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Outline of This Lecture

Overview of the model
Bayes Probability and Rules of Inference
—  Conditional Probabilities
—  Priors and posteriors
— Joint distributions
Dependencies and Independencies
Bayesian Networks, Markov Assumption
Inference
Complexity of Representations: exponential vs. polynomial
(Friedman et al., 2000)
Equivalence Classes of Bayesian Networks

Learning Bayesian Networks
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Why Bayesian Networks

Bayesian Nets are graphical (as in graph)
representations of precise statistical relationships
between entities

They combine two very well developed scientific
areas: Probability +Graph Theory

Bayesian Nets are graphs where the nodes are
random variables and the edges are directed causal
relationships between them, A—B

They are very high level qualitative models,
making them a good match for gene networks
modeling




Bayesian Networks

(1) An annotated directed acyclic graph G(V,E), where the
nodes are random variables X,
(2) conditional distributions P(X. | ancestors(X.)) defined

for each X..

A Bayesian network uniquely specifies a joint distribution:

p(X) = flp(X . lancestors(X.))

From the joint distribution one can do inferences, and
choose likely causalities
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Learning the Network

e Given data we would like to come up with
Bayesian Network(s) that fit that data well

e Algorithms exist that can do this efficiently
(though the optimal ones are NP-complete)

e We’ll discuss this later in this lecture...
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Choosing the Best Bayesian Network:
Model Discrimination

Many Bayesian Networks may model given
data well

In addition to the data fitting part, here we
need to discriminate between the many
models that fit the data

Scoring function: Bayesian Likelihood

More on this later...
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General Properties

 Fixed Topology (doesn’t change with time)
e Nodes: Random Variables
e Edges: Causal relationships

e DAGS

e Allow testing inferences from the model and the
data
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1. Bayes Probability and Rules of
Inference
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Bayes Logic

* Given our knowledge that an event may
have been the result of two or more causes
occurring, what 1s the probability it
occurred as a result of a particular cause?

 We would like to predict the unobserved,
using our knowledge, 1.e. assumptions,

about things

A, UCD WQO3, Filkov




Conditional Probabilities

If two events, A and B are independent:

P(AB)=P(A)P(B)
If they are not independent:
P(BIA)=P(AB)/P(A)
or
P(AB)=P(BIA)*P(A)
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Bayes Formula
 P(AB)=P(BIA)*P(A)

/J oint distributions
e P(AB)=P(A|B)*P(B)
Thus P(BIA)*P(A)=P(A|B)*P(B) and

P(BIA)=P(A\B)*P(B)/P(A)

If B, i=1,...,n are mutually exclusive events, then
Possible causes

p . P (A | B ) ‘ P (B/)' Prior probabilities
osterior P( B . | A) 7 l A / (assumptions)
: > P(AIB ){P(B )

Observation ] =1
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Joint Probability

e The probability of all events:
P(AB)=P(A)*P(BIA) or
P(ABCD)=P(A)*P(BIA)*P(CIAB)*P(DIABC)

e For n variables 1t takes 2" terms to write it

out!
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e Recall P(AB)=P(A)*P(B) A 1s independent

of B

Conditional Independencies

e Conditional Independency: A 1s
independent of B, given C

P(A;BIC) =P(AIC)*P(BIC)
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Markov Assumption: Each variable is
independent of 1ts non-descendents, given its
parents

Bayesian Networks implicitly encode the
Markov assumption. The joint probability
becomes:

p(X) = Hp(X | ancestors(X,))

joint conditionals

Notice that if the ancestors (fan 1n) are bound by
k, the complexity of this joint becomes n2k+!
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Joint: P(C,R,S,W)=P(C)*P(RIC)*P(SIC,R)*P(WIC,R,S)
or P(C,R,S,W)=P(C)*P(SIC)*P(RIC)*P(WIS,R)

Independencies: I(S;RIC), I(R;SIC)

Dependencies: P(S|C), P(RIC), P(WIS,R)
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Bayesian Inference

Which event 1s more likely, wet grass

observed and 1t 1s because of

— sprinkler:
P(S=11W=1)=P(S=1,W=1)/P(W=1)=0.430

— rain:
P(R=11W=1)=P(R=1,W=1)/P(W=1)=0.708

Algorithms exist that can answer such
questions given the Bayesian Network
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BN, Second Lecture

Applying Bayesian Networks to Microarray Data
Learning Causal Patterns: Causal Markov Assumption
Gene Expression Data
time-series data (Friedman et al., 2000)
partial models
estimating statistical confidence
efficient learning algorithms
discretization
experimental results
perturbation data (Pe’er et al., 2001)
ideal interventions
feature 1dentification
reconstructing significant sub-networks
analysis of results
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Bayesian Networks and Expression Data

 Friedman et al., 2000

e Learned pronounced features of equivalence
classes of Bayesian Networks from time-
series measurements of microarray data

e Data set used: Spellman et al., 1998

— Objective: Cell cycling genes

— Yeast genome microarrays (6177 genes)

— 76 observations at different time-points
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Equivalence Classes of Bayesian
Networks

* A Bayesian Network G implies a set of
independencies, I(G), 1n addition to the ones
following from Markov assumption

 Two Bayesian Networks that have the same
set of independencies are equivalent

 Example G: X—Y and G’: XY are
equivalent, since I(G)=I(G")=Y
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Equivalence Classes

v-structure: two directed edges converging into the
same node, 1.e. X—>7«Y

Thm: Two graphs are equivalent iff their DAGs
have the same underlying directed graphs and the
same v-structures

Graphs in an equivalence class can be represented
simply by Partially Directed Graph, PDAG where

— a directed edge, X—Y 1mplies all members of the
equivalence class contain that directed edge

— an undirected edge, X—Y implies that some DAGs 1n the
class contain X—Y and others X<-Y.

Given a DAG, a PDAG can be constructed
efficiently
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Learning Bayesian Networks

e Problem: Given a training set D=(x,,X5,...,X,,) of
independent instances of the random variables
(X, X5,...,X,), find a network G (or equivalence
class of networks) that best matches D.

e A commonly used scoring function 1s the
Bayesian Score which has some very nice
properties.

* Finding G that maximizes the Bayesian Score 1s
NP-hard; heuristics are used that perform well in
practice.
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Scoring Bayesian Networks

The Scoring Measure i1s based on Bayesian considerations

The measure 1s the posterior probability of the graph, given
the data:

S(G:D)=log P(G|D)=log P(D|G)+log P(G)+C

P(DIG) averages the probability of the data over all
possible parametric assignments to G (i.e. all posible cond.
probabilities)

What is important: Good choice of priors makes this
scoring metric S(G:D) have nice properties:

— graphs that capture the exact properties of the network
very likely score higher than ones that do not

— Score 1s decomposable
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Optimizing S(G:D)

e Once the priors are specified, and the data 1s
given, the Bayesian Network 1s learned, 1.e.
the network with the highest score 1s chosen

e But Maxiizing this scoring function 1s an
NP-hard problem

e Heuristics: local search in the form of arc
reversals yield good results
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Closer to the Goal: Causal Networks

1. We want “A 1s a cause for B”
2. We have “B independent of non-descendants given A”

e So, we want to get from the second to the first, 1.e. from
Bayesian to stronger, causal networks

 Difference between Causal and Bayesian Networks:
X—Y and XY are equivalent Bayesian Nets, but very
different causally

e  (Causal Networks can be interpreted as Bayesian if we
make another assumption

e  (Causal Markov Assumption: given the values of a
variable’s immediate causes, it 1s independent of its
earlier causes (Example: Genetic Pedigree)

 Rule of thumb: In a PDAG equivalence class, X—Y can
be interpreted as a causal link
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Putting 1t All Together: Expression Data
Analysis

 Random Variables denote expression levels of
genes

e Closed biological system

e The result 1s a joint probability distribution over
all random variables

e The joint can be used to answer queries:

— Does the gene depend on the experimental conditions?
— Is this dependence direct or not?

— If 1t 1s indirect, which genes mediate the dependence?
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Putting it all Together: Issues

In learning such a model the

following 1ssues come up:

1. interpreting the results: what do they
mean’?

2. algorithmic complexities in learning from
the data

3. choice of local probability models
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Dimensionality Curse

Again, we are hurt by having many more genes
than observations (6200 vs. 20)

Instead of trying to learn a model that explains the
whole data the authors attempt to characterize
features common to high-scoring models

The 1ntuition 1s that preserved features in many
high-scoring networks are biologically important

They call these models Partial Models
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Partial Models

We do this because the data set has a small
number of samples (compare to under-determined
1n linear models!)

A small data set 1s not sufficient to determine that
a single model 1s the “right” one (no one model
dominates!)

Idea: Compare highest scoring models for features
common to all of them

Simple features considered: pair-wise relations
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Partial Model Features

e Markov Relations
— Is Y 1n the Markov Blanket of X?

— Markov Blanket i1s the minimal set of variables that
shield X from the rest of the variables in the model

— Formally, X 1s independent from the rest of the network
given the blanket

— It can be shown that X and Y are either directly linked
or share parenthood of a node

— In biological context, a MR indicates that X and Y are
related 1n some joint process

e Order Relations
— Is X an ancestor of Y 1n all networks of a given class?
— An indication of causality!
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1. Are the Features Trustworthy?

To what extent does the data support a given
feature?

The authors develop a measure of confidence in
features as the likelihood that a given feature 1s
actually true

Confidence 1s estimated by generating slightly
“perturbed” versions of the original data set and
learning from them

Thus, any false positives should disappear if the
features are truly strong

This 1s the case in their experiments
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2. Learning Algorithms Complexity

The solution space for all these problems 1s
huge: super-exponential

Thus some additional simplification 1s
needed

Assumption: Number of parents of a node 1s
limited
Trick: Initial guesses for the parents of a

node are genes whose temporal curves
cluster well
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3. Local Probability Models

The authors experimented with two different
models: multinomial and linear gaussian

These models are chosen for mathematical
convenience

Pros et cons:

— Former needs discretization of the data. Gene
expression levels are {-1,0,1}. Can capture
combinatorial effects

— Latter can take continuous data, but can only detect
linear or close to linear dependencies
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Data and Methods

Data set used: Spellman et al., 1998
— Objective: Cell cycling genes
— Yeast genome microarrays (6177 genes)

— 76 observations at different time-points

They ended up using 800 genes (250 for some
experiments)

Learned features with both the multinomial and
the linear gaussian probability models

They used no prior knowledge, only the data
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Figure 2: An example of the graphical display of Markov features. This graph shows a “local
map” for the gene SVS1. The width (and color) of edges corresponds to the computed confi-
dence level. An edge is directed if there is a sufficiently high confidence in the order between the
genes connected by the edge. This local map shows that CLN2 separates SVS1 from several other
genes. Although there is a strong connection between CLN2 to all these genes, there are no other
edges connecting them. This indicates that, with high confidence, these genes are conditionally
independent given the expression level of CLLIN2.
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Figure 3: Plots of abundance of features with different confidence levels for the cell cycle data

set {solid 1

threshold, and the y-axis denotes the number of features with confidence egual or higher than the
corresponding x-value. The graphs on the left column show Martkov features, and the ones on the
right column show Order features. The top row describes features found using the multinomial

model, and the bottom row describes features found by the linear-Gausgian model. Inset in each
graph is plot of the tail of the distribution.

Comparing results on real vs. random data

=]

ine), and the randomized data set {(dotted line). The x-axis denotes the confidence
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Robustness: Scaling

QOrder relations Markov relations

Q.6 0.8 1

Figure 4: Comparison of confidence levels obtained in two datasets differing in the number of
genes, on the multinomial experiment. Each relation is shown as a point, with the z-coordinate
being its confidence in the the 250 genes data set and the y-coordinate the confidence in the 800
genes data set. The left figure shows order relation features, and the right figure shows Markov

relation features.
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Robustness: Discrete vs. Linear

Order relations Markov relations

Figure 5: Comparison of of confidence levels between the muitinomial experiment and the linear-
Gaussian experiment. Each relation is shown as a point, with the z-coordinate being its confidence
in the multinomial experiment, and the y-coordinate its confidence in the linear-Gaussian exper-
iment. The left figure shows order relation features, and the right figure shows Markov relation
features.
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Biological Analysis

e Order relations and Markov relations yield
different significant pairs of genes

e Order relations: strikingly pronounced
dominant genes, with many interesting
known, or even key properties for cell
functions

e Markov relations: all top pairs of known
importance, some found beyond the reach
of clustering (see CLN?2 fig. for example)
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Table 1: List of dominant genes in the

ordering relations. Included are the top 10 dominant genes
for each experiments.

Score in Experimert

Gene/ORF Multinomial | Gaussian | Notes

MCD1 550 ! 525 Mitotic Chromosome Determinant,null mutant is inviable

MSHoe 292 [ 508 | Required for migmatch repair in mitosis and meiosis

CsizZ 444 497 cell wall maintenance, chitin symthesis

CLKZ2 497 454 Role in cell cyrele START., null mutant exhibits G1 arrest

YLRI1IB3C 551 448 Coniains forkheaded associated domain, thus possibly nuclear

RFEFA2 456 423 Tivolved in nucleotide excision repain null muiant is inviable

RSR1 352 395 GTP-binding protein of the RAS family involved in bud site
selection

CDC45 - 394 Required for initiation of chromosomal replication, null mutant

A lethal

RADS3 a0 383 Cell cvele control, checkpoint function, null mutant lethal

CcCDCS 209 3533 Cell cyvcle control, required for exit from mitosis. null mutant
lethal

POL30 376 ! 321 Required for DINA replication and repair, null mutant is
imviable

YOX1 400 291 Homeodomain protein

SRO4 463 236 Imvelved in cellular polarization during budding

CLX1 324 - Role in cell cvele START. null mutant exhibits (G arrest

YBRORIW 298 -

Table 2- List of top Markov relations, mmultinomial experbment.

Confidence | Gene 1 | Gene 2 ' Notes

1.0 YELI63W-PIR3 | YKI164C-PIR1 | Close locality on chromosome

0.985 PRY2 YKRO12C ¢ Close locality on chromosome

0.985 MCD1 MSIIG | Both bind io DNA during miiosis

0.93 THO11 PHO12 " Both nearly identical acid phosphatases

0.975 HHT1 HTBI1 | Both are Histones

0.97 HTB2 HTAL ' Both are Histones

0.94 YINLOSTW YINLOSEC | Close locality on chromosome

0.94 YHRI143W CTSh ' Homolog to BGT2 cell wall control, both involved in

Cyvtokinesis

0.92 YOR263C YORZOAW ! Close locality on chromosome

0.91 YGROS6 SIC1 . Homuolog to mammalian nuclear ran protein, both in-
I volved in nuclear funciion

0.9 FAR1 ASHI1 Doth part of a mating type switch, expression
| uncorrelated

0.89 CIN2 sSvs1  Function of SVS1 unknown

D.88 YDRO3I3ZW WNCE2 | Homolog to transmembrame proieins suggest both
_dnvolved in protein secretion

0.86 ‘ STEZ MFEAZ | A mating factor and receptor

.85 HIIF1 HHF2 Both are Histones

0.85 ‘ MET 1O ECML7 | Both are sulfite reductases

.85 | CDC2 RAD27 ~ Both participate in Okazaki fragment processing




Bayesian Networks and Perturbation
Data (Pe’er et al. 2001)

e Similar study as above, but on a different, and
bigger data set.

* Hughes et al. 2000

— 6000+ genes 1n yeast
— 300 full-genome perturbation experiments

e 276 deletion mutants
e 11 tetracycline regulatable alleles of essential genes

* 13 chemically treated yeast cultures

* Pe’er et al. chose 565 significantly differentially
expressed genes 1n at least 4 profiles

ECS289A, UCD WQO3, Filkov



Results

e Biologically meaningful pathways learned
from the data!

Iron homeostasis Mating response

Read the paper.....
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[_.imitations

* Bayesian Networks:
— Causal vs. Bayesian Networks
— What are the edges really telling us?
— Dependent on choice of priors
— Simplifications at every stage of the pipeline: analysis
1impossible
e Friedman et al. approach:

— They did what they knew how to do: priors and other
things chosen for convenience

— Very little meaningful biology

— Do we need all that machinery 1f what they discovered
are only the very strong signals?
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