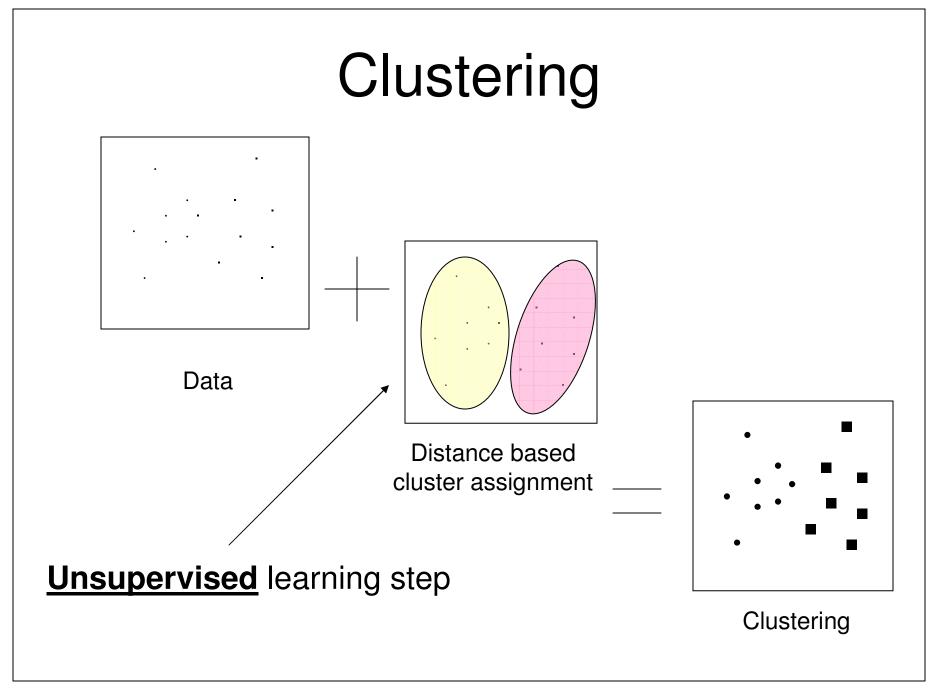
Classification vs. Clustering

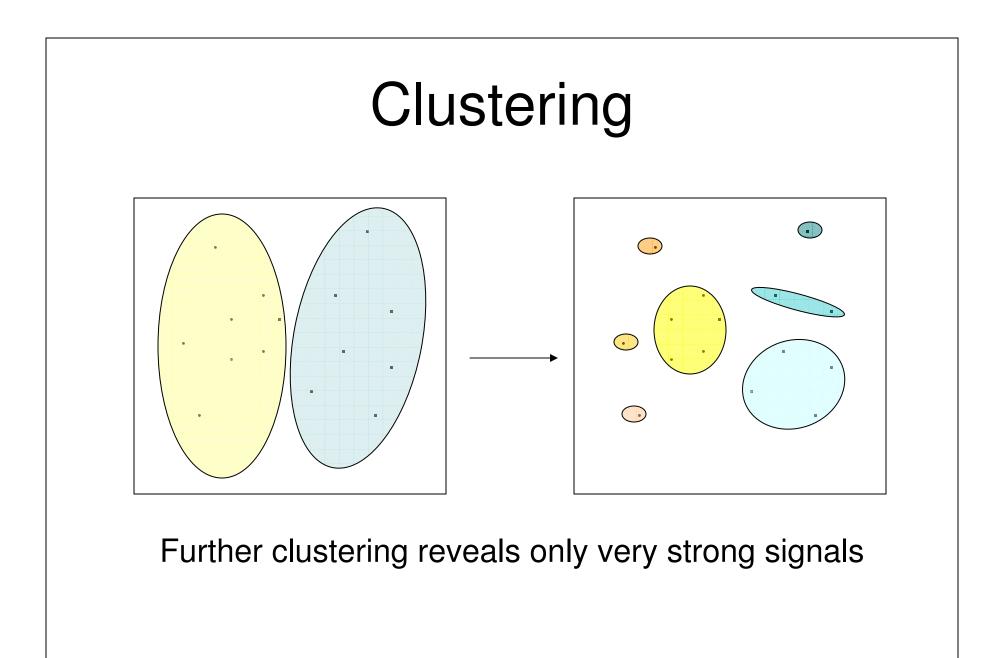
- Classification
 - Needs meta-data
 - Can detect "weaker" patterns, but may be biased
- Clustering
 - No need for extra information
 - Patterns need to be strong in order to be discovered





More a priori knowledge helps in identifying weaker patterns in data





Learning Methods in Computational Functional Genomics

Supervised (Classification)

- (a) Single Feature
- Naïve bayes classifier
- (b) Multiple Features
- Nearest Neighbor
- Decision Trees
- Gaussian Processes
- Neural Nets
- Support Vector Machines

Unsupervised (Clustering)

- (a) Single Feature
- Nearest Neighbor
- Agglomerative Clustering (hierarchical)
- Partitional Clustering
 - K-Means
 - SOM
- (b) Multiple Features
- Plaid Models
- Biclustering

Classification

1. Linear nearest neighbor model

2. Support Vector Machines

Molecular Classification of Cancer

(Golub et al, Science 1999)

Overview: General approach for cancer classification based on gene expression monitoring

The authors address both:

- Class Prediction (Assignment of tumors to known classes)

- Class Discovery (New cancer classes)

Cancer Classification

- Helps in prescribing necessary treatment
- Has been based primarily on morphological appearance
- Such approaches have limitations: similar tumors in appearance can be significantly different otherwise
- Needed: better classification scheme!

Cancer Data

- Human Patients; Two Types of Leukemia
 - Acute Myeloid Leukemia
 - Acute Lymphoblastic Leukemia
- Oligo arrays data sets (6817 genes):
 - <u>Learning Set</u>, 38 bone marrow samples,
 27 ALL, 11 AML
 - <u>Test Set</u>, 34 bone marrow samples,
 20 ALL, 14 AML

Classification Based on Expression Data

- 1. Selecting the most informative genes
 - Class Distinctors
 - Used to predict the class of unclassified genes
- 2. Class Prediction (Classification)
 - Given a new gene, classify it based on the most informative genes
- 3. Class Discovery (Clustering)
 - Using Self Organizing Maps discover new classes of genes

1. Selecting "Class Distinctor" Genes

C = {

The goal is to select a number of genes whose expression profiles correlate significantly well with an *idealized class* distinction, c

The class distinction is indicative of the two classes, and is uniformly high in the first (1=AML), and uniformly low for the second (0=ALL)

The correlation is calculated as:

 $P(g,c) = (\mu_1 - \mu_2)/(\sigma_1 - \sigma_2)$

Where μ_i 's and σ_i 's are the means and standard deviations of the log of expression levels of gene g for the samples in class AML and ALL.

$$AML ALL$$

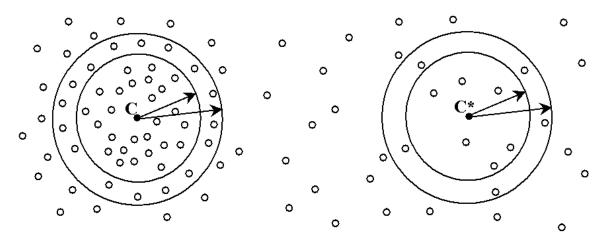
$$c = (1,1,1,1,1,1,0,0,0,0,0,0)$$

$$gene_1 = (e_1, e_2, e_3, \dots, e_{12})$$

$$gene_2 = (e_1, e_2, e_3, \dots, e_{12})$$

Sufficient Information for Class Distinction?

To test whether there are informative genes based on c, the significance of having highly correlated gene patterns to c was assessed by <u>neighborhood</u> <u>analysis</u>



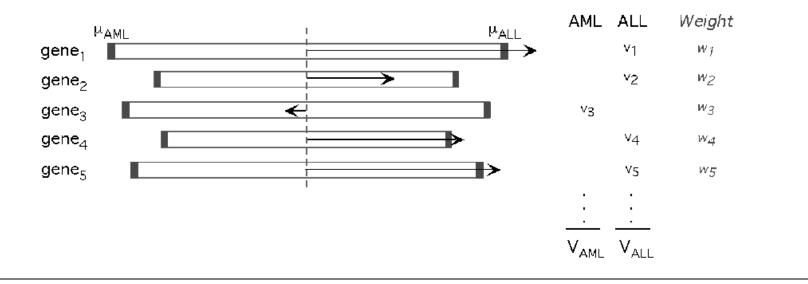
Neighborhood analysis showed that 1100 genes were more highly correlated with the AML-ALL class distinction than would be expected by chance

Selecting Informative Genes

- Large values of |P(g,c)| indicate strong correlated
- Select 50 significantly correlated, 25 most positive and 25 most negative ones
- Selecting the top 50 could be possibly bad:
 - If AML gene are more highly expressed than ALL
 - Unequal number of informative genes for each class

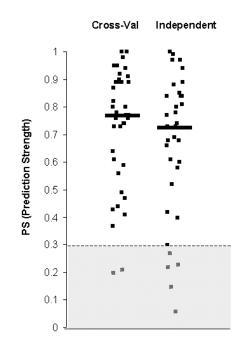
2. Class Prediction

- Given a sample, classify it in AML or ALL
- Method:
 - Each of the fixed set of informative genes makes a prediction
 - The vote is based on the expression level of these genes in the new sample, and the degree of correlation with c
 - Votes are summed up to determine
 - The winning class and
 - The prediction strength (ps)

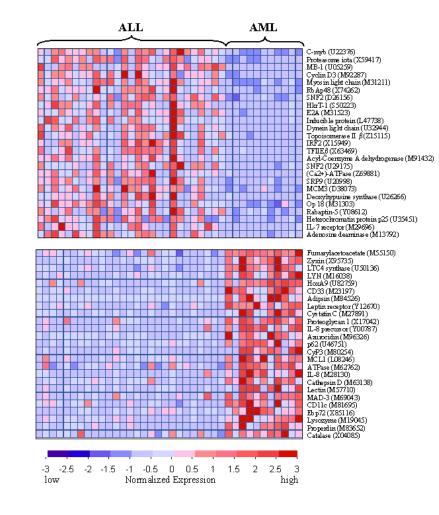


Validity of Class Predictions

- Leave-one-out Cross Validation with the initial data
- Validation on an independent data set (test)

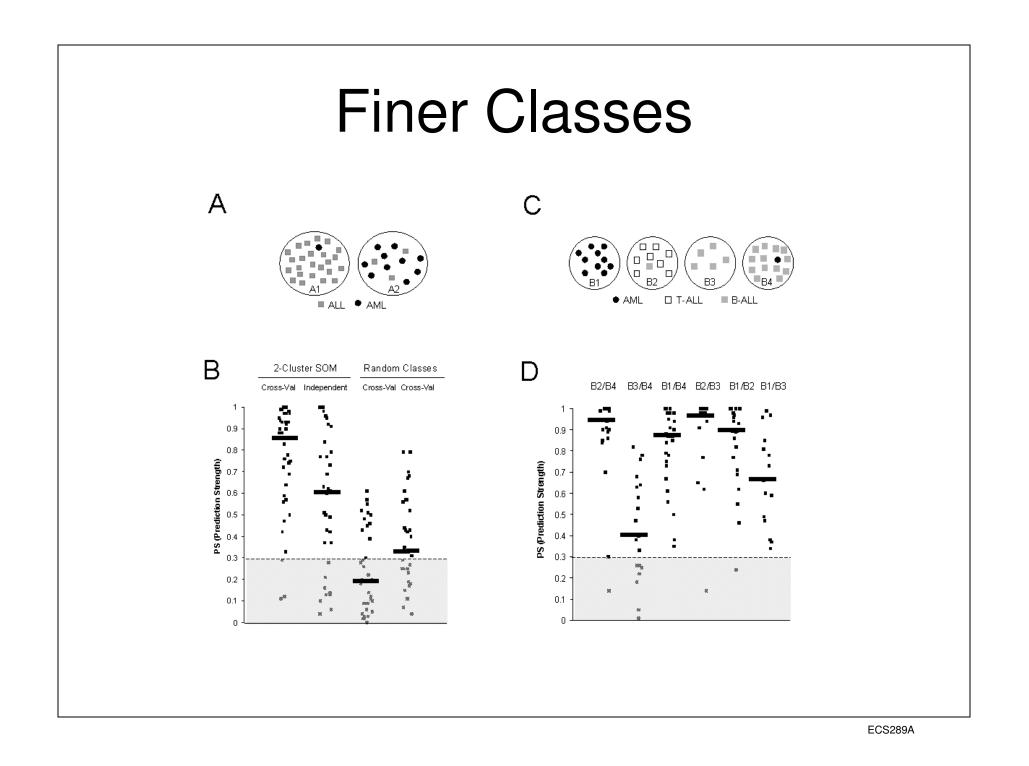


List of Informative Genes



3. Class Discovery

- What if the AML-ALL class distinction was not known before hand? Could we discover it automatically?
- Golub et al used an SOM clustering to discover two classes, and finer subclasses



Conclusions

- Linear nearest-neighbor discriminators are quick, and identify strong informative signals well
- Easy and good biological validation

<u>But</u>

- Only gross differences in expression are found.
 Subtler differences cannot be detected
- The most informative genes may not be also biologically most informative. It is almost always possible to find genes that split samples into two classes

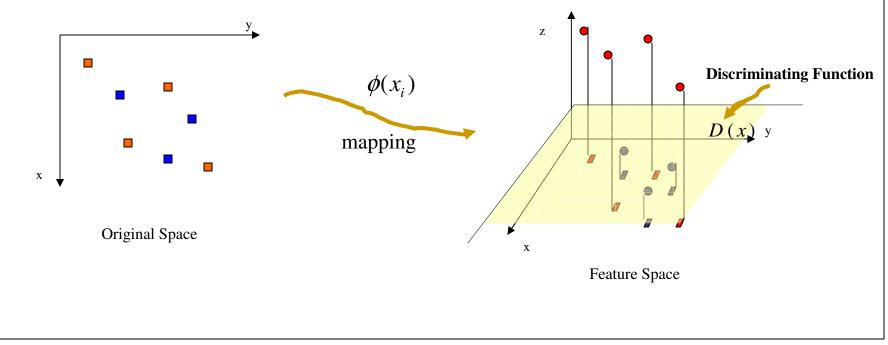
Support Vector Machines

- Inventor: V. N. Vapnik, late seventies
- Area of Origin: Theory of Statistical Learning
- In short: <u>AI + Statistics</u>
- Have shown promissing results in many areas:
 - OCR
 - Object recognition
 - Voice recognition
 - Biological sequence data analysis

Kernel Methods Basics

KM can be used as classifiers for data classes with complex discrimination boundaries

<u>Kernel Functions</u> map the data to higher dimensions where the <u>discrimination boundary</u> is simpler



Linear Learning Machines

Binary classification problem

- Given: *n* training pairs, $(\langle x_i \rangle, y_i \rangle)$, where $\langle x_i \rangle = (x_{i1}, x_{i2}, \dots, x_{ik})$ is an input vector, and $y_i = +1/-1$, is the corresponding classification into two classes H_+ and H_-
- Out: A label y for a new vector x, as a function of the training pairs

 $y = D(x, (< x_i, y_i >))$

Linear Discriminator Function

The classification of new examples, *x*, is based on all the previous ones, weighted by:

- λ_i , measuring the importance of example *i*, and
- The kernel $K(x_i, x)$, measuring the similarity of new example x to the training x_i

$$y = D(x) = \sum_{i} y_i \lambda_i K(x_i, x)$$

Linear Classification

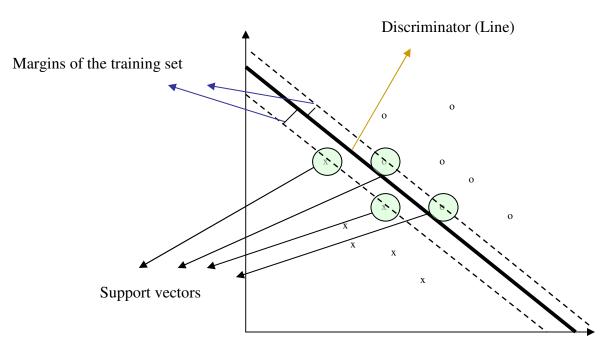
- Learn the class labels, y_i, on the training set
 - The Perceptron algorithm
 - Optimization: 0,1 Integer program
 - Many possible consistent classifiers
- Classify a new example, x, based on which side of the classifier line it is

$$y = D(x, (< x_i >, y_i)) = << y > \cdot x > +b$$

= $\sum_{i=1}^{n} y_i x_i + b$

$$\sum_{i=1} y_i x_i +$$

Discriminators and Support Vectors



Goal: To find good discriminators by maximizing the margins

Non-Linear Case

- Notice that the data during training appears only as a dot product
- Kernel functions, $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$
- Thus, the original data can be mapped, with a suitable mapping φ, to a space in which the discrimination task is easier
- All we need is such a decomposable Kernel function K

Possible Kernel Functions

Polynomial kernels: $(1 + x_i \cdot x_j)^m$

Radial Basis Kernel : $e^{\frac{|xi-xj|^2}{2\sigma^2}}$

Neural Network Kernel: $tanh(\mu x_i^t x_j + \kappa)$

Practical Considerations When Training the SVMs

- Computationally expensive to compute the Kernel function for each pair of elements
- Solution: <u>Use only part of the data</u>, <u>preferably the part that contributes most</u> <u>to the decision boundary</u>
- How do we do that? Heuristics

Using SVMs to Classify Genes Based on Microarray Expression

"Knowledge-based analysis of microarray gene expression data by using support vector machines", Brown et al., PNAS 2000

A method of functionally classifying genes based on DNA Microarray expression data based on the theory of SVMs.

Method

- A training data set
 - (1) genes that are known to have the same function, f, and
 - (2) genes that are known to have a different function than f
- Such a training set can be obtained from publicly available data sources
- Use the SVM machinery on the above and predict known and new examples, and compare to other classification methods

Data

- Yeast genes
- Training data
 - 2467 genes
 - 79 hybridiztion exp.
- Test Data
 - 6221 genes (including all above)
 - 80 hybridization exp. (65 from above + 15 others)
- Functional classifications
 - Five functional classes from MYGD

Kernels and Other Methods

- Kernels used
 - Polynomial, degrees 1, 2, and 3
 - Radial
- Compared to four other methods
 - Parzen windows
 - Fisher's linear discriminant
 - Two decision tree learners
- Tested false positives, false negatives, true positives, true negatives, and overall perf.

Results

-The SVMs outperform the other methods.

-Unannotated genes were predicted to be in functional classes

- Some functional classes cannot be predicted with SVMs possibly because they have little to do with gene expression

lass	Method	FP	FN	TP	TN	5(M)
TCA	D-p 1 SVM	18	5	12	2,432	6
	D-p Z SVM	7	9	8	2,443	<u> </u>
	D-p 3 SVM	4	9	8	2,446	12
	Radial SVM	5	9	8	2,445	1
	Parzen	4	12	5	2,446	6
	FLD	9	10	7	2,441	
	C4.5	7	17	0	2,443	
	MOC1	з	16	1	2,446	
Resp	D-p 1 SVM	15	7	23	2,422	3
	D-p 2 SVM	7	7	23	2,430	3
	D-p 3 SVM	6	8	22	2,431	3
	Radial SVM	5	11	19	2,432	з
	Parzen	22	10	20	2,415	1
	FLD	10	10	20	2,427	3
	C4.5	18	17	13	2,419	
	MOC1	12	26	4	2,425	
Ribo	D-p 1 SVM	14	2	119	2,332	22
	D-p 2 SVM	9	2	119	2.337	22
	D-D3SVM	7	3	118	2,339	22
	Radial SVM	6	5	116	2,340	22
	Parzen	6	8	113	2,340	22
	FLD	15	5	116	2,331	21
	C4.5	31	21	100	2,315	16
	MOC1	26	26	95	2.320	16
Prot Hist	D-p 1 SVM	21	7	28	2.411	3
	D-p 2 SVM	6	8	27	2,426	4
	D-D 3 SVM	3	8	27	2,429	5
	Radial SVM	2	8	27	2,430	5
	Parzen	21	5	30	2,411	3
	FLD	7	12	23	2,425	3
	C4.5	17	10	25	2,415	3
	MOC1	10	17	18	2.422	2
	D-p 1 SVM	0	2	9	2,456	1
	D-p 2 5VM	ŏ	2	9	2,456	1
	D-p 3 5VM	ä	z	9	2,456	1
	Radial SVM	õ	2	9	2,456	1
	Parzen	2	3	8	2,454	1
	FLD	0	3	8	2,456	i
	C4.5	2	2	9	2,454	1
	MOC1	2	5	6	2,454	1
нтн	D-p 1 SVM	60	14	z	2,391	-5
	D-p 2 SVM	3	16	õ	2,448	
	D-p 3 5VM	1	16	õ	Z,450	122
	Radial SVM	ò	16	ő	2,451	6
	Parzen	14	16	ő	2,431	-1
	FLD	14	16	ő	2,437	-1
	C4.5	14	16	0	2,437	

Table 1. Comparison of error rates for various classification

References and Further Reading

- Golub et al., Molecular Classification of Cancer, Science, 1999
- Brown et al., PNAS, 2000
- Kohane, Kho, Butte. Microarrays for an Integrative Genomics, MIT Press, 2003
- Baldi, Hatfield. DNA Microarrays and Gene Expression, Cambridge, 2002
- Cristianini and Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge, 2000
- Shamir, Analysis of Gene Expression Data, Tel Aviv University, 2002, Lecture 7. http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec07.pdf