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Outline of This Lecture

1. Overview of the model
2. Bayes Probability and Rules of Inference

– Conditional Probabilities
– Priors and posteriors
– Joint distributions

3. Dependencies and Independencies
4. Bayesian Networks, Markov Assumption
5. Inference
6. Complexity of Representations: exponential vs. polynomial
7. (Friedman et al., 2000)
8. Equivalence Classes of Bayesian Networks
9. Learning Bayesian Networks
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Why Bayesian Networks

• Bayesian Nets are graphical (as in graph) 
representations of precise statistical relationships 
between entities

• They combine two very well developed scientific 
areas: Probability +Graph Theory

• Bayesian Nets are graphs where the nodes are 
random variables and the edges are directed causal 
relationships between them, A→B

• They are very high level qualitative models, 
making them a good match for gene networks 
modeling
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Bayesian Networks

(1) An annotated directed acyclic graph G(V,E), where the 
nodes are random variables Xi, 
(2) conditional distributions P(Xi | ancestors(Xi)) defined 
for each Xi.

A Bayesian network uniquely specifies a joint distribution:
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From the joint distribution one can do inferences, and 
choose likely causalities
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Learning the Network

• Given data we would like to come up with 
Bayesian Network(s) that fit that data well

• Algorithms exist that can do this efficiently 
(though the optimal ones are NP-complete)

• We’ll discuss this later in this lecture...
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Choosing the Best Bayesian Network: 
Model Discrimination

• Many Bayesian Networks may model given 
data well

• In addition to the data fitting part, here we 
need to discriminate between the many 
models that fit the data

• Scoring function: Bayesian Likelihood
• More on this later...
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General Properties

• Fixed Topology (doesn’t change with time)

• Nodes: Random Variables

• Edges: Causal relationships

• DAGs

• Allow testing inferences from the model and the 
data
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1. Bayes Probability and Rules of 
Inference
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Bayes Logic

• Given our knowledge that an event may 
have been the result of two or more causes 
occurring, what is the probability it 
occurred as a result of a particular cause?

• We would like to predict the unobserved, 
using our knowledge, i.e. assumptions, 
about things
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Conditional Probabilities

If two events, A and B are independent:
P(AB)=P(A)P(B)

If they are not independent:
P(B|A)=P(AB)/P(A)

or
P(AB)=P(B|A)*P(A)
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Bayes Formula
• P(AB)=P(B|A)*P(A)

• P(AB)=P(A|B)*P(B)

Observation

Possible causes
Prior probabilities 
(assumptions)Posterior

Joint distributions

Thus P(B|A)*P(A)=P(A|B)*P(B) and

P(B|A)=P(A|B)*P(B)/P(A)
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If Bi, i=1,...,n are mutually exclusive events, then
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Joint Probability

• The probability of all events:
P(AB)=P(A)*P(B|A) or
P(ABCD)=P(A)*P(B|A)*P(C|AB)*P(D|ABC)

• For n variables it takes 2n terms to write it 
out!
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Conditional Independencies

• Recall P(AB)=P(A)*P(B) A is independent 
of B

• Conditional Independency: A is 
independent of B, given C
P(A;B|C) =P(A|C)*P(B|C)
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Markov Assumption: Each variable is 
independent of its non-descendents, given its 
parents

Bayesian Networks implicitly encode the 
Markov assumption. The joint probability 
becomes:

Notice that if the ancestors (fan in) are bound by 
k, the complexity of this joint becomes n2k+1
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P(S|C) P(R|C)

P(W|S,R)

Joint: P(C,R,S,W)=P(C)*P(R|C)*P(S|C,R)*P(W|C,R,S)
or P(C,R,S,W)=P(C)*P(S|C)*P(R|C)*P(W|S,R)

Independencies: I(S;R|C), I(R;S|C)
Dependencies: P(S|C), P(R|C), P(W|S,R)

KP Murphy’s web site: 
http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html

Example
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Bayesian Inference

Which event is more likely, wet grass 
observed and it is because of 
– sprinkler: 

P(S=1|W=1)=P(S=1,W=1)/P(W=1)=0.430

– rain:
P(R=1|W=1)=P(R=1,W=1)/P(W=1)=0.708

Algorithms exist that can answer such 
questions given the Bayesian Network
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BN, Second Lecture

1. Applying Bayesian Networks to Microarray Data
2. Learning Causal Patterns: Causal Markov Assumption
3. Gene Expression Data
• time-series data (Friedman et al., 2000)

– partial models
– estimating statistical confidence
– efficient learning algorithms
– discretization
– experimental results

• perturbation data (Pe’er et al., 2001)
– ideal interventions
– feature identification
– reconstructing significant sub-networks
– analysis of results
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Bayesian Networks and Expression Data

• Friedman et al., 2000
• Learned pronounced features of equivalence 

classes of Bayesian Networks from time-
series measurements of microarray data

• Data set used: Spellman et al., 1998
– Objective: Cell cycling genes
– Yeast genome microarrays (6177 genes)
– 76 observations at different time-points
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Equivalence Classes of Bayesian 
Networks

• A Bayesian Network G implies a set of 
independencies, I(G), in addition to the ones 
following from Markov assumption

• Two Bayesian Networks that have the same 
set of independencies are equivalent

• Example G: X→Y and G’:X←Y are 
equivalent, since I(G)=I(G’)=∅
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Equivalence Classes

• v-structure: two directed edges converging into the 
same node, i.e. X→Z←Y

• Thm: Two graphs are equivalent iff their DAGs 
have the same underlying directed graphs and the 
same v-structures

• Graphs in an equivalence class can be represented 
simply by Partially Directed Graph, PDAG where
– a directed edge, X→Y implies all members of the 

equivalence class contain that directed edge
– an undirected edge, X—Y implies that some DAGs in the 

class contain X→Y and others X←Y.
• Given a DAG, a PDAG can be constructed 

efficiently 
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Learning Bayesian Networks

• Problem: Given a training set D=(x1,x2,...,xn) of 
independent instances of the random variables 
(X1,X2,...,Xn), find a network G (or equivalence 
class of networks) that best matches D.

• A commonly used scoring function is the 
Bayesian Score which has some very nice 
properties.

• Finding G that maximizes the Bayesian Score is 
NP-hard; heuristics are used that perform well in 
practice.
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Scoring Bayesian Networks
• The Scoring Measure is based on Bayesian considerations
• The measure is the posterior probability of the graph, given 

the data:

S(G:D)=log P(G|D)=log P(D|G)+log P(G)+C
• P(D|G) averages the probability of the data over all 

possible parametric assignments to G (i.e. all posible cond. 
probabilities)

• What is important: Good choice of priors makes this 
scoring metric S(G:D) have nice properties:
– graphs that capture the exact properties of the network 

very likely score higher than ones that do not
– Score is decomposable
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Optimizing S(G:D)

• Once the priors are specified, and the data is 
given, the Bayesian Network is learned, i.e. 
the network with the highest score is chosen

• But Maxiizing this scoring function is an 
NP-hard problem

• Heuristics: local search in the form of arc 
reversals yield good results
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Closer to the Goal: Causal Networks
1. We want “A is a cause for B”
2. We have “B independent of non-descendants given A”
• So, we want to get from the second to the first, i.e. from 

Bayesian to stronger, causal networks
• Difference between Causal and Bayesian Networks: 

X→Y and X←Y are equivalent Bayesian Nets, but very 
different causally 

• Causal Networks can be interpreted as Bayesian if we 
make another assumption

• Causal Markov Assumption: given the values of a 
variable’s immediate causes, it is independent of its 
earlier causes (Example: Genetic Pedigree)

• Rule of thumb: In a PDAG equivalence class, X→Y can 
be interpreted as a causal link
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Putting it All Together: Expression Data 
Analysis

• Random Variables denote expression levels of 
genes

• Closed biological system
• The result is a joint probability distribution over 

all random variables
• The joint can be used to answer queries:

– Does the gene depend on the experimental conditions?
– Is this dependence direct or not?
– If it is indirect, which genes mediate the dependence?
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Putting it all Together: Issues

In learning such a model the 
following issues come up:

1. interpreting the results: what do they 
mean?

2. algorithmic complexities in learning from 
the data

3. choice of local probability models
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Dimensionality Curse

• Again, we are hurt by having many more genes 
than observations (6200 vs. 20)

• Instead of trying to learn a model that explains the 
whole data the authors attempt to characterize 
features common to high-scoring models

• The intuition is that preserved features in many 
high-scoring networks are biologically important

• They call these models Partial Models
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Partial Models

• We do this because the data set has a small 
number of samples (compare to under-determined 
in linear models!)

• A small data set is not sufficient to determine that 
a single model is the “right” one (no one model 
dominates!)

• Idea: Compare highest scoring models for features 
common to all of them

• Simple features considered: pair-wise relations 
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Partial Model Features
• Markov Relations

– Is Y in the Markov Blanket of X?
– Markov Blanket is the minimal set of variables that 

shield X from the rest of the variables in the model
– Formally, X is independent from the rest of the network 

given the blanket
– It can be shown that X and Y are either directly linked 

or share parenthood of a node
– In biological context, a MR indicates that X and Y are 

related in some joint process
• Order Relations

– Is X an ancestor of Y in all networks of a given class?
– An indication of causality!
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1. Are the Features Trustworthy?

• To what extent does the data support a given 
feature?

• The authors develop a measure of confidence in 
features as the likelihood that a given feature is 
actually true

• Confidence is estimated by generating slightly 
“perturbed” versions of the original data set and 
learning from them

• Thus, any false positives should disappear if the 
features are truly strong

• This is the case in their experiments
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2. Learning Algorithms Complexity

• The solution space for all these problems is 
huge: super-exponential

• Thus some additional simplification is 
needed

• Assumption: Number of parents of a node is 
limited

• Trick: Initial guesses for the parents of a 
node are genes whose temporal curves 
cluster well
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3. Local Probability Models

• The authors experimented with two different 
models: multinomial and linear gaussian

• These models are chosen for mathematical 
convenience

• Pros et cons:
– Former needs discretization of the data. Gene 

expression levels are {-1,0,1}. Can capture 
combinatorial effects

– Latter can take continuous data, but can only detect 
linear or close to linear dependencies
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Data and Methods

• Data set used: Spellman et al., 1998
– Objective: Cell cycling genes
– Yeast genome microarrays (6177 genes)
– 76 observations at different time-points

• They ended up using 800 genes (250 for some 
experiments)

• Learned features with both the multinomial and 
the linear gaussian probability models

• They used no prior knowledge, only the data
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Robustness Analysis: Thresholds

Comparing results on real vs. random data

Multinomial
Markov Order
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Robustness: Scaling
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Robustness: Discrete vs. Linear
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Biological Analysis

• Order relations and Markov relations yield 
different significant pairs of genes

• Order relations: strikingly pronounced 
dominant genes, with many interesting 
known, or even key properties for cell 
functions

• Markov relations: all top pairs of known 
importance, some found beyond the reach 
of clustering (see CLN2 fig. for example)
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Bayesian Networks and Perturbation 
Data (Pe’er et al. 2001)

• Similar study as above, but on a different, and 
bigger data set.

• Hughes et al. 2000
– 6000+ genes in yeast
– 300 full-genome perturbation experiments

• 276 deletion mutants
• 11 tetracycline regulatable alleles of essential genes
• 13 chemically treated yeast cultures

• Pe’er et al. chose 565 significantly differentially 
expressed genes in at least 4 profiles
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Results
• Biologically meaningful pathways learned 

from the data!

Iron homeostasis Mating response

Read the paper.....
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Limitations
• Bayesian Networks:

– Causal vs. Bayesian Networks
– What are the edges really telling us?
– Dependent on choice of priors
– Simplifications at every stage of the pipeline: analysis 

impossible
• Friedman et al. approach:

– They did what they knew how to do: priors and other 
things chosen for convenience

– Very little meaningful biology
– Do we need all that machinery if what they discovered 

are only the very strong signals?



ECS289A, UCD WQ03, Filkov

References:

• Friedman et al., Using Bayesian Networks to Analyze 
Expression Data, RECOMB 2000, 127-135.

• Pe’er et al., Inferring Subnetworks from Perturbed 
Expression Profiles, Bioinformatics, v.1, 2001, 1-9.

• Ron Shamir's course, Analysis of Gene Expression Data, 
DNA Chips and Gene Networks, at Tel Aviv University, 
lecture 10 
http://www.math.tau.ac.il/~rshamir/ge/02/ge02.html

• Spellman et al., Mol. Bio. Cell, v. 9, 3273-3297, 1998
• Hughes et al., Cell, v. 102, 109-26, 2000


