
ECS289A, WQ03, Filkov

Continuous Models of 
Gene Regulation

Lectures 13 and 14



ECS289A, WQ03, Filkov

Outline of Lecture

• Quantitative Modeling
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Quantitative Modeling 
in Biology 

• State variables: concentrations of 
substances, e.g. proteins, mRNA, 
small molecules, etc.

• Knowing a system means being 
able to predict the concentrations of 
all key substances (state variables)

• Quantitative Modeling is the 
process of connecting the 
components of a system in a 
mathematical equation

• Solving the equations yields 
testable predictions for all state 
variables of the system
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Discrete vs. Continuous

• So far we discussed only 
combinatorial modeling 
paradigms, which were all 
discrete

• Here we will talk about 
continuous models, where 
values of variables change 
continuously in time (and/or 
space)

• On a molecular scale things 
are discrete, but on a macro 
scale they blend in and look 
continuous
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Why Continuous?

• Continuous models are 
appealing because they allow 
for instantaneous change

• Continuous models let us 
express the precise
relationships between 
instantaneous states of 
variables in a system
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Problems
When modeling with differential 
equations we face all the same 
problems as in the discrete 
models:

– Posing the equations. This 
presumes we understand the 
underlying phenomenon

– Data Fitting. How do we learn 
the model from the data?

– Solving the equations. Means we 
can do the math

– Model Behavior. Analyzing the 
fitted model to understand its 
behavior
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Recall the Modeling 
Process…

1. Knowledge
2. Modeling Objectives
3. Construct and Revise 

Models
4. Model behavior and 

predictions
5. Compare to new data
6. Better Models, goto 3
7. Learn…
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1. Ordinary Differential 
Equations

Rate equation:
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Systems of ODEs: There are n such 
equations

Solving the rate equations depends on f, 
but what is the form of the function f ?

The answer is: as simple as possible.
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The Rate Function and 
Regulation

• The rate function specifies the interactions 
between the state variables. 

• Its input are the concentrations, and the 
output is indicative (i.e. a function of) the 
change in a gene’s regulation

• The regulation function describes how the 
concentration is related to regulation

• This is a typical regulation function, called 
a sigmoid, bellow compared to similar 
ones
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Non-linear ODEs

The rate function is nonlinear!
Eg. 
1. Sigmoidal
2. Nonlinear, additive. Summarizes 

all pair wise (and nothing but pair 
wise) relationship

3. Nonlinear, non-additive. 
Summarizes all pairs and triplets 
of relationships
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Solving
• In general, these equations are difficult 

to solve analytically when fi(x) are non-
linear

• Numerical Simulators/Solvers work by 
numerically approximating the 
concentration values at discretized, 
consecutive time-points. Popular 
software for biochemical interactions:
– DBsolve
– GEPASI
– MIST
– SCAMP

• Although analytical solutions are 
impossible, we can learn a lot from 
general analyses of the behavior of the 
models, which some of the packages 
above provide
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Model Behavior:

• Feedback is essential in biological 
systems. The following is known 
about feedback:

– negative feedback loops: system 
approach or oscillate around a 
single steady state

– positive feedback loops: system 
tends to settle in one of two 
stable states

– in general: a negative feedback 
loop is necessary for stable 
oscillation, and a positive 
feedback loop is necessary for 
multistationarity
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Data Fitting

• Fitting the parameters of a non-
linear system is a difficult problem.

• Common solution: non-linear 
optimization scheme
– explore the parameter space of the 

system
– for each choice of parameters the 

models are solved numerically (e.g.
Runge-Kutta)

– the parameterized model is 
compared to the data with a 
goodness of fit function. It is this 
function that is optimized

• Genetic Algorithms and Simulated 
Annealing, with proper transition 
functions have been used with 
promising results
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Linear and Piecewise 
Linear ODEs

Linear
– These are much easier to deal 

with: if the input variables are 
limited by a constant, they can 
be solved and learned
polynomially, depending on the 
amount of data available

– One way to learn them is by 
approximating them with linear 
weight models
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Piecewise linear

• Approximating the sigmoid regulatory 
function with a step function

• Here the function bil is a function of n 
variables, defined in terms of sums and 
products of step functions:

• This amounts to subdividing n-
dimensional space into “orthants”, and in 
each of the orthants the PLODEs reduce 
to ODEs
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2. PDES

• ODEs count on spatial 
homogeneity

• In other words, ODEs don’t 
care where the processes take 
place

• But in some real situation this 
assumption clearly does not 
hold
– Diffusion
– Transcription factor gradients in 

development
– Multicelular organisms
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Example: Reaction-
Diffusion Equations

The equation above describes the change in conc. for 
all state variables, in all cells of the line above. When 
the number of cells is large, this becomes a PDE:

These equations were first introduced in the study of 
developmental phenomena and pattern formation by 
Turing.

Direct analytical solutions are impossible even for two 
variables (n=2) 
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Drosophila Example
• These PDE models have been 

used repeatedly to model 
developmental examples in the 
fruit fly

• Instances of the reaction-
diffusion equations (only more 
specific) have been used to 
model the striped patterns in a 
drosophila embryo
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3. Stochastic Master 
Equations

• Deterministic modeling is not 
always possible, but also 
sometimes incorrect

• Assumptions of deterministic, 
continuous models:
– Concentrations of substances vary 

deterministically
– Conc. Of subst. vary continuously

• On molecular level, both 
assumptions may not be correct

• Solution: Instead of deterministic 
values, accept a joint probability 
distribution, similar to the one 
discussed in the Bayesian Network 
lectures.
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Equation:

These equations are very difficult to solve and simulate!

ODE vs. Stochastic solutions

(c) Jason Kastner and Caltech
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4. Others and an 
Example

• There are a few other 
approaches to continuous 
modeling
– qualitative
– spatially distributed (a bunch of 

PDE models)
– hybrid

• Example: Chen et al. 1999
– Gene and protein expression 

data
– Linear equation models
– Gene expression solely is not 

sufficient to specify the system!
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Conclusion
• Continuous models yield excellent 

results, but difficult to solve and fit
• Continuous vs. Discrete: nature is 

both, we should model based on 
experience

• Stochastic vs. Deterministic: nature 
is stochastic, but the models are 
very difficult to solve

• Necessary data: usually O(n) 
experiments on all n state variables. 
This means as many experiments 
for each variable as there are 
variables!

• Although still unfeasible, these 
models have been used 
successfully on prokaryotic 
regulatory systems, and recently on 
simple eukaryotes
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