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Abstract: Microarray technologies allow monitoring of gene activity (or 
expression) of thousands of genes in parallel at the same time. Although very 
powerful, their complexity makes the observed data very difficult to integrate across 
experiments. In the first part of this paper I will introduce the microarray 
technology and several of our bioinformatics approaches for integrating multiple 
gene expression data sets using combinatorial and visualization methods. In the 
second part of the paper I will present some thoughts towards formalizing 
biological models of gene regulation towards a language of transcription. 
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1. Microarray Data Integration 
 
1.1 Introduction  
 
Genes and gene products regulate all of the processes in the cell, as they react to 
developmental or environmental events. Active (expressed) genes regulate the 
activity (expression) of other genes by coding for proteins that physically interact 
with their DNA. In that sense, all the genes in an organism are parts of a gene 
regulatory network that describes the activities and relationships of all the genes of 
that organism. The therapeutic benefits of having a blueprint of a gene network are 
enormous because with it the organism's responses can then be understood and even 
modified.  
 
DNA microarrays are large-scale technologies that measure gene activity in 
organisms. Microarrays use a key property of DNA molecules, hybridization, to 
differentiate between and identify target DNA. Physically, they are rectangular 
matrices on which DNA molecules, called probes, are pre-affixed in row and 
column intersections. The probes are characteristic to the organism that is studied. 
The experimenter prepares an RNA target mixture from the cells of interest, 
wherein the RNA is converted to the complementary molecules, called cDNA's, 
which are also color-tagged for later identification. The microarray is exposed to the 
cDNA, and the corresponding molecules hybridize, i.e. the molecules on the array 
find complementary molecules in the mixture to join with and form double stranded 
DNA. In general, the higher the concentration is of cDNA in the target, the stronger 
the hybridization will be on the microarray. 
 



  
 
Figure 1: On the left is a diagram of the microarray process from RNA collection to its quantification  
(picture © SUNYSB Microarray facility); on the right is a robotic printing head which is attaching 
parts of gene molecules to a plate (picture © Lawrence Berkeley Lab) 
 
The microarray is washed to remove excess molecules, and is color-scanned. The 
scan of a microarray is a rectangular grid of (usually) red / green (blue) / black dots. 
The intensity of the colored dots is proportional to the level of hybridization, which 
in turn indicates levels of genetic expression. The process is pictorially described in 
Fig 1. In particular, black indicates the level of expression (concentration or 
activity) of unexpressed control molecules, red may indicate expression higher than 
control, and green may indicate expression lower than control. As a result, with 
microarrays specifically tuned to a particular organism, it is possible to measure the 
level of concentration of any given gene, at any time, relative to a control set of 
DNA molecules. The technology responsible for this is a robotic printer, the head of 
which is shown on the right in Fig. 1, which can attach thousands of spots on few 
square inches of medium such that two spots next to each other can be very 
different molecules. 
 
With microarrays one can examine the reaction of particular genes (via their 
expression) to environmental conditions, and establish correlation between genes 
and their function on a cellular level. The power of DNA microarrays, though, lies 
in their parallelism, since measures of gene expressions are obtained for thousands 
of genes at the same time. This experimental breadth in principle makes it possible 
to both identify differentially expressed genes across experiments, important when 
it is needed to find the markers for diseased vs. healthy cells, and identify genes of 
similar functionality when the mechanism of action of one but not other gene is 
known. 
 
As you may imagine, because of their promise, everyone wants to, and does, get 
their hands on this technology. And once they do they start performing lots of 
experiments with it and generating tones of data. And since there are infinite 
numbers of ways to setup experiments it is unlikely that this trend will abate in the 
near future. Just to illustrate the wealth of data available, the worldwide repository 
for microarray data, the Stanford Microarray Database, SMD (http://genome-
www5.stanford.edu) as of the last week of year 2004 counted more than 50000 
catalogued microarray experiments over 35 organisms, and almost 1400 users over 
nearly 280 labs in the world! 



 
Figure 2: Scanned microarray image © P. Brown’s lab at Stanford (left), and a spreadsheet snapshot of 
a typical microarray data set of hundreds of yeast microarrays (genes are rows, experiments columns) 
 
With the exploding volume of microarray experiments comes increasing interest in 
mining repositories of such data. But meaningfully combining results from varied 
experiments on an equal basis is a challenging task. This makes the case for data 
integration. Especially when dealing with large-scale data, integration becomes not 
just useful but very necessary. 
 
There have been several previous attempts toward general integration of biological 
data sets in the computational biology community. Marcotte et al.[1], for example, 
give a combined algorithm for protein function prediction based on microarray and 
phylogeny data, by classifying the genes of the two different data sets separately,  
and then combining the gene pairwise information into a single data set. Pavlidis et 
al.[2] use a Support Vector Machine algorithm on similar data sets to predict gene 
functional classification. Both methods need hand tuning with any particular type of 
data both prior and during the integration for best results. Ad hoc approaches to data 
integration are difficult to formulate and justify, and do not readily scale to large 
numbers of diverse sources, since different experimental technologies have different 
types and levels of systematic error. In such an environment, it is not always clear 
that the integrated product will be more informative than any independent source. 
 
1.2 Data Integration by Consensus Clustering 
 
Clustering has shown to be an extremely useful technique for microarray data 
analysis, especially if very little is known about that data a priori (“fishing 
expeditions”). That is because genes grouped by their expression profiles often are 
functionally related. (see Fig. 3) There are many different clustering techniques: 
hierarchical, k-means, topology based, fuzzy methods based, etc. For more on 
clustering microarray data one can consult for example [4] or my lectures at  
“http://www.cs.ucdavis.edu/~filkov/classes/289a-W03/l6.pdf”. 
 
This is where we came in. Our idea was simply that if clustering is so popular then 
people use it all the time and they must have clustered the same genes of their 
favorite organism (say yeast, or human) many times over. Intuitively, different  



   
 
Figure 3: Shown on the left are clustered expression profiles of a subset of genes of yeast (shown are 
hundreds out of the ~6000 genes), observed on microarrays at different points in time. The visual 
clusters actually correspond to functional clusters, as illustrated by the first two groups [3]. 
 
clusterings of the same genes could be used to tell us more about the groups that the 
genes co-belong to than the individual clusterings themselves. So, our goal became 
to develop methods based on the various, source-specific, clusterings of the data (or 
the meta-data) to both (a) provide an integrated view of the data and (b) eliminate 
misclassifications due to errors in the individual data sets. Both of these goals are 
naturally addressed by the theoretical problem of consensus clustering, which goal 
is to find a representative or consensus clustering that describes well a set of given 
clusterings.  
 
Mathematically, clusterings are just set partitions, and formally, the Consensus 
Clustering problem (CC) can be written as: 
 

CC: Given k set-partitions P1, P2,…,Pk and a distance measure d(.) on them, 

find a consensus partition C that minimizes �= ),( CiPdS  

As our distance measure we chose the symmetric difference distance, which counts 
pairs of simultaneously co-clustered (or simultaneously not co-clustered) elements 
in both clusterings (i.e. partitions). It is possible to show that with this distance 
measure the consensus clustering problem above becomes NP-complete [5], so 
exact solutions are intractable, especially since our data sets are very big. Instead, 
we developed several different heuristics for solving CC, and chose the “best” out 
of them for our system (by best we mean one satisfying some theoretically provable 
bounds as well as outperforming the other heuristics in our tests). In that heuristic 
the space of solutions is traversed by moving between set partitions by simple single 
element swaps between clusters, while deciding whether a move is beneficial based 
on a simulated annealing optimizer [5]. The heuristic could handle hundreds of 
genes and hundreds of clusterings (i.e. set partitions) in real time (seconds) and 
thousands of genes in minutes. 
 
We implemented a software system, CONPAS (CONsensus Partitioning System), 
around this heuristic, and tested it around many different data sets of genes and 
clusterings on yeast. In addition to providing an integrated view of clusterings of 
data, CONPAS also is very successful at eliminating misclassifications due to errors 
in the individual clusterings, as can be seen in Fig 4, thus addressing both  
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the original goals. As an additional benefit, the average sum of distances to the 
consensus clustering, when properly corrected statistically, happens to be a good 
indicator of the goodness of the data set integration, thus providing a confidence 
coefficient, and is of independent interest. 
 
We have further refined and extended the original consensus clustering concept into 
many different directions, e.g. imputing missing data, bi-clustering, weighting 
experiments of different importance, etc., and have proven it to be a very rich and 
extensible data integration platform [6]. 
 
1.3 Data Integration by Visualization with GeneBox 
 
Early microarray experiments were overall very simple, focusing only on gross 
differential expression under test conditions, many even lacking repeats. 
Consequently, many early microarray data analysis tools were geared towards 
finding genes that are simply differentially or similarly expressed under the test 
(versus control) conditions. The use of any such data analysis tool requires the 
researcher to appropriately tune these parameters for their data set, in order to avoid 
arbitrary results in terms of the number of data clusters, size, density, etc. Today 
though, microarray experiments are routinely performed under multiple 
experimental conditions, on multiple test samples, and for multiple controls. Such 
versatile data allows more interesting questions to be asked, like which genes are 
expressed similarly under some but not all experiments. Since it is actually the 
differential expression under some, but conceivably not all, experimental conditions 
that sets the genes apart functionally, the ability to consider such questions is 
ultimately very important. For example, in an experiment with two genotypes and 
two time points, a scientist might be interested in finding genes that are similarly 
expressed at the first time point in both genotypes but expressed differently at the 
other point in the genotypes. Exploring such data then, can benefit from versatile 
and interactive visualization tools that bring the problem of data mining and 
analysis closer to the individual researcher in the field, by allowing real-time visual 
data manipulation. 
 

Figure 4: This plot shows the benefit of 
having multiple clustering from different 
sources. Even if the noise is as high as 
20-25% in the individual clusterings (x-
axis) CONPAS can resolve if genes are 
actually co-clustered with very low error 
(y-axis). The experiment was performed 
by deriving noisy clusterings from an 
original clustering that later CONPAS 
was trying to match from the noisy ones. 
The error of the match was d(.) 



 

 
 
Figure 5: The GeneBox graphical interface is shown on the left, with the genes rendered as points in 
3D, and selection tools shown as cubes and squares. The box is fully interactive with some of the 
parameters manually changeable in the right panel 
 
To that end we developed GeneBox [7], a general-purpose 3-D visualization tool for 
multi-variable microarray gene expression data. GeneBox was designed to help 
scientists answer complex queries through interactive visual exploration of 
microarray data sets. It works with microarray data coming from multiple chips, e.g. 
genotypes under multiple experimental conditions. GeneBox is built around a few 
core methods for microarray data analysis: (1) data normalization methods, as data 
comes from multiple microarray chips; (2) statistical differential expression 
inference; and (3) statistical significance of differentially expressed genes in three 
dimensions. Its real strength, however, comes from the multidimensional visual 
interface, necessary to represent the multi-variable microarray data, coupled with 
interactive functionalities and variety of user controls to customize the output. 
 
The basic setup of GeneBox is a unit cube in space, rendered in perspective, in 
which the gene shapes are visualized. Each gene is rendered as a 3-D icon in 
GeneBox (Fig 5). Its location and color is determined by its differential expression. 
GeneBox maps differential expression of a gene under three different experimental 
conditions to coordinates along three axes in 3-D space. The differential expression 
is calculated using state of the art statistical methods. Color is used to indicate the 
significance of the genes differential expression.  
 
The interactive setup of GeneBox is the key ingredient to its success with the life 
scientists. Compared to the CONPAS system, GeneBox is much more hands-on and 
although it requires much more training it certainly requires much less explanation 
of the results. Our experience is that the user niches for the two systems have 
overall been different, with GeneBox becoming a life scientist favorite. 



2. Modeling Gene Regulation 
 
2.1 Introduction 
 

 
 
The reason we have to use methods to integrate genomics data is because we simply 
do not know how our cells work on the genome level. Although we do know that at 
the most basic biological level the genetic information is passed from the DNA 
(through the process of transcription) to the mRNA and out into the cytoplasm to 
the proteins through translation, we still have only very vague understanding of how 
genes and proteins are connected and interact into what are called gene regulatory 
networks to sustain life. Although there clearly exist needs for good formal and 
verifiable models of genetic networks, there is very little understanding out there 
about what a good model should offer, and what a good data set on which it should 
be measured should be. In this section I would like to offer some introduction to 
modeling transcriptional regulation and thoughts on properties that formal models 
for transcriptional regulation should have, based on some recent work by E. 
Davidson and colleagues on developmental regulation in sea urchin. 
 
2.2 Genes and the Logic of Transcription  
 
Genes are heritable pieces of DNA representing only 2-3% of the DNA in the cell 
nucleus. Like the rest of the DNA they are pretty dormant, until the process of 
transcription starts. Then, proteins called Transcription Factors (TFs), bind to DNA 
regions near the genes (called cis-regions) which attract a big molecular machinery 
called RNA polymerase, see Fig 6, which in a lock-in-key fashion recognizes the 
TFs signatures and starts copying letter for letter the gene into a complementary 
molecule called mRNA, which is the active version of the gene. As long as the TFs 
are attached, RNA polymerases will copy the gene, and the gene is considered 
active. The TFs don’t just bind anywhere; they are very picky and specific: given 
their chosen site they bind to it, while others will rarely do. The binding sites are not 
always available as the DNA is not always untangled. So, the activity of a gene 
correlates with the availability of the binding sites and the concentration of the TFs. 
 

Figure 6: Trans-factors binding to cis 
regions of a hypothetical gene. The 
DNA is the red  strand and the globs 
are the proteins. The binding sites are 
marked with rectangles. The gene 
starts at the initiation site at continues 
to the right. Some of the TFs have a 
DNA looping role, i.e. they bring 
segments of the DNA in proximity for 
the other TFs to interact with © 
McMIllan pubs 



 
Figure 7: The endo16 cis-region information processing logis © E. Davidson and Science magazine. 
The final transcription is a linear combination of three input signals, the colored boxes, with the 
constants depending on the occupancy of the other sites [9] 
 
The question then, is, given sufficient concentrations of all possible TFs how will 
different combinations of binding sites react to them? In other words, if the cis- 
regions were treated as information processing units then what types of signals can 
they process? Eric Davidson at Caltech and his colleagues asked similar questions 
to these but in a biological setting. In the past 30 years they have made very descent 
attempts at answering some of them [8]. An excellent example of their work is the 
elucidation of the processing logic of the cis-region of the endo16 gene in sea urchin 
[9] (see Fig. 7). There they have tried to explain the effects of elimination of a part 
of the system on the system behavior as a whole. It is interesting to follow their 
scheme computationally, and play out different input/output scenarios. 
 
2.3 Reverse Engineering Nature 
 
The results of Davidson’s and colleagues are a very good starting point for a 
realistic model of transcription. Their most important result is an empirical example 
of reverse engineering of a cis-region’s information processing logic. In those lines, 
if a cis-region is considered a black box that accepts input (TF-DNA binding) and 
produces corresponding output, than that black box can be reverse engineered.  
 
But why did they succeed, what did we learn from them, and how can we as 
computational scientists generalize their methods? The answer to all three questions 
may be the same: because biological systems at functional level are modular [10]. 
 
2.4 Towards a Language of Transcription  
 
Mmodularity allows us not just to elucidate the logic of endo16 in fewer 
experiments, although that is certainly the case. More importantly it helps us to 



scale the phenomenon of transcriptional regulation so that we can think of it not in 
terms of biochemistry but in terms of abstract processes and ideas, and in terms of 
an expressive language. Fig 8 shows an example. It is Fig 7 rewritten in a C-like 
language, with added modular semantics. The underlying meaning is that there are 
building blocks (i.e. amplify, inhibit, switch) that transcriptional regulation reuses to 
make genes active and to make networks connected. If, perhaps there are a finite 
number of them, then there might be a language of transcription and gene regulation 
that is very much like the programming languages that we know, written in the 
genetic codes of animals. 

 
 
if       ( Z && (CD || E || F)) 
  

         T(t) = 0;  
   
 else { 

        if            (P && CG1)  
 

   T(t) = 2*(B(t)+G(t));   
        else 

T(t) = Otx(t); 
  

        if           (CG2 && CG3 && CG4) 
     

T(t) = 2*T(t); } 
 
Figure 8: The endo16 logic rewritten in a C-like code. The logical statements are to be interpreted 
TRUE iff the corresponding binding site is present and bound. T(t) is the transcription of endo16 at 
time t. The boxes on the right indicate the modular actions of the logical combinations of those 
combinations of binding sites, and are the same wherever those binding sites occur together. 
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