# Clustering

Lecture 6, 1/24/03

### What is Clustering?

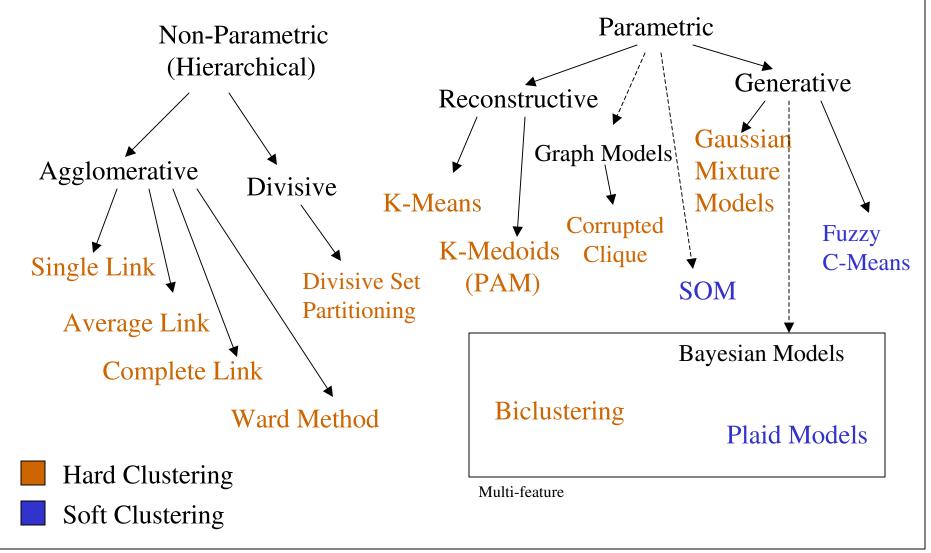
Given n objects, assign them to groups (clusters) based on their similarity

- Unsupervised Machine Learning
- Class <u>Discovery</u>
- Difficult, and maybe ill-posed problem!

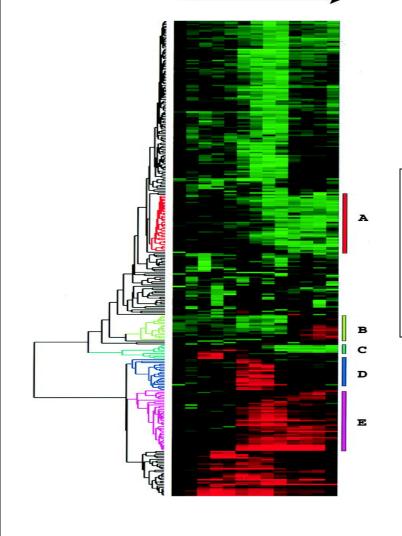
# Cluster These ...



### **Clustering Approaches**



# Clustering Microarray Data



Clustering reveals similar expression patterns, in particular in time-series expression data

<u>Guilt-by-association:</u> a gene of unknown function has the same function as a similarly expressed gene of known function

Genes of similar expression <u>might be</u> similarly regulated

# How To Choose the Right Clustering?

- Data Type:
  - Single array measurement?
  - Series of experiments
- Quality of Clustering
- Code Availability
- Features of the Methods
  - Computing averages (sometimes impossible or too slow)
  - Sensitivity to Perturbation and other indices
  - Properties of the clusters
  - Speed
  - Memory

### Distance Measures, d(x,y)

Certain properties are expected from distance measures

- 1. d(x,y)=0
- 2. d(x,y)>0, x≠y
- 3. d(x,y)=d(y,x)
- 4.  $d(x,y) \le d(x,z) + d(z,y)$  the triangle inequality

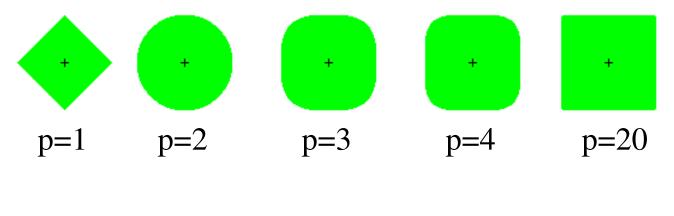
If properties 1-4 are satisfied, the distance measure is a <u>metric</u>

The L<sub>p</sub> norm  

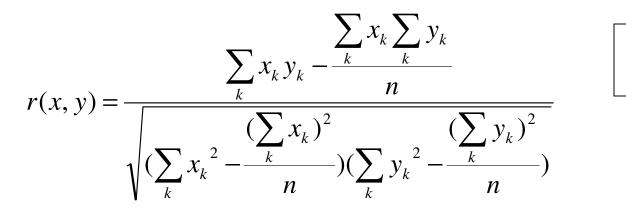
$$d(x, y) = \sqrt[p]{|x_1 - y_1|^p} + ... + |x_n - y_n|^p$$

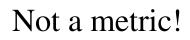
p = 2, Euclidean Dist.  $p = \infty$ , Manhattan Dist.(downtown Davis distance)

Equidistant points from a center, for different norms

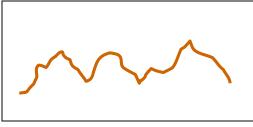


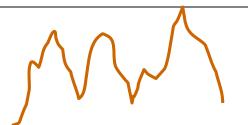
Pearson Correlation Coefficient (Normalized vector dot product)





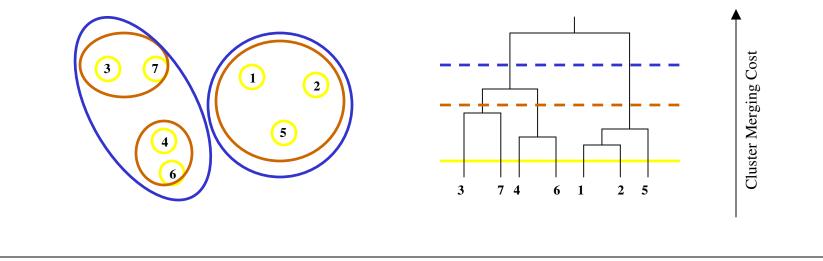
Good for comparing expression profiles because it is insensitive to scaling (but data should be normally distributed, e.g. log expression)!





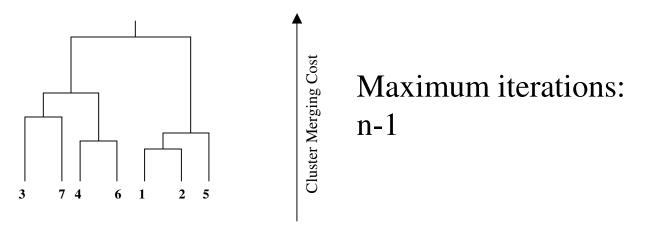
# Hierarchical Clustering

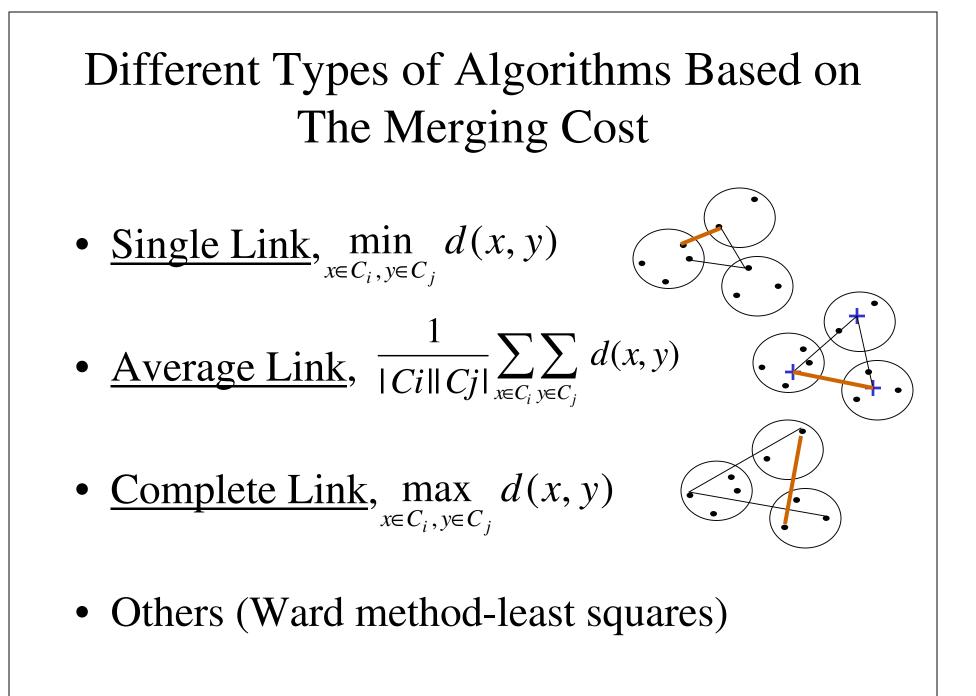
- <u>Input</u>: Data Points,  $x_1, x_2, \dots, x_n$
- <u>Output</u>:Tree
  - the data points are leaves
  - Branching points indicate similarity between sub-trees
  - Horizontal cut in the tree produces data clusters



### General Algorithm

- 1. Place each element in its own cluster,  $C_i = \{x_i\}$
- 2. Compute (update) the <u>merging cost</u> between every pair of elements in *the set of clusters* to find the two <u>cheapest</u> to merge clusters  $C_i$ ,  $C_i$ .
- 3. Merge  $C_i$  and  $C_j$  in a new cluster  $C_{ij}$  which will be the parent of  $C_i$  and  $C_j$  in the result tree.
- 4. Go to (2) until there is only one set remaining





# Characteristics of Hierarchical Clustering

- Greedy Algorithms suffer from local optima, and build a few big clusters
- A lot of guesswork involved:
  - Number of clusters
  - Cutoff coefficient
  - Size of clusters
- Average Link is fast and not too bad: biologically meaningful clusters are retrieved

| ALPE ELU CDC15 SPO ET D C DE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | STU2     CYTOSKELETON     SPINULE POLE BODY COMPOSENT       DES1     DEA REPAIR     RECONCLEASER, MAD RECOMMENDATION       SEC42     CYTOSKELETON     ACTIN FILAMENT ORIANIZATION       SEC43     CYTOSKELETON     SPINULE POLE BODY COMPOSENT       CH64     CH12     CYTOSKELETON       CH165     CYTOSKELETON     SPINULE POLE BODY COMPOSENT       CH64     CH12     CYTOSKELETON       CH165     CYTOSKELETON     SPINULE POLE BODY COMPOSENT       CH165     CYTOSKELETON     SEPTIN       CH265     CYT                                                                                                                                                        |
|                              | PHUL1     PROTEIN DEGRACATION     245 PROTEACH RECLATORY SUBURIT       TUD1     PROTEIN DEGRACATION     245 PROTEACH SUBURACATION       PHUT     PROTEIN DEGRACATION     245 PROTEACH SUBURACATION       PHUT     PROTEIN DEGRACATION     245 PROTEACH SUBURACATION       PHUT     PROTEIN DEGRACATION     245 PROTEACH SUBURACH SUBURIT       PHUT     PROTEIN DEGRACATION     245 PROTEACH RESULATORY SUBURIT       PHUT     PROTEIN DEGRACATION     245 PROT |
|                              | POINT         THEM. PROCESSING         NAME P AND REALE MOD FUNCTION           CARIG         TAMESPORT         ATT-SIMPLING CARETTE AND FACTOR           SHOIN         TONORNA         TONORNA           SHOIN         TANDOCHIFURIA         CORRESSING           TARANCHIFURION         TYPID 40 KD SCHORNIT         TONORNA           TETI         TAMANCHIFURION         TYPID 10 KD           TETI         TANNORNA         TYPID 10 KD           TETI         TANNORNA         TONORNA           TERIN TANCHIFURION         TONORNA         TONORNA           TERIN TANDOCHIFURIA         TONORNA         TONORNA           TERIN TANCHIFURIA         TONORNA         TONORNA           TERIN TANCHIFURIA         TONORNA         TONORNA           TERIN TANON SPLICING         CALANACE/FOLIALISMENTANION         TONORNA           TERIN TANON SPLICING         TONORNA         TONORNA           TERIN TANON SPLICING         TONORNA         TONORNA                                                                                                                              |
|                              | TP11     ELYTOLYSIS     TUIGEPHOGNARE IGORDARE       GP11     GLYCOLYSIS     PHOSPHOGNARE IGORDARE       GP11     GLYCOLYSIS     PHOSPHOGNARE       TES3     GLYCOLYSIS     PHOSPHOGNARE       TES3     GLYCOLYSIS     GLYCENALDERTDS-J-PHOSPHARE       TES3     GLYCOLYSIS     GLYCENALDERTDS-J-PHOSPHARE       TES3     GLYCOLYSIS     GLYCENALDERTDS-J-PHOSPHARE       TES3     GLYCOLYSIS     GLYCENALDERTDS-J-PHOSPHARE       TES1     GLYCOLYSIS     GLYCENALDERTDS-J-PHOSPHARE       TES1     GLYCOLYSIS     ALDOLASE       TES1     GLYCOLYSIS     ALDOLASE       TES1     FUNCARE     PHONORE       FEC5     GLYCOLYSIS     ALDOLASE       TES1     GLYCOLYSIS     PHONARE       FEC5     GLYCO                                                                                                                                                                                                                                        |
|                              | NESSI MENE SPECICING UNCHENN<br>NEFI PROPERS STRUCTURES NETOCIONERIAL PRESVIALANTL-THER STRUCTURES<br>NEESS PROPERS STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURES<br>STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- Optimize a given function
- Combinatorial Optimization Problems
  - Enumerable space
  - Given a finite number of objects
  - Find an object which maximizes/minimizes a function

$$\min\sum_i d(x_i, x)$$

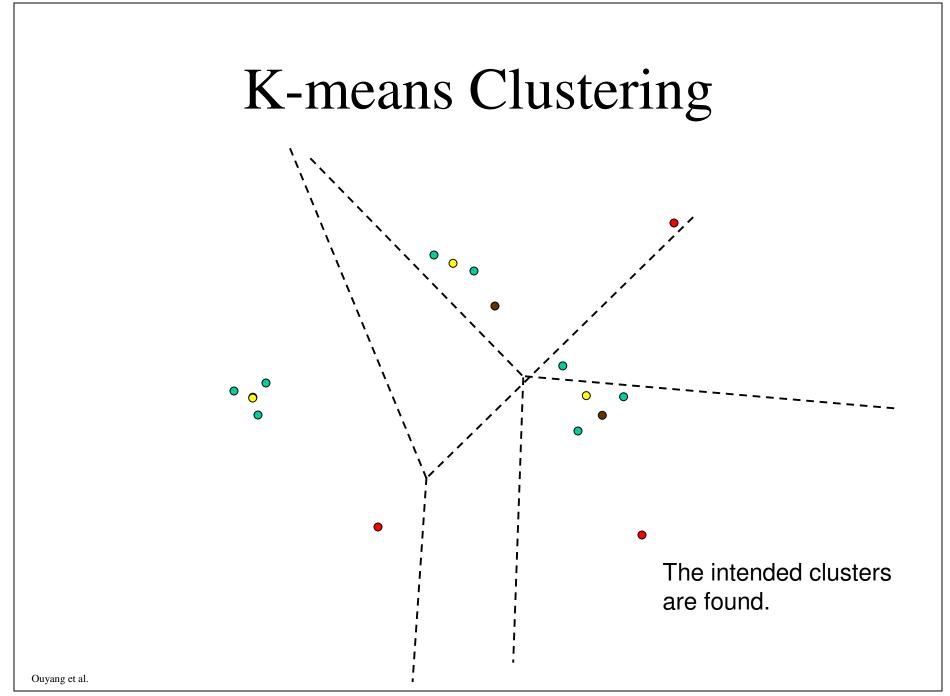
### K-Means

Input: Data Points, Number of Clusters (K)

Output: K clusters

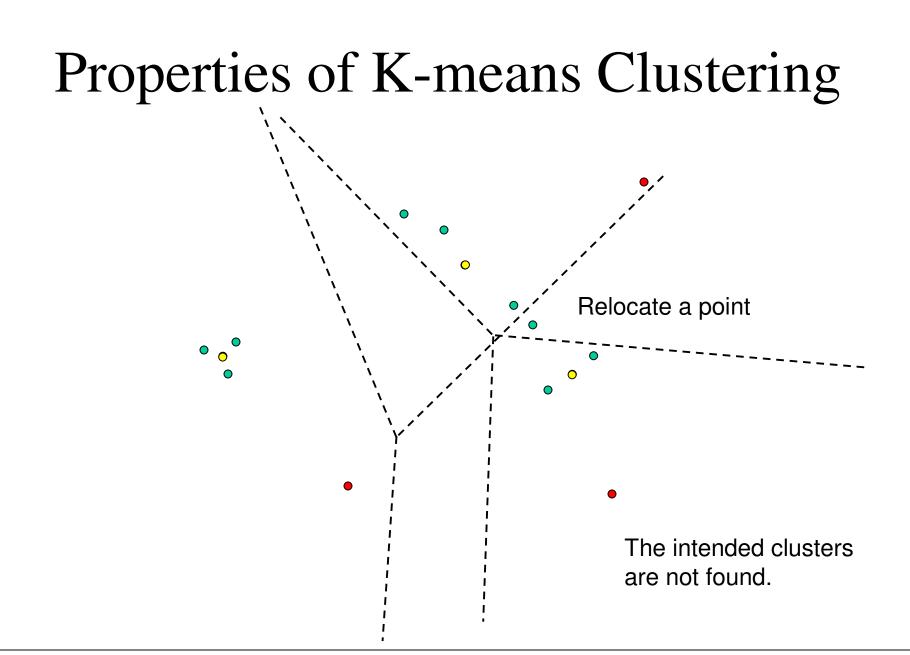
<u>Algorithm</u>: Starting from k-<u>centroids</u> assign data points to them based on proximity, updating the centroids iteratively

- 1. Select K initial cluster centroids,  $c_1, c_2, c_3, ..., c_k$
- 2. Assign each element *x* to nearest centroid
- 3. For each cluster, re-compute its centroid by averaging the data points in it
- 4. Go to (2) until convergence is achieved



### **K-Means Properties**

- Must know the number of clusters before hand
- Sensitive to perturbations
- Clusters formed ad hoc with no indication of relationships among them
- Results depend on initial choice for centers
- In general, betters average link clustering



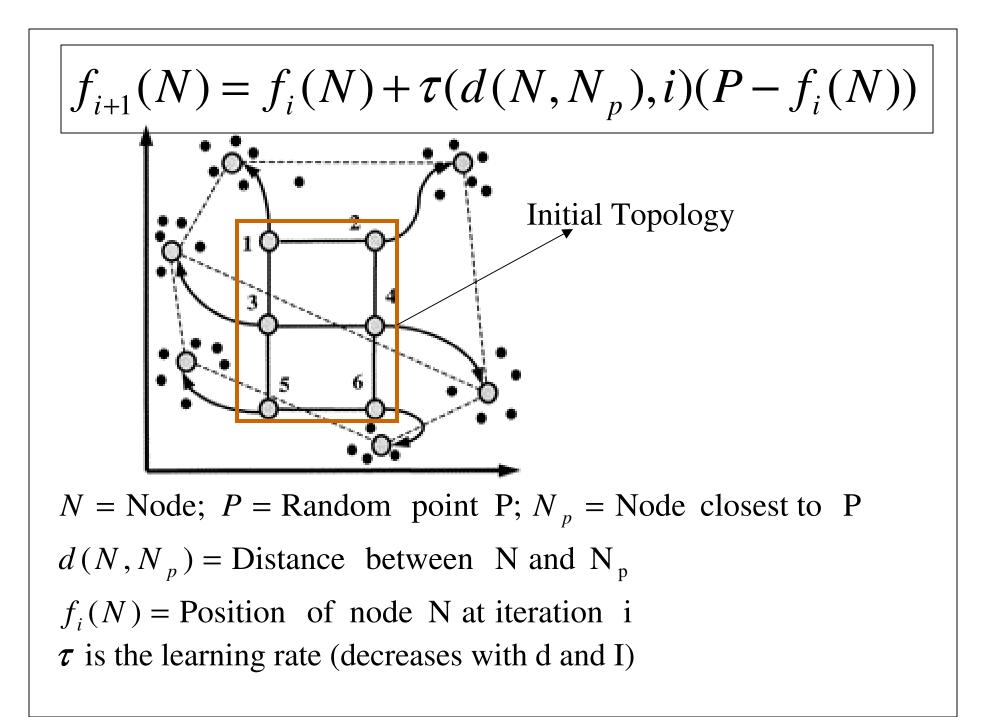
# Self Organizing Maps Clustering

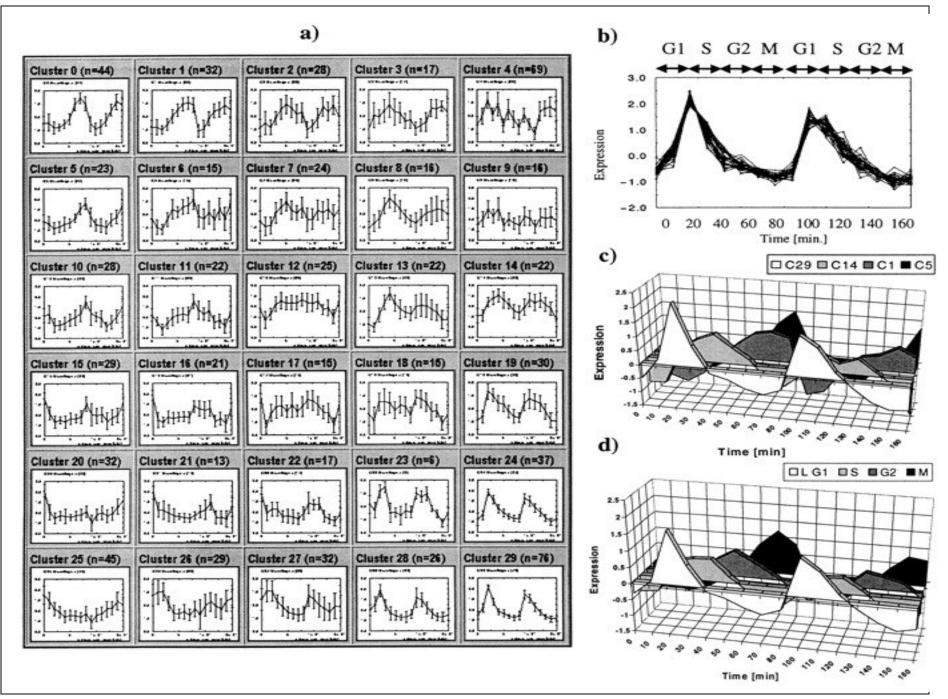
<u>Input</u>: Data Points, SOM Topology (K nodes and a distance function)

Output: K clusters, (near clusters are similar)

<u>Algorithm</u>: Starting with a simple topology (connected nodes) iteratively move the nodes "closer" to the data

- 1. Select initial topology
- 2. Select a random data point P
- 3. Move all the nodes towards P by varying amounts
- 4. Go to (2) until convergence is achieved.



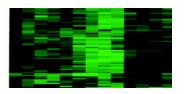


### Properties

- Neighboring clusters are similar
- Element on the borders belong to both clusters
- Very robust
- Works for short profile data too

### **Cluster Presentation**

- How to "see" the clusters effectively?
- Present gene expressions in different colors
- Plot similar genes close to each other



• Eisen's <u>TreeView</u>: minimize the sum of distances between clustered neighboring genes (2<sup>n-1</sup> possible sub-tree flips, but can be done in polynomial time by dynamic programming)

# Note on Missing Values

- Microarray experiments often have missing values, as a result of experimental error, values out of bound, spot reading error, batch errors, etc.
- Many clustering algorithms (all of the ones presented here) are sensitive to missing data
- Filling in the holes:
  - All 0s
  - Average
  - Better: weighted K-nearest neighbor, or SVD based methods (SVDimpute, KNNimpute) Troyanskaya et al
    - Robust
    - Do better than average

### Algorithm Comparison and Cluster Validation

- Paper: Chen et al. 2001
- Data: embryonic stem cells expression data
- Results: evaluated advantages and weaknesses of algorithms w/respect to both internal and external quality measures
- Used known and developed novel indices to measure clustering efficacy

### Algorithms Compared

- Average Link Hierarchical Clustering,
- K-Means and PAM , and
- SOM, two different neighborhood radii
  - R=0 (theoretically approaches K-Means)
  - -R=1
- Compared them for different numbers of clusters

### **Clustering Quality Indices**

- Homogeneity and Separation
  - <u>Homogeneity</u> is calculated as the average distance between each gene expression profile and the center of the cluster it belongs to
  - <u>Separation</u> is calculated as the weighted average distance between cluster centers
  - H reflects the compactness of the clusters while S reflects the overall distance between clusters
  - Decreasing H or increasing S suggest an improvement in the clustering results

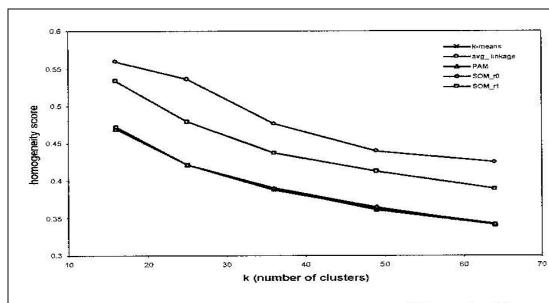
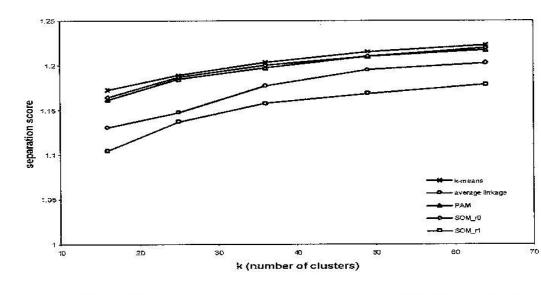


Figure 1a Comparing homogeneity scores among different algorithms



**Results:** 

- •K-Means and PAM scored identically
- •SOM\_r0 very close to both above
- •All three beat ALHC

•SOM\_r1 worst



### • Silhouette Width

- A composite index reflecting the compactness and separation of the clusters, and can be applied to different distance metrics
- A larger value indicates a better overall quality of the clusters

Results:

- •All had low scores indicating underlying "blurriness" of the data
- •K-Means, PAM, SOM\_r0 very close
- •All three slightly better than ALHC
- •SOM\_r1 had the lowest score

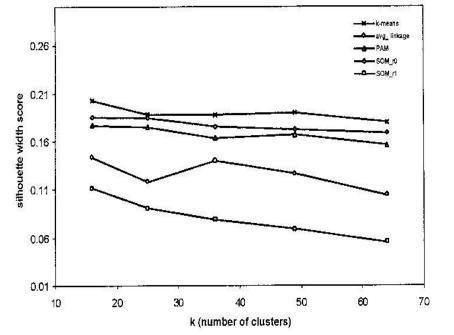
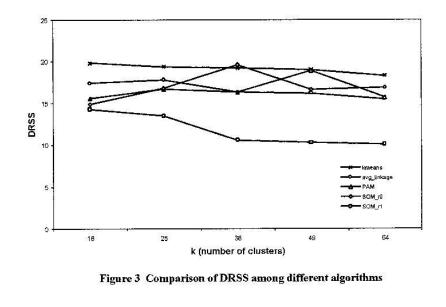


Figure 2 Comparison of average silhouette width among different algorithms

- Redundant Scores (external validation)
  - Almost every microarray data set has a small portion of duplicates,
     i.e. redundant genes (check genes)
  - A good clustering algorithm should cluster the redundant genes' expressions in the same clusters with high probability
  - DRRS (difference of redundant separation scores) between control and redundant genes was used as a measure of cluster quality
  - High DRRS suggests the redundant genes are more likely to be clustered together than randomly chosen genes



Results:

- K-means consistently better than ALHC
- PAM and SOM\_r0 close to the above
- SOM\_r1 was consistently the worst

- WADP Measure of Robustness
  - If the input data deviate slightly from their current value, will we get the same clustering?
  - Important in Microarray expression data analysis because of constant noise
  - <u>Experiment</u>:
    - each gene expression profile was perturbed by adding to it a random vector of the same dimension
    - values for the random vector generated from a Gaussian distr. (mean zero, and stand. dev.=0.01)
    - data was renormalized and clustered
    - WADP Cluster discrepancy: measure of inconsistent clusterings after noise. <u>WADP=0 is perfect</u>.

Results:

•SOM\_r1 clusters are the most robust of all

•K-means and ALHC were high through all cluster numbers

•PAM and SOM\_r1 were better for small number of clusters

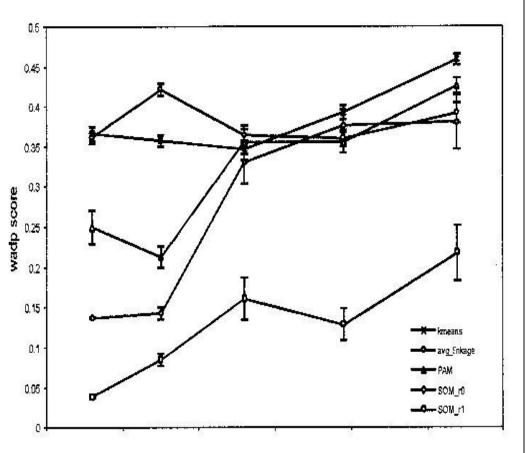
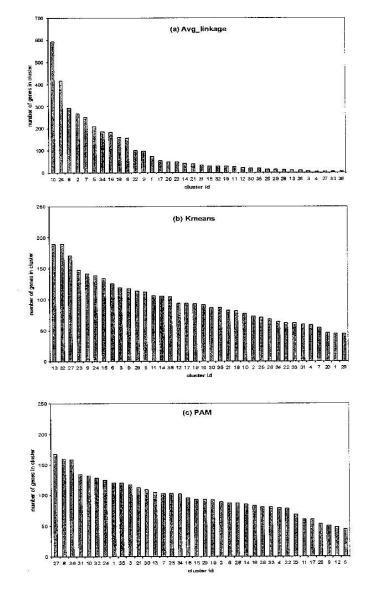
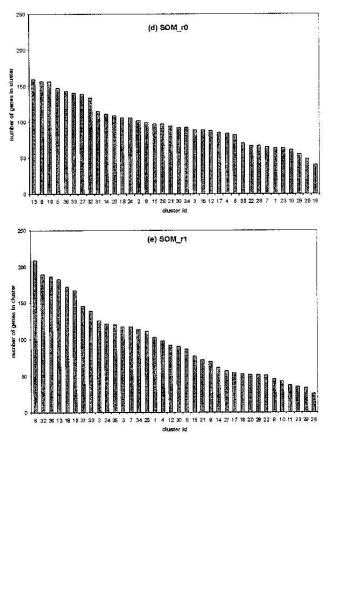


Figure 4 Comparison of WADP scores among different algorithms

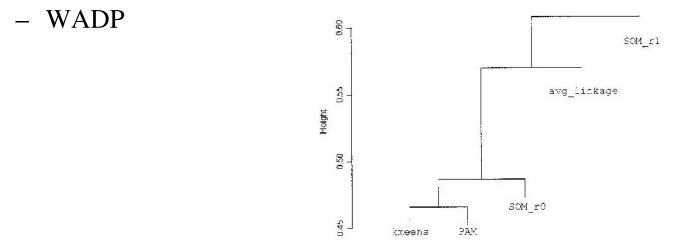
### Comparison of Cluster Size and Consistency





### Comparison of Cluster Content

• How similar are two clusterings in all the methods?



- Other measures of similarity based on co-clusteredness of elements
  - Rand index
  - Adjusted Rand
  - Jaccard

### Conclusions

- K-means outperforms ALHC
- SOM\_r0 is almost K-means and PAM
- Tradeoff between robustness and cluster quality: SOM\_r1 vs SOM\_r0, based on the topological neighborhood
- Whan should we use which? Depends on what we know about the data
  - Hierarchical data ALHC
  - Cannot compute mean PAM
  - General quantitative data K-Means
  - Need for robustness SOM\_r1
  - Soft clustering: Fuzzy C-Means
  - Clustering genes and experiments Biclustering

### References

- Eisen et al., Cluster analysis and display of genome-wide expression patterns, 1998. PNAS, v. 95, 14863-14868
- Tamayo et al., Interpreting patterns of gene expression with self organizing maps, 1999. PNAS, v. 96, 2907-2912
- Chen G, et al., Cluster analysis of microarray gene expression data, 2001. Statistica Sinica, 12:241-262
- Troyanskaya et al., Missing value estimation methods for DNA microarrays, Bioinformatics 2001 Jun;17(6):520-5