
Consensus Clustering Algorithms: Comparison and Refinement

Andrey Goder∗ Vladimir Filkov†

Computer Science Department
University of California

Davis, CA 95616

Abstract

Consensus clustering is the problem of reconciling clustering

information about the same data set coming from different

sources or from different runs of the same algorithm. Cast as

an optimization problem, consensus clustering is known as

median partition, and has been shown to be NP-complete. A

number of heuristics have been proposed as approximate so-

lutions, some with performance guarantees. In practice, the

problem is apparently easy to approximate, but guidance is

necessary as to which heuristic to use depending on the num-

ber of elements and clusterings given. We have implemented

a number of heuristics for the consensus clustering problem,

and here we compare their performance, independent of data

size, in terms of efficacy and efficiency, on both simulated

and real data sets. We find that based on the underlying

algorithms and their behavior in practice the heuristics can

be categorized into two distinct groups, with ramification as

to which one to use in a given situation, and that a hybrid

solution is the best bet in general. We have also developed a

refined consensus clustering heuristic for the occasions when

the given clusterings may be too disparate, and their con-

sensus may not be representative of any one of them, and we

show that in practice the refined consensus clusterings can

be much superior to the general consensus clustering.

1 Introduction

Clustering is a very useful technique for mining large
data sets since it organizes the data, based on similarity,
into smaller groups which are easier to handle in a down-
stream analysis. Often, different clusterings of the same
data can be obtained either from different experimental
sources or from multiple runs of non-deterministic clus-
tering algorithms. Consensus clustering formalizes the
idea that combining different clusterings into a single
representative, or consensus, would emphasize the com-
mon organization in the different data sets and reveal
the significant differences between them. The goal of

∗andrey.goder@gmail.com
†filkov@cs.ucdavis.edu

consensus clustering is to find a consensus which would
be representative of the given clusterings of the same
data set.

Multiple clusterings of the same data arise in many
situations; here we mention two classes of instances.
The first class is when different attributes of large data
sets yield different clusterings of the entities. For exam-
ple, high-throughput experiments in molecular biology
and genetics often yield data, like gene expression and
protein-protein interactions, which provide a lot of use-
ful information about different aspects of the same enti-
ties, in this case genes or proteins. Specifically, in gene
expression data different experimental conditions can be
used as attributes and they can yield different cluster-
ings of the genes. In addition to the individual value
of each experiment, combining the data across multiple
experiments could potentially reveal different aspects of
the genomic system and even its systemic properties [1].
One useful way of combining the data from different ex-
periments is to aggregate their clusterings into a consen-
sus or representative clustering which may both increase
the confidence in the common features in all the data
sets but also tease out the important differences among
them [2, 3].

A second class of instances results from situations
where multiple runs of the same non-deterministic clus-
tering or data mining algorithms yield multiple cluster-
ings of the same entities. Non-deterministic clustering
algorithms, e.g. K-means, are sensitive to the choice
of the initial seed clusters; running K-means with dif-
ferent seeds may yield very different results. This is in
fact desirable when the data is non-linearly separable,
as the multiple weak clusterings could then be combined
into a stronger one [4]. To address this, it is becoming
more and more common to analyze jointly the result-
ing clusterings from a number of K-means runs, seeded
with different initial centers. One way to aggregate all
those clusterings is to compute a consensus among them,
which would be more robust to the initial conditions.

1.1 Consensus Clustering Formalization: the
Median Partition Problem The version of the con-
sensus clustering problem in which we are interested is
the following: given a number of clusterings of some set
of elements, find a clustering of those elements that is as
close as possible to all the given clusterings. To formal-
ize this problem we need two things: a representation
of a clustering of a set, and a measure d(,) of distance
between clusterings.

We identify a clustering of a set A, |A| = n, with a
set partition π of A, such that if two elements a, b are
clustered together in the clustering of A then they are
in the same cluster, or block, in π.

A natural class of distances between set partitions
can be defined by counting the clustering agreements
between them for each pair of elements in the set. Given
two set-partitions π1 and π2 let a equal the number
of pairs of elements co-clustered in both partitions, b
equal the number of pairs of elements co-clustered in π1,
but not in π2, c equal the number of pairs co-clustered
in π2, but not in π1, and d the number of pairs not
co-clustered in either partition (in other words a and
d count the number of clustering agreements in both
partitions, while b and c count the disagreements). As
our distance measure we chose the symmetric difference
distance (sdd), defined as

d(π1, π2) = b + c =
(

n

2

)
− (a + d).

This distance measure is a metric and has a nice
property that it is computable in linear time (with
respect to the number of elements n) [5, 2], which is
one of the reasons why we chose it. Another reason is
that it can be updated very fast following one element
moves in set partitions, as related to the local search
heuristics [2], which are described later.

It is of note also that the sdd is related to the
popular Rand Index, which is defined as R = (a+d)/

(
n
2

)
.

The sdd and the Rand are not corrected for chance, i.e.
the distance between two independent set partitions is
non-zero on the average, and is dependent on n. A
version corrected for chance, known as the adjusted
Rand Index, as well as other pair-counting measures
(e.g. Jaccard Index) exist [6, 7]. The adjusted Rand and
the Jaccard indexes are given by complex formulas, and
although they can also be computed in linear time, we
are not aware of fast update schemes for them. We will
use the adjusted Rand in Sec. 5 where the algorithms’
complexity is not an issue. In addition, several of the
consensus clustering heuristics we use run efficiently
only with the symmetric difference distance.

Now we can state the formal version of consensus
clustering, known as the median partition (MP) prob-

lem. Given a set of k set partitions, {π1, ..., πk}, and
d(,) the symmetric difference distance metric, we want
to find a set partition π∗ such that

(1.1) π∗ = argmin
π

k∑
i=1

d(πi, π).

The median partition problem with the symmetric
difference distance is known to be NP-complete [8]. For
more on the history of the problem and variants see [2].

1.2 Prior work A number of algorithms have been
published for approximating the median partition prob-
lem [3, 9]. Various theoretical results, including perfor-
mance guarantees have been derived, although the gap
between the performance of these heuristics and their
upper bounds is wide [3, 9, 10].

The existing algorithms can be naturally grouped
into three groups: the first consists of only one algo-
rithm, the simplest non-trivial heuristic for MP: choose
one of the input partitions as the consensus. The second
group is comprised of clustering-based algorithms [10],
and the third of local-search heuristics [3]. Ailon et
al. [10] and Filkov and Skiena [2] provide some theoret-
ical upper bounds as well as performance comparisons
for some of those heuristics. Bertolacci and Wirth [9]
give a more extensive comparison, while only focusing
on clustering-based algorithms and using sampling of
the data for better performance.

1.3 Our Contributions In this paper we compare
a comprehensive collection of existing median partition
heuristics and provide definitive comparisons of their
performance in variety of situations. In particular, our
contributions are:

• we have written a C++ library for set par-
titions, supporting many common operations.
We have implemented six heuristics that find
approximate solutions to the median parti-
tion problem: Best Of K, Best One Element
Moves, Majority Rule, Average Link, CC Pivot,
and Simulated Annealing, with several varia-
tions of each. The code is publicly available from
http://www.cs.ucdavis.edu/∼filkov/software/conpas.

• We provide a statistical approach to evaluating
the algorithms’ performance by standardizing the
distribution of the sum of distances between given
partitions and a consensus.

• We assess the efficacy of the six algorithms on both
real and simulated data, and find that clustering-
based algorithms are generally faster while local-

search heuristics give generally better results. A
hybrid algorithm between the two is the best bet
in practice.

• Finally, we provide a new approach of refined
consensus clustering, that resolves the key problem
of determining whether the computed consensus
is a good one. A general problem with finding
the median partition is that the given partitions
may be dissimilar enough that it does not make
sense to find a median. In such cases particular
subsets of the partitions may in fact be similar,
but a challenge is to find subsets which should be
grouped together, and to provide medians for just
those subsets. We take a statistical approach to this
problem, using significance testing to determine
when partitions are similar enough to be grouped
together.

This paper is organized as follows. In the next sec-
tion we describe the algorithms and the theory neces-
sary for their evaluation. In Section 3 we present the
data and the experimental methodology we employed
to compare the algorithms. The results and discussion
are given in Section 4. In Section 5 we report on the
refined consensus clustering problem, and we conclude
in Section 6.

2 Theory and Algorithms

Let S denote the sum of distances
∑k

i=1 d(πi, π) between
a proposed consensus π and a set of k given partitions
{π1, . . . , πk}, where d(,) is the symmetric difference
distance. Each of the algorithms we implemented finds
a consensus partition which is an approximation to
π∗, the set partition that minimizes S. To compare
the performance of the algorithms on sets of different
number of elements n and number of partitions k, in
this section we show how to normalize S in order to
make it independent of n and k. In addition, we restate
a lower-bound on the minimum sum of distances, which
has been derived and reported previously [9].

2.1 Normalization of the Sum of Distances The
idea is to relativize S with respect to purely random
choices for the initial set partitions and the consensus.
To correct for the number of set partitions, k, we simply
divide S by it, since we are assuming that random set
partitions are independent. The correction for n is more
subtle, and involves standardizing S by transforming its
distribution into a normal distribution. We define the
Normalized distance, dn, as a z-score

(2.2) dn(π1, π2) =
d(π1, π2)−E(Dn)√

Var(Dn)
.

To calculate dn we give approximations for the
expectation and variance of d(,), as follows.

First, we calculate the probability that the co-
clustering of two elements i and j is in disagreement
in two different partitions (i.e. i and j are co-clustered
in one partition and not co-clustered in the other, or
vice versa). Let π1 and π2 be two set partitions of size
n chosen uniformly at random from the Bn partitions
of n elements, where Bn is the n-th Bell number (Bn

can be computed in a number of ways, e.g. using the
recurrence Bn =

∑n−1
k=0

(
n−1

k

)
Bk, where B0 = 1 [11]).

We define the Bernoulli random variable X
(m)
ij as 1 if i

and j are co-clustered in πm and 0 otherwise. First we
give the distribution of X

(m)
ij .

Lemma 2.1.

(2.3) P(X(m)
ij = 1) =

Bn−1

Bn
.

Proof. There are Bn−1 ways to cluster the n−1 elements
other than j. Then there is exactly one way to place j in
the same cluster as i. Thus there are Bn−1 set partitions
where i and j are co-clustered.

Now let Zij = |X(1)
ij −X

(2)
ij |. Zij is 1 if the clustering

of i and j disagrees between π1 and π2, and 0 otherwise.
Then, by definition of the symmetric difference distance,

(2.4) Dn = d(π1, π2) =
∑
i<j

Zij .

We observe that the Zij are identically distributed
Bernoulli random variables. Then we have that

Lemma 2.2.

(2.5) E(Zij) = 2
Bn−1

Bn

(
1− Bn−1

Bn

)
,

and

(2.6) E(Dn) = 2
(

n

2

)
Bn−1

Bn

(
1− Bn−1

Bn

)
.

Proof. Zij equals 1 exactly when one of the X
(m)
ij is 1

and the other 0. Thus,

E(Zij) = P(Zij = 1)

= 2P(X(m)
ij = 1)(1−P(X(m)

ij = 1)),

in which substituting (2.3) yields (2.5). To show (2.6)
we take the expected value of (2.4) and substitute (2.5).

While the Zij ’s are not pairwise independent in gen-
eral (for all i and j), most of the pairs are. Therefore
this suggests that Dn should have a normal distribution
for large enough n. (We confirmed that this approxi-
mate normality holds for all our data sets by running
an Anderson-Darling test [12] to test for normality, and
we found that Dn is normal with p-value (significance)
< 0.01 for n ≥ 50).

A normally distributed variable that is a sum of
n Bernoulli random variables has a variance that is
approximately np(1− p). This suggests that

Var(Dn) ≈
(

1 +
2B2

n−1

B2
n

− 2Bn−1

Bn

)
E(Dn).

While these values are slow to compute for large
n using recurrences for Bn, we can use approximation
formulas for the ratio Bn/Bn+1, like the following
asymptotic one, derived from an asymptotic formula for
Bn given in [13].

Bn

Bn+1
→ log n

n
as n →∞.

Applying this approximation above we find, as n →
∞,

E(Dn) → n log(n− 1)
n− 1

(n− log(n− 1)− 1) , and

Var(Dn) → E(Dn)

+ E(Dn)
2 log(n− 1)(1− n + log(n− 1))

(n− 1)2
.

As dn is approximately normally distributed, then
so is the sum

Sn =
k∑

i=1

dn(πi, π),

as well as the quantity Sn/k. Sn/k has the nice property
that it is a z-score and can be compared to other z-scores
and to tables of z-scores to find out the significance of
such a score compared to a random event. It is this last
quantity, Sn/k, that we will use when comparing the
algorithms’ performance over sets of data of different
number of elements n. We refer to it as the Average
Normalized Sum of Distances. When the number of
elements is the same we use a simpler quantity, the
Average Sum of Distances, where

Avg. SOD =
S

k ·
(
n
2

) .

2.2 Theoretical Lower Bound Since the median
partition problem is NP-complete, it is useful to have
performance bounds on the heuristics. While upper
bounds of the heuristics’ performance exist [3, 10] and
are useful, lower bounds on the optimal solution for a
given input are more important in judging how well any
heuristic does in practice. A good lower bound is given
in [9], and we restate it here. Let {π1, ..., πk} be a set
of set partitions, and let X

(m)
ij be defined as in Sec. 2.1.

Then for any set partition π, the sum of distances from
it to the k given ones is at least

(2.7)
∑
i<j

min

(
k∑

p=1

X
(p)
ij , k −

k∑
p=1

X
(p)
ij

)
.

We use this lower bound to estimate the worst-case
distance between our solutions and the optimal solution.

2.3 Algorithms All of the algorithms we imple-
mented and tested produce a consensus set partition
from an input set of k set partitions {π1, ...πk}. Recall
that the optimal consensus is the set partition which
minimizes S.

• Best Of K (BOK) In this algorithm we compute
S using each input partition πi as the consensus,
in turn. Then we choose that πi that gives the
minimum value for S. It can be shown that this
algorithm is a 2-approximation and has running
time O(k2n) [2].

• Clustering-based Algorithms For these three
algorithms we first compute a distance matrix M =
(mij), where mij is the proportion of the k input
partitions that have i and j clustered apart. Then
we choose a cutoff value, τ . This preprocessing step
takes O(n2k) time.

In the Majority Rule (MR) algorithm (also
called quota rule [3]) we begin with every element
clustered separately. Then for every pair (i, j)
where mij < τ , we join together the blocks con-
taining i and j. The running time of this algorithm
is dominated by the preprocessing step.

In Average Link (AL), which is the standard
average-link agglomerative clustering algorithm, we
likewise begin with every element clustered sepa-
rately. Then we find the two blocks with the small-
est average distance, computed using M , and merge
them together. We continue doing this until the
two closest blocks have a distance ≥ τ . This al-
gorithm can be implemented to run in O(n2(k +
log n)), including the preprocessing.

In the CC Pivot algorithm [10] we repeatedly
choose a pivot element p uniformly at random from
the unclustered elements. Then we form a block
containing p and every element i where mpi < τ .
We continue recursively on the remaining elements,
until everything has been clustered. Ailon et al. [10]
show that this gives an expected 11

7 -approximation
algorithm. The running time of this algorithm is
dominated by the preprocessing.

• Local Search-based Heuristics Given a set par-
tition π, a one element move is any transformation
π 7→ π′ that moves some element a from one block
into another one. For example, {{1, 2, 4, 6}, {3, 4}}
is transformed into {{2, 4, 6}, {1, 3, 4}} with a one
element move that sends element 1 from the first
block into the second. Given that we allow moves
into the “empty” block, we can reach any set par-
tition from any other one with some sequence of at
most n− 1 one element moves.

Thus, we can begin with some initial candidate
partition π and apply one element moves to π to
improve it as a consensus. Filkov and Skiena [3]
give an efficient way to compute the change in S
that results from a one element move, allowing for
the two following algorithms to be implemented
with O(n2k) preprocessing time and O(n) time for
each one element move.

In the Best One Element Moves (BOEM)
algorithm we start with an initial consensus
partition–we test starting with the results of BOK
or AL. Then we repeatedly perform the best one
element move as long as it decreases S.

In the Simulated Annealing (SA) algorithm we
use simulated annealing with one element moves.
Thus at any given step we always accept any move
that decreases S and those that increase S with
some decreasing probability. The actual running
time depends on the cooling schedule of the SA.

3 Implementation, Data Sets, and Testing
Methodology

We have written a C++ library for set partitions,
supporting many common operations. Our library
has procedures for enumerating all set partitions and
selecting set partitions uniformly at random, using
algorithms from [14]. It also generates the noisy
set partitions described in Sec. 3.1. We have im-
plemented six heuristics that find approximate solu-
tions to the median partition problem: Best Of K,
Best One Element Moves, Majority Rule, Average
Link, CC Pivot, and Simulated Annealing, with sev-

Mushrooms
n = 8124, k = 22

Lower Bound: 0.3812
Heuristic Avg. SOD Time/s

BOK 0.4068 1

C
lu

st
er

in
g

MR (τ = 0.5) 0.5066 22
MR (τ = 0.25) 0.3963 21
AL (τ = 0.5) 0.3940 3727
AL (τ = 0.25) 0.4117 3641

CCPivot (τ = 0.5) 0.3993 1222
CCPivot (τ = 0.25) 0.4366 1210

L
oc

al
Se

ar
ch

BOEM (BOK seed) 0.3992 21
BOEM (AL seed) 0.3919 3899

SAFast (BOK seed) 0.4913 47
SAMedium (BOK seed) 0.4065 542

SASlow (BOK seed) 0.3919 5780
SASlow (AL seed) 0.3929 9428

Table 1: Results and running times for the heuristics on
the Mushrooms data set

eral variations of each. The code is available from
http://www.cs.ucdavis.edu/∼filkov/software/conpas.

In our implementation, we tested the clustering
algorithms for two different thresholds, τ = 0.5 and
τ = 0.25. For the local search algorithms, we choose
three different cooling schedules for SA, which we call
SAFast, SAMedium, and SASlow, each starting with
the results of BOK. We also test two hybrid algorithms:
SASlow and BOEM starting with the consensus parti-
tion produced by Average Link. All tests were done an
AMD Opteron 2.6 GHz processor with 4 GB of RAM.

3.1 Data Sets In testing the above algorithms we
considered both artificial and real data. The real data
includes the Mushrooms data set from the UCI reposi-
tory [15], which has 8124 mushrooms and 22 attributes
for each mushroom, such as cap color, stalk shape,
habitat, etc. We form one cluster for each attribute,
where every mushroom with a particular value for that
attribute is clustered together. Any mushrooms with
missing values were also clustered together. The other
dataset used was the yeast stress experiment [1], which
has the responses of 6152 yeast genes to 170 different
stress conditions. We use KNNimpute [16] to fill in
missing values in the data. Then we clustered it in two
ways: by experiment and by gene, using standard ag-
glomerative average-link clustering with a cutoff of 0.5.

To describe the artificial data, we first introduce the
concept of noise. Given a set partition π of n elements,
we can introduce some percentage of noise x into π by
performing xn random one element moves on π. We

Yeast (by Gene)
n = 170, k = 6152

Lower Bound: 0.4015
Heuristic Avg. SOD Time/s

BOK 0.4217 826

C
lu

st
er

in
g

MR (τ = 0.5) 0.4773 3
MR (τ = 0.25) 0.4434 2
AL (τ = 0.5) 0.4102 24
AL (τ = 0.25) 0.4442 11

CCPivot (τ = 0.5) 0.4094 119
CCPivot (τ = 0.25) 0.4438 121

L
oc

al
Se

ar
ch

BOEM (BOK seed) 0.4119 834
BOEM (AL seed) 0.4086 25

SAFast (BOK seed) 0.4085 844
SAMedium (BOK seed) 0.4083 850

SASlow (BOK seed) 0.4082 954
SASlow (AL seed) 0.4083 136

Table 2: Results and running times for the heuristics on
the yeast dataset, clustered by gene

choose an element uniformly at random and a block to
move it to uniformly at random, excluding its own block
but including the “empty” block. Thus, for example, if
n = 100 at 10% noise we would perform 10 such moves.

Our simulated data consists of generating k noisy
partitions of n elements, with x noise, all based upon
the same randomly chosen partition. We generated two
artificial noise studies to test our algorithms. In the
first, we fixed k and x and varied n from 50 to 500, and
in the second we fixed n and x and varied k from 25 to
150.

4 Results and Discussion

The results for the real data sets are given in Tables 1,
2, and 3. The values given are the Avg. SODs: sums
of Rand distances, averaged over 100 experiments, and
averaged by the number of set partitions, k and all
pairs,

(
n
2

)
. The best values in each column are shown

in bold. The running time is given in seconds. For
each data set we also provide a lower bound on Avg.
SOD, as calculated by the formula in Sec. 2.2. For the
three data sets the best scoring algorithms, BOEM/AL
(twice) and SASlow get, respectively, to within 2.8%,
1.7%, and 2.1%, of the lower bound, and hence of the
optimum.

Fig. 1 and Fig. 2 show the results of the noise
study for the 4 best algorithms. We ran each algorithm
100 times on random data and averaged the results.
Shown on the y-axis is the Average Normalized SOD,
i.e. Sn/k averaged over 100 runs. The y-axis values
can be also thought of as z-scores, and their magnitude

Yeast (Experiment)
n = 6152, k = 170

Lower Bound: 0.4031
Heuristic Avg. SOD Time/s

BOK 0.4314 20

C
lu

st
er

in
g

MR (τ = 0.5) 0.5326 87
MR (τ = 0.25) 0.4331 85
AL (τ = 0.5) 0.4154 1778
AL (τ = 0.25) 0.4341 1692

CCPivot (τ = 0.5) 0.4169 4824
CCPivot (τ = 0.25) 0.4341 4908

L
oc

al
Se

ar
ch

BOEM (BOK seed) 0.4256 149
BOEM (AL seed) 0.4118 1832

SAFast (BOK seed) 0.4335 160
SAMedium (BOK seed) 0.4302 572

SASlow (BOK seed) 0.4122 4850
SASlow (AL seed) 0.4122 6540

Table 3: Results and running times for the heuristics on
the yeast dataset, clustered by experiment

for our algorithms indicates that all our results are very
reasonable and are much better than chance.

Fig. 1 compares the performance (in terms of the
Average Normalized SOD) of the four top algorithms
over data sets of varying sizes. The stability of the
results indicate with confidence that the greedy algo-
rithm BOEM, seeded with the result from Average Link
performs the best. The apparent non-linear trend of
the results is probably due to at least two factors: (1)
our asymptotic approximation and normality assump-
tion from Sec. 2.1 fail for smaller values of n, and (2)
the algorithms do better for smaller values of n.

Fig. 2 shows that the performance of the algorithms
is not dependent on k, the number of given set parti-
tions. Still, it is interesting to examine the variability
in the results, and although some algorithms appear to
have a smaller variability than others, the differences in
the absolute values of the results are too small to claim
that with any statistical certainty.

Overall, BOEM/AL was not our slowest algorithm,
and often it is not the fastest, but it performed best
here and in the above study on the real data, so we
recommend it for any general use.

5 Refined Consensus Clustering

It is unlikely that any real large dataset is composed
of clusterings that are very similar. Thus a consensus
clustering will likely not give very useful information. A
challenge is to determine in what situations a consensus
clustering is appropriate. To address this problem
here we propose to refine the set of clusterings to

-11.84

-11.74

-11.64

-11.54

-11.44

-11.34

-11.24

-11.14

-11.04

-10.94
50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

n

A
ve

ra
ge

 N
or

m
al

iz
ed

 S
O

D

AL (0.5)

CCPivot (0.5)

BOEM (AL)

SASlow

Figure 1: Evaluation of the behavior of the top 4 algorithms with varying n. Here k = 50 and the noise is 10%.

smaller sets, each of which will have a better overall
consensus. Our approach, refined consensus clustering,
effectively amounts to clustering the given clusterings
and calculating consensuses for the resulting clusters
of set partitions. While previous approaches to cluster
clusterings exist [17], they are application specific and
do not benefit from the full median partition framework
that we have built.

We use an agglomerative clustering approach (the
Average Link method) to cluster the set partitions. We
employ the adjusted Rand [6] distance as our dissim-
ilarity measure of choice, because it is a normalized
distance, and in this algorithm it does not affect the
running time adversely. We begin with all clusterings
in separate groups and join together those groups with
the smallest average distance. The average is taken over
all pairs between the two groups.

In the standard agglomerative clustering method
we would continue joining groups until the smallest
average distance exceeded some threshold, e.g. 0.5.
Instead we present a novel approach, using the idea
of the “noise level” of a group of clusterings. Recall
from Sec. 3.1 that we generated a noisy set of partitions
with a particular noise level. In general, every group

of set partitions can be thought of as having been
generated around some consensus with a given noise
level. We formalize this by taking the sums of the
pairwise distances between set partitions, i.e. for some
set of partitions Π = {π1, π2, ..., πk} we define

SP (Π) =
∑
i<j

d(πi, πj).

Considering all groups of a given noise level, their
sum of pairwise distances SP form a distribution. Thus,
given any particular group of set partitions, we can
calculate a p-value to determine whether it has a given
level of noise or more. In practice we do this by sampling
the distribution (which depends on n and k) as we do
not have a way to compute it analytically.

In our algorithm we have a cutoff noise level, c,
and we continue clustering until the next cluster formed
would have a noise level of c or higher. This ensures that
the resulting clusters will be reasonably similar and that
their consensus will be useful.

5.1 Implementation We have implemented this
procedure as part of our general set partition library.

-10.12

-10.11

-10.1

-10.09

-10.08

-10.07

-10.06

-10.05

-10.04

-10.03

-10.02
25 50 75 100 125 150

k

A
ve

ra
ge

 N
or

m
al

iz
ed

 S
O

D

AL (0.5)

CCPivot (0.5)

BOEM (AL)

SASlow

Figure 2: Evaluation of the behavior of the top 4 algorithms with varying k. Here n = 100 and the noise is 10%.

It takes as input a list of set partitions and an optional
noise threshold and generates as output the clustering
of those partitions along with a consensus partition, as
calculated by the BOEM/AL algorithm, for each non-
trivial cluster (size > 2). The default threshold we use
is 0.25, as experimentally we have found it to be roughly
the point at which the partitions become mostly random
and a consensus is no longer useful. We leave a detailed
study of determining this threshold for future work.

5.2 Refined Consensus Results As an example
application of our refined clustering method, we ran
our algorithm on the Mushroom dataset and the Yeast
dataset, both described in Sec. 3.1. The results are
found in Tables 4 and 5. For the Mushroom data,
the algorithm found two subsets of attributes to be
significant at the level of noise of 0.25. For the
Yeast data, the algorithm found only one subset of
experiments to be significant at the level of noise of
0.25. We found a consensus clustering for each, and
computed its Avg. SOD. These clusters have much
better consensuses than the general datasets, suggesting
that the respective consensuses are more representative.

6 Conclusion and Future Work

The problem of consensus clustering is important be-
cause of the prevalence of large data sets and their avail-
ability from different sources. A number of heuristics
exist for solving a version of this problem called median
partition, but no extensive studies have been done com-
paring their results over a variety of real and artificial
data sets.

In this paper we reported on the development of
software libraries for solving the median partition prob-
lem, performed a comparison of the algorithms, and pro-
posed a refined consensus clustering as a more objective
way of finding consensuses. Our results indicate that of
the two classes of heuristics that we implemented, the
clustering-based methods are generally faster, while the
local-search heuristics result in a better performance.
We propose a hybrid algorithm, a greedy local search
method starting from an initial consensus provided by
Average Link Clustering (i.e. BOEM/AL) which has an
excellent performance/cost ratio in practice, and most
often is the very best performer. Our code is publicly
available as a resource for the community, and can be
used for various applications.

Subset of Mushroom Attribs. Avg. SOD Lower Bound
ring number, gill spacing, veil color, ring type 0.0591 0.0591

population, stalk shape, bruises 0.1551 0.1287

Table 4: Results of refined consensus clustering on the Mushroom dataset

Subset of Experiments Avg. SOD Lower Bound
Nitrogen Depletion 12 h

0.0678 0.0678

1.5 mM diamide (90 min)
Nitrogen Depletion 1 d
Nitrogen Depletion 2 d

YPD 12 h ypd-2
dtt 015 min dtt-2

constant 0.32 mM H2O2 (40 min)
rescan DBY7286 + 0.3 mM H2O2 (20 min)

Table 5: Results of refined consensus clustering on the Yeast dataset

Several future directions naturally fall out of this
study. We are aware that there is at least one other
class of algorithms for solving the consensus clustering
problem, which use information theoretic metrics [18,
19]. It would be useful to compare those with the
combinatorial ones in our library. The refined consensus
clustering is still a work in progress. A most immediate
improvement would be an automated way to determine
the cutoff threshold for the significance. Also, the
results at this point are difficult to read out. A visual
representation, maybe in terms of some heatmaps of the
clusters, would greatly aid their interpretation.

References

[1] A. Gasch, P. Spellman, C. Kao, O. Carmen-Harel,
M. Eisen, G. Storz, D. Botstein, and P. Brown. Ge-
nomic expression programs in the response of yeast
cells to environment changes. Mol. Bio. Cell, 11:4241–
4257, 2000.

[2] V. Filkov and S. Skiena. Integrating microarray data
by consensus clustering. International Journal on
Artificial Intelligence Tools, 13(4):863–880, 2004.

[3] V. Filkov and S. Skiena. Heterogeneous data integra-
tion with the consensus clustering formalism. Proceed-
ings of Data Integration in the Life Sciences, pages
110–123, 2004.

[4] Alexander Topchy, Anil K. Jain, and William Punch.
Combining multiple weak clusterings. In ICDM ’03:
Proceedings of the Third IEEE International Confer-
ence on Data Mining, page 331, Washington, DC, USA,
2003. IEEE Computer Society.

[5] M. Bender, S. Sethia, and S. Skiena. Efficient data
structures for maintaining set partitions. Proceedings
of Seventh Scandinavian Workshop on Algorithm The-
ory, pages 83–96, 2000.

[6] L. Hubert and P. Arabie. Comparing partitions. J.
Class., 2:193–218, 1985.

[7] E.B Fawlkes and C.L. Mallows. A method for compar-
ing two hierarchical clusterings. Journal of the Amer-
ican Statistical Association, 78:553–584, 1983.

[8] Y. Wakabayashi. The complexity of computing medi-
ans of relations. Resenhas IME-USP, 3:323–349, 1998.

[9] M. Bertolacci and A. Wirth. Are approximation
algorithms for consensus clustering worthwhile? In
Proceedings of the Seventh SIAM ICDM, 2007.

[10] N. Ailon, M. Charikar, and A. Newman. Aggregating
inconsistent information: ranking and clustering. In
Proceedings of the thirty-seventh annual ACM Sympo-
sium on Theory of Computing, pages 684–693, 2005.

[11] H. Wilf. generatingfunctionology. A K Peters, 3rd
edition, 2006.

[12] H.C. Thode Jr. Tests for Normalcy. Marcel Dekker,
NY, 2002.

[13] J. Pitman. Some probabilistic aspects of set partitions.
American Mathematical Monthly, 104:201–209, 1997.

[14] A. Nijenhuis and H. Wilf. Combinatorial Algorithms.
Academic Press, 1978.

[15] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI
repository of machine learning databases. 1998.

[16] O. Troyanskaya et al. Missing value estimation meth-
ods for DNA microarrays. Bioinformatics, 17:520–525,
2001.

[17] A.D. Gordon and M. Vichi. Partitions of partitions.
Journal of Classification, 15:265–285, 1998.

[18] D. Cristofor and D. Simovici. Finding median par-
titions using information-theoretical-based genetic al-
gorithms. Journal of Universal Computer Science,
8(2):153–172, 2002.

[19] A. Strehl and J. Ghosh. Cluster ensembles - a knowl-
edge reuse framework for combining partitionings. In
Proc. of AAAI, pages 93–98. AAAI/MIT Press, 2002.

