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Lecture 9
• Static Graph Models, continued

– Parsimony arguments: is nature optimal?
– (Chen et al, 1999) # Regulators is small

• Optimizing a function: simulated annealing

– Can we capture regulatory relationships 
well with correlation arguments?

– (Wagner, 2002) # Relationships is minimal
– Direct vs. indirect relationships
– A perturbation model to detect direct 

relationships
• Linear Models

– Definition
– Caculating the Next State
– Reverse Engineering the Parameters from Data 
– Normalization
– Properties
– Data Requirements
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Simulated Annealing
• Simulated annealing is a random, iterative 

search technique which simulates the natural 
process of metal annealing

• Problem: Minimize a function f(x)
• Solution: Get closer to the solution iteratively 

by randomly accepting worse solutions, with 
the acceptance probability decreasing with time

Algorithm: Given f(x) and x
1. Initialize temperature to T
2. DO: generate x’, a random 

transition from x
3. Calculate ∆∆∆∆f=f(x’)-f(x)
4. If ∆∆∆∆f<0, accept x’(i.e. x=x’)
5. Else 

- accept x’ with P = exp(-
∆∆∆∆f/T)

- (reject x’ with 1-P)
6. Update T, T=ααααT, αααα=1-εεεε
7. UNTIL (2) ∆∆∆∆f converges
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Results (Chen et al, 1999)

count(I))C(count(A)[A])(v)[I](v)f(G i
)V(Gv

iai
aii

+−⋅= �
∈

maxmax

Simulated annealing performed hundreds of times for 
different cutoffs in edge strength and penalty constant

Total number of 
activator+inhibitor nodes vs. 
the penalty constant (for 
different edge strengths)

Total number of regulated
nodes (out of 308)

For C=2 and cutoff=0.5, 
to the right is the % of 
consistent assignments in 
100 SA runs
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Results (Chen et al, 1999)

• A candidate network for C=2, 
cutoff = 0.5, and p=95%
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How Well Can We Capture 
Relationships by Correlation?

• Experiments performed on 4 
different data sets of time series 
expression

• < 20% of regulatory relationships 
could be predicted by correlating 
pairs of curves (Filkov et al. 2001)
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Direct vs. Indirect 
Relationships

• How can we distinguish between 
direct and indirect relationships in a 
network based on microarray data?

• Additional assumptions needed
• In the previous model: optimize 

f(grade,#regulators)
• Next: minimize # relationships

A

B

C

Direct:
A �B
B �C

Indirect
A �C
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Perturbation Static 
Graph Model (Wagner, 2001)

• Motivation: perturbing a gene 
network one gene at a time and 
using the effected genes in order to 
discriminate direct vs. indirect
gene-gene relationships

• Perturbations: gene knockouts, 
over-expression, etc.

Method: 
1. For each gene gi, compare the 

control experiment to perturbed 
experiment (gene gi) and identify 
the differentially expressed genes

2. Use the most parsimonious graph 
that yields the graph of 1. as its 
reachability graph 
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A single gene perturbation affects multiple 
genes. The question is which of them directly?
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Parsimony Assumptions
• The direct relationship graph:

– is random (ER graphs)
– is scale-free (Power law)
– has the smallest number of edges

• Based on the first two assumptions above, 
the author investigated the sparseness of 
the yeast gene regulatory network, based 
on gene knockout experiments (Hughes et 
al, 2000)

• Results: the yeast regulatory networks are 
sparse (~1 connection per gene, even less 
if they are scale-free)
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Reconstructing the 
Network

• Third assumption: the best graph of 
all is the one with the least 
relationships

• Problem: Given a transitive closure
of a graph calculate its transitive 
reduction, i.e. the graph with the 
same transitive closure, and the 
smallest number of edges

• Problem is easily solvable in 
polynomial time

• Data needed: n perturbation 
experiments. If n=6200+ this is 
unfeasible!
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Static (Graph) Models
Summary

• Characteristic of these models is the 
underlying graph structure

• The graphs may annotated to reflect the 
qualitative properties of the genes, i.e. 
activators, inhibitors

• Edges may be annotated to reflect the 
nature of the relationships between 
genes, e.g. =>,�, etc

• Depend on a “regulation grade”
between genes

• Time-series data yield graphs of causal 
relationships

• Perturbation data also yield graphs of 
causal relationships

• Parsimony arguments allow for 
consideration of biological principles, 
e.g. small number of regulatory genes
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Linear (Weight Matrix) 
Models of Regulation
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Description of the Model
• A graph model in which the nodes are genes

that are in continuous states of expression (i.e. 
gene activities). The edges indicate the strength 
(weight) of the regulation relationship between 
two genes

• The net effect of gene j on gene i is the 
expression level of gene j multiplied by its 
regulatory influence on i, i.e. wijxj.

• Assumptions:
– regulators’ contribution to a gene’s 

regulation is linearly additive
– the states of the nodes are updated 

synchronously

A B
C

D

xa(t)
xc(t)

xb(t)

xd(t)

wc,bwa,c

wa,d
wd,c wb,d

xi(t) – state of gene i at time t
wij – regulatory influence of 
gene j on gene i
- wij > 0, activation
- wij < 0, inhibition
- wij = 0, none
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Calculating the Next 
State of the System

If all the weights, wij are known, 
then given the activities of all
the genes at time t, i.e. 
x1(t),x2(t),…,xn(t), we can 
calculate the activities of the 
genes at time t+1.
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Fitting the Model to the Data

• In reality, we don’t know the weights, and 
we would like to infer them from 
measurements of the activities of genes 
through time (microarray data)

• The weights can be found by solving a 
system of linear equations (multiple 
regression)

• Dimensionality Curse: the expression 
matrices, of size 
n x k, where n is in thousands and k is at 
most in hundreds

• The linear system is always under-
constrained and thus yields infinitely many 
solutions (compare to over-constrained 
where we need to use least-squares fit)



ECS289A, UCD,WQ03

[ ]

1)T(AATA**   AA,**AW

TA1A)T(A**   AB,**AW

iy

A

W

n)(kB

n)(kA

iy 

iy

BTWA

1ky

3y
2y

 B 

ky

2y
1y

 A

−==

−==

=

<

=

>

�
�

�

�

�
�

�

�×

�
�

�

�

�
�

�

�×

+=+

=•

+

=

=

:as Penrose),-(Moore data  thefitsbest  that   toinverse
-pseudo a findcan   Wesolutions.many  infinitely are

 thereand rained,underconst is system  the, If

solution; unique a is  there If

:solution n)(regressio squaresleast A  solution. unique no is
 thereand ained,overconstr is system  the, If

for  solve  want to which we,

:becomes systemlinear   theThen,

.i.e.  vectors,last   the toequal rowsh matrix wit a be 

and ,  i.e.  vectors,first   the toequal rowsh matrix wit a be 

let,11  , vectorsi.e. points, time1given  Then,

i.e. i,point  at time genes  of sexpression therepresent   vector Let the

. )()(2)(1

nk

nk

nk

k

k

,...,k i k

n

inxixix

�

�

�

Solving the Linear Model
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Normalization

• The input gene expressions 
need to be normalized at each 
step, so that the contributions 
are comparable across all genes

• The resulting (output) values 
are then de-normalized

• Common normalization 
schemes:
– mean/variance: x’=(x-µ)/σ2

– Squashing function: (neural nets)
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Properties of Linear 
Models (Weaver et al, 1999)

• Simulating Linear State Models by 
randomly generating the parameters

• The output of a state was used as input for 
the next

• The models were iterated until they 
reached a terminal steady state

Realistic although 
highly oscillating!
(D’Haeseleer does 
better by insisting on 
an additional 
smoothness criterion)
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Limitations

• Some assumptions are known to 
be incorrect:
– all genetic interactions are 

independent events
– synchronous dynamics
– weight matrix

• The results may not offer 
insight to the problem instead 
they may just model the data 
well (the weight matrix will be 
chosen based on multiple 
regression)
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How Much Data?

• If the weight matrix is dense, we 
need n+1 arrays of all n genes to 
solve the linear system, assuming the 
experiments are independent (which 
is not exactly true with time-series 
data). In this case we say that the 
average connectivity is O(n) per 
node.

• If instead the average connectivity 
per node is fixed to O(K), than it can 
be shown that the number of 
experiments needed is 
O(K log(N/K))
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Summary

• Linear models yield good, realistic 
looking predictions

• The amount of data needed is O(n) 
experiments, for a fully connected 
network or O(klog(n/k)) for a k 
connected network

• The weight matrix can be obtained 
by solving a linear system of 
equations

• Dimensionality curse: more genes 
than experiments. We have to resort 
to reducing the dimensionality of the 
problem (e.g. through clustering)
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