[ecture 9

Static Graph Models, continued

— Parsimony arguments: is nature optimal?
— (Chen et al, 1999) # Regulators is small

e Optimizing a function: simulated annealing

— Can we capture regulatory relationships
well with correlation arguments?

— (Wagner, 2002) # Relationships is minimal

— Direct vs. indirect relationships

— A perturbation model to detect direct
relationships

Linear Models
— Definition
— Caculating the Next State
— Reverse Engineering the Parameters from Data

— Normalization
— Properties

— Data Requirements
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Simulated Annealing

Simulated annealing 1s a random, iterative

search technique which simulates the natural

process of metal annealing
Problem: Minimize a function f(x)

Solution: Get closer to the solution iteratively

by randomly accepting worse solutions, with
the acceptance probability decreasing with time

Algorithm: Given f(x) and x
1.
2.

3.

(19

Initialize temperature to T

DO: generate x’, a random
transition from x

Calculate Af=f(x’')-£f(x)
If Af<0, accept x’' (i.e. x=x')
Else

— accept x’ with P

A£/T)

— (reject x’' with 1-P)
Update T, T=aT, o=1-¢€
UNTIL (2) Af converges

exp (-
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Results (chen et al, 1999)

G, )= Zmax(vi[l])-max (v.[A])— C(count(A) + count(l))

vieV(G,; )

Simulated annealing performed hundreds of times for
different cutoffs in edge strength and penalty constant
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Total number of
activator+inhibitor nodes vs.
the penalty constant (for
different edge strengths)
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Results (chen et al, 1999)

e A candidate network for C=2,
cutoff = 0.5, and p=95%
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How Well Can We Capture
Relationships by Correlation?
e Experiments performed on 4

different data sets of time series
expression

e <20% of regulatory relationships
could be predicted by correlating
pairs of curves (Filkov et al. 2001)
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Direct vs. Indirect

Relationships
@\ Direct:
RO N
- (C Indirect
A =C

How can we distinguish between
direct and indirect relationships in a
network based on microarray data?

Additional assumptions needed

In the previous model: optimize
f(grade,#regulators)

Next: minimize # relationships
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Perturbation Static
GI' aph MOd@l (Wagner, 2001)

Motivation: perturbing a gene
network one gene at a time and
using the effected genes 1in order to
discriminate direct vs. indirect
gene-gene relationships

Perturbations: gene knockouts,
over-expression, etc.

Method:

.

For each gene g, compare the
control experiment to perturbed
experiment (gene g.) and 1dentity
the differentially expressed genes

Use the most parsimonious graph
that yields the graph of 1. as its
reachability graph
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A single gene perturbation affects multiple
genes. The question 1s which of them directly?
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Parsimony Assumptions

e The direct relationship graph:
— 1s random (ER graphs)

— 1s scale-free (Power law)
— has the smallest number of edges

e Based on the first two assumptions above,
the author investigated the sparseness of
the yeast gene regulatory network, based
on gene knockout experiments (Hughes et

al, 2000)

Results: the yeast regulatory networks are

sparse (~1 connection per gene, even less

if they are scale-free)

mber of direct interactions per gene
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Reconstructing the
Network

Third assumption: the best graph of

all

| 1s the one with the least

re

ationships

Problem: Given a transitive closure
of a graph calculate its transitive
reduction, i.e. the graph with the

same transitive closure, and the
smallest number of edges

Problem 1s easily solvable in
polynomial time

Data needed: n perturbation
experiments. If n=6200+ this 1s
unfeasible!
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Static (Graph) Models

Summary

e (Characteristic of these models 1s the
underlying graph structure

e The graphs may annotated to reflect the
qualitative properties of the genes, 1.e.
activators, inhibitors

e Edges may be annotated to reflect the
nature of the relationships between
genes, €.g. =>,<», etc

* Depend on a “regulation grade”
between genes

 Time-series data yield graphs of causal
relationships

e Perturbation data also yield graphs of
causal relationships

e Parsimony arguments allow for
consideration of biological principles,
e.g. small number of regulatory genes
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Linear (Weight Matrix)
Models of Regulation




Description of the Model

e A graph model in which the nodes are genes
that are in continuous states of expression (i.e.
gene activities). The edges indicate the strength
(weight) of the regulation relationship between
two genes

* The net effect of gene j on gene i is the
expression level of gene j multiplied by its
regulatory influence on i, 1.e. wx;

e Assumptions:

— regulators’ contribution to a gene’s
regulation is linearly additive

— the states of the nodes are updated
synchronously

@‘ w  xt) Wep G x(t) — state of gene i at time ¢

N s @ ) W — r.egulatoryomﬂuence of
. , a gene j on gene i
W, d d,c < Wha - Wy > 0, activation
@ - w; <0, inhibition

) - w;= 0, none
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Calculating the Next
State of the System

xi(t+1) = Z wiix;j(t)
j=1
x;,w;,; €R

Or 1n matrix notation :

(n><1) (nxn) (nx1)
t+1 W Xt

If all the weights, w;; are known,
then given the act1V1tles of all
the genes at time ¢, 1.€.
x,(t),x,(¢),...,x (), we can
calculate the activities of the
genes at time 7+1/.
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Fitting the Model to the Data

e Inreality, we don’t know the weights, and
we would like to infer them from
measurements of the activities of genes
through time (microarray data)

 The weights can be found by solving a
system of linear equations (multiple
regression)

e Dimensionality Curse: the expression
matrices, of size
n X k, where n 1s in thousands and £ 1s at
most 1n hundreds

e The linear system 1s always under-
constrained and thus yields infinitely many
solutions (compare to over-constrained
where we need to use least-squares fit)
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Solving the Linear Model

Let the vector Y; represent the expressions of n genes at time point i, i.e.

yiz[xl(i) x2(i) xn(i)].

Then, given k + 1 time points, 1.e. vectors Y i=1,...,k+11let
Y1
(kxn) o : : y
A be a matrix with rows equal to the first k vectors,i.e.a =| "2 |, and
Yk

Y2
B(k Xn) be a matrix with rows equal to the last k vectors,i.e.s =| '3

Yk+1

Then, the linear system becomes :

Ae WT = B, which we want to solve for W

If k > n, the system is overconstrained, and there

1s no unique solution. A least squares (regression) solution :

W=A""B, |[A*  =(ATA) 1AT

If k = n thereis a unique solution;

If k < n, the system is underconstrained, and there
are infinitely many solutions. We can find a pseudo -

inverse to A that best fits the data (Moore - Penrose), as :

W=A""A, AT AT (AAT)"1
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Normalization

e The input gene expressions
need to be normalized at each
step, so that the contributions
are comparable across all genes

e The resulting (output) values
are then de-normalized

e Common normalization
schemes:
— mean/variance: x’=(x-u)/c*

— Squashing function: (neural nets)
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Properties of Linear
Models (Weaver et al, 1999)

e Simulating Linear State Models by
randomly generating the parameters

e The output of a state was used as input for
the next

 The models were iterated until they
reached a terminal steady state
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[_.1imitations

 Some assumptions are known to
be incorrect:

— all genetic interactions are
independent events

— synchronous dynamics
— welght matrix

e The results may not offer
insight to the problem instead
they may just model the data
well (the weight matrix will be
chosen based on multiple
regression)
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How Much Data?

e If the weight matrix 1s dense, we
need n+/ arrays of all n genes to
solve the linear system, assuming the
experiments are independent (which
1s not exactly true with time-series
data). In this case we say that the
average connectivity 1s O(n) per
node.

If instead the average connectivity
per node 1s fixed to O(K), than it can
be shown that the number of
experiments needed 1s

O(K log(N/K))
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Summary

Linear models yield good, realistic
looking predictions

The amount of data needed 1s O(n)
experiments, for a fully connected

network or O(klog(n/k)) for a k
connected network

The weight matrix can be obtained
by solving a linear system of
equations

Dimensionality curse: more genes
than experiments. We have to resort
to reducing the dimensionality of the
problem (e.g. through clustering)
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