Data Integration

Lectures 16 & 17
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ectures Outline

Goals for Data Integration

Homogeneous data integration

— time series data (Filkov et al. 2002)
Heterogeneous data integration

— microarray + sequence

— microarray + protein

— microarray + location

— is integration always beneficial?

Data Integration for Developmental Networks
(Davidson et al., 2002)
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Integrating data from various experiments should
yield better understanding of the data compared to
that of individual data sets.
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We integrate data sets with specific goals in mind:

Goals for Data Integration

— better gene classification
— better gene clustering
— better regulatory networks

Methods used are the same (modeling):

SVMs

Bayesian inference
Clustering/Classification
Graph models and algorithms
Statistical Significance
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Homogeneous Data

Expression Data (microarrays)
Sequence Data

Location Data (ChlP)

Protein Expression Data

Common platforms for storage, retrieval
and comparison across similar data type
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Homogeneous Integration

Eg. Microarray expression data is compared across treatments to discover
differential gene expression, i.e. genes that behave differently under
treatment w.r.t control
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Spellman et al. 1998
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(Filkov et al., 2002)

Plot of ACT1 (YFLO39C)
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Yeast cells in different experiments are synchronized differently

phase and

amplitude
period
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How to integrate time-series data?

Homogeneous Integration
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Warp the curves so that they all have the same




Warping Time-series
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Period and Phase Warp

1. Assume Most Genes are Periodic

2. Perform auto-correlation studies to find period
and phase shift

3. Correct for correlation significance in short
sequences

Window length different
from cell cycle length =>
. small correlation

A

Window length equal to cell .
cycle length => large = :
correlation
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After correcting for chance the data sets

periods are predicted correctly
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Data Set Period Period Dt # samples # full orfs
Observed Detected

Alpha 66 £ 11min 70 £ 7min 7 18 3361

Cdc28 (Cho) |90 + 10min 100 + 10min 10 17 1188

Cdc15 70 + 10min 90 + 10min 10/20 | 24 3453

elu 30 14 4753

(phase shift determined similarely...)
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Heterogeneous Data Integration

 DNA Sequence
* Microarray
* Proteomics
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Why Does It Pay to Integrate?

 Gifford, Computational Functional
Genomics, Lecture 18

» “Multiple independent constraints can
dramatically increase the significance of
otherwise elusive effects”

* Dependent vs. Independent
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1. Classification

« Simple, intuition based classifications

— compare to the leukemia classification of
Golub et al.,

« Machine Learning classifiers (SVMs)
— compare to Cristianini et al.
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Eg. Gene Expression + Protein
Interaction Data

(Ge et al., 2001)
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Goals

1. To compare the levels of
interaction between proteins
encoded by co-expressed genes
vs. proteins not encoded by co-
expressed genes

2. Improved modeling of protein-
protein interactions

Methods

Calculate protein interaction
density, and corresponding
significance within and between
co-expressed clusters of genes
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protein
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all interaction
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More Knowledge Yields Better Models

a) Protein-protein interaction data

b) Protein Interaction +
Gene Expression Data

Stress response proteins
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Eg. Protein Function Prediction

Marcotte et al., 1999

8,217 proteins of
Saccharomycas
cerevisiae

Link functionally-related proteins. ”‘_‘“-\
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Predict function of uncharactarized proteins
using links with characterized proteins

Table 1 R of functional it d by r v of protein function by predi *
Number of Numiber of False positive Ability tc predict Ability in randam Signal to
proteins functional links rate*® (%a) known functiont (%) trialst (96} noise ratio§

individual prediction techniques

Experimentallf 484 500 8.5 33.2 4.0 8.3
Metabolic pathway neighbours 188 2,391 2.5 20.3 4.5 4.5
Phylogenstic profiles 1.976 - 20,749 28.5 331 7.4 4.5
Rosetta Stons method 1.898 45,502 36.4 265 7.7 3.4
Correlated mMRNA expression 3.387 26,013 as.s 11.5 8.9 1.7
Combined predictions

Links made by =2 prediction 883 1,249 16.1 55.6 6.9 8.1
technigues

Highest confidence links 1,223 4,130 4.8 40.9 5.5 7.4
High confidence links 1,930 18,821 30.6 30.8 7.4 4.2
High and highast confidence links 2,356 23.851 21.8 32.0 6.8 4.7
All links 4,701 93,750 33.1 20.7 v.2 28

“The reliabllity of Individual links was calculated as the percentage of pairwise links found between proteins of known function but having no functional categories in common {as tabulated in the MIPS
database*, ignoring the functional categories "unclassified’ and ‘classification not clear cut’). This estimate of false positives assumes complete knowiedge of protein function and is thersfore an upper imit.
By this test, random links achieve a false positive rate of ~d47%.

T The predictive powar of individual techniques and combinations of techniques was evaluated by automated comparison of annctation keywords. By the methods listed, each protein is linked to one or
more neighbour proteins. For characterized proteins (‘query’ proteins), the mean recovery of known Swiss-Prot keyword annotation by the keyword annotation of linked neighbours was calculated as:

{keyword recovenyy = = i a3y

where A is the number of annotated proteins, x Is the number of query protein Swiss-Prot keywords, iV is the total number of neighbour protein Swiss-Prot keywords, and r; is the number of times query
protein keyword j occurs in the neighbour protein annotation. Because functional annatations typically censist of multiple keywords, both specific and general, even truly related proteins show only a partial
keyword overlap {for example, ~35%).

F Maean recovary of Swiss-Prot keyword annotation for query protelns of known function by Swiss-Prot keyword annotation of randomly chosgen linked neighbours, calculated as in equation (1) for the same
number of links as exist for real links (averages of 10 trials).

§ Calculated as ratio of known function recovered by real links to that recovered by random links. Although individual links have only moderate accuracy, combining information from many links significantly
enhances prediction of function.

Il Experimentally obsarvad yeast protein—protein interactions contained in the DIP® and MIPS* databases.

Combining various strategies to link
functionally related proteins. Total: 93750 links

sauelyin WURZRIE] \ o e i tarat * high confidence (19521 links
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2. Integrating Clusterings
(Filkov and Skiena, 2003)

Data sets are usefully summarized as clusterings
Functional
Structural
Data Driven

By using multiple clusterings we can learn more, but how?
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Overlapping two clusterings is
useful, but can we generalize it?

Problem: Find a Consensus
Clustering that describes the given
clusterings well

P7
? P6 Approach: Integrate the

P8 P> clusterings of data by

minimizing the sum of

_— .
./C é\\.m P4 distances between them

p1 and a consensus

P2 P3

min$ = » d(P,,C)
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Solving the Consensus Problem

« min S consensus is NP-complete even for a very simple
distance function (Rand Index)

« Simple Heuristics based on random element move
between clusters work well on large data sets

« a measure of benefit of integration
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Integrating Spellman’s Data

Alpha, Avg. SoD = 0.1121

cdc15, Avg. SoD = 0.1042

elu, Avg. SoD = 0.1073

Overall, Avg. SoD = 0.107, benefit
Spellman + Phylogeny = No benefit

Spellman + Yeast Stress = Benefit

(real data)
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3. Gene Network Inference

Data Integration for Link (Graph) Modeling
in General

Probabilistic Setting

Each data source is an “expert” proposing
a model

Independent experts: easy (Gifford 2002)
— independent significances, p,, p,

— combined significance, p=f(p,,p,)
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Graph Models

* Dependent experts (Hartemink et al., 2002)
— Joint probability distributions
— Bayesian Networks

— Model scoring
« Maximizing a Bayesian scoring function
 simulated annealing optimizer
 averaging over high-scoring models

— Location+expression data used as priors
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Figure 2. Bayesian network models learned by model averaging over the 500 highest scoring
models visited during the unconstrained and constrained simulated annealing search runs,
respectively. Edges are included in the figure if and only if their posterior probability

exceeds 0.5. Node and edge color descriptions are included in the text.

ECS289A, WQO03, Filkov



4. Putting It All Together
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