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Abstract. Resolving the coregulation relationships between genes is a
major step toward understanding the underlying topology and dynamics
of gene networks. Although coexpression of genes does not directly imply
their co-regulation, model-based approaches coupled with the availability
of large-scale gene expression data are bringing us closer to attributing
expression patterns to cis-regions features. Inspired by studies of tran-
scriptional regulation in sea-urchin, here we report on initial tests of the
following simple model: shared patterns in time-course expression profiles
of genes are effects of shared binding motifs in their cis-regions. We use a
modified version of a prior algorithm for decomposing time-course gene
expression patterns into functional events and introduce an order rela-
tionship, or a Regulation Hierarchy on the genes based on shared events.
When tested on actual time-course gene expression data of yeast prelim-
inary results indicate 50% - 71% matches, of high confidence, between
our derived and known cis-region regulation hierarchies. This hierarchy
structure yields practical predictions when used with other type of ge-
nomic data, e.g. location of TF-DNA interactions.

1 Introduction

Gene expression is regulated during transcription by combinations of trans-
factors (TFs) that bind to corresponding sites in the genes cis-regions. The differ-
ential expression of any gene under different experimental conditions is due to the
particular regimen (i.e. abundances) of those TFs. Exactly how the cis-regions
process the input protein concentration signals is a key question in functional
genomics. Methods for grouping genes by similarity of expression profiles across
multiple experiments have been partially successful in identifying functionally
related genes [1], and the interest in them has grown with the availability of
large-scale gene expression data for many organisms. But since coexpression
does not imply co-regulation in general their use has been limited in gene net-
works inference, although some types of experiments (e.g. time-course) are more
revealing than others of coregulation.
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Fig. 1. On the left are given cis-regions for four genes and the cis-elements in them. On
the right hand side are the corresponding gene expression signals. a, b, and c are the
modules of cis-elements and their effects on the expression. The dashed boxes indicate
expression events for which there might be multiple causes.

The general questions: Can we examine gene expression data to get closer
to coregulation? Does gene expression data contain that information at all? are
important but difficult to answer since the data itself is very quantitative and
the biology behind transcriptional regulation is still very qualitative. Given the
same data, ultimately it is about a choice of a modeling approach.

Perhaps one of the best qualitative descriptions of the inner-workings of cis-
regions (CR) is given by Eric Davidson [2]. We learn from his work that CRs are
logic processing units consisting of binding sites to which TFs bind and effect
various patterns of transcription. Each binding site (equivalently TF) has a role
in the resulting transcription signal, either alone or as a part of a functional
group. Single or groups of binding sites can be thought of as functional units
of regulatory systems or regulatory modules. The function of any cis-regulatory
region could be decomposed hierarchically down to the functions of individual
modules, thereby simplifying significantly the overall combinatorial complexity
of interaction. Davidson and colleagues have demonstrated on many genes in the
Sea Urchin organism [3] that the function of their cis-regions, i.e. gene expres-
sion signals, can be decomposed into simpler functions of their sub-regions. The
modules formed from the binding sites present in the smallest sub-cis-regions
which are still functional supposedly bind to multiple genes and convey their
sub-function to each of them. They are, therefore, the building blocks or tran-
scriptional regulation, and their identification is extremely important.

Ideally, one would like to formalize their model and use it to resolve the
complexity of cis-regions from large-scale functional genomics data, like gene
expression. As a lead-in to such a future formalization, here we sought to test
how well the following hypothesis holds: shared events, or sub-signals, of gene
expression signals are due to modules of shared binding sites in the cis-regions
of the genes. Fig. 1 gives an illustration. There, the sub-signals a, b and ¢
are consequences of the actions of the corresponding modules in the cis-regions.



The hypothesis is based on the following simplified assumptions of regulation
modularity:

1. cis-modules are responsible for elementary expression signals, i.e. if the cor-
responding TF are present and bound they will effect a particular signal;
and

2. two or more modules on the same cis-region are responsible for expression
regulation at different times or places in the organism; otherwise they would
be considered a single module

These two rules effectively linearize the combinatorial nature of transcrip-
tional regulation by proposing that a linear decomposition of signals is possible
because the bases of the linear space are the signals corresponding to individual
modules.

In this paper we propose and test a model for resolving the modularity of
cis-regions based on the organization of gene expression signals. To do this,
we identify expression events in gene expression signals and then we build a
Regulation Hierarchy from them.

We propose identifying expression events by decomposing gene expression
signals into Putative Elementary Expression Events (PEEEs) using a modifica-
tion of our previous approach [4], which was developed for elucidating regulatory
relationships between pairs of genes from time-course expression data.

We introduce the Regulation Hierarchy structure as a representation of coreg-
ulation between genes. The Regulation Hierarchy is a directed acyclic graph, in
which genes are partially ordered based on shared cis-modules. In such a graph
any two nodes with a common ancestor are co-regulated. Such a hierarchy graph
is useful independently as a structure for study of functional elements of gene
regulation. As approximations of the Regulation Hierarchy we define two other
hierarchies, the Ezpression Hierarchy and the Transcription Factor Hierarchy
which can be obtained from existing data sets.

To assess the efficacy of the Regulation Hierarchy built from expression data
we apply our decomposition strategy on publicly available time-series gene ex-
pression data of yeast [5]. The resulting hierarchy graph is compared to an actual
TF Hierarchy obtained from a study of TF-DNA binding in yeast [6]. Our re-
sults suggest strong correlation between sub-elements of gene expression curves
and cis-modules of binding sites: we observed 50% - 71% of matching directed
edges between the two herarchies, compared to expected (between 1/6 and 1/8
of that).

Combined with location data of TF-DNA interactions, from the predicted
hierarchies we were able to discern basic signals and attribute some to well
known TF modules.

This paper is organized as follows. In the next section we talk about related
work on effects of modularity of the cis-regions on gene expression, and decompo-
sition of expression signals into basic curves. In Section 2 we review and expand
a previous method for identifying elementary expression events. The regulation
hierarchies are defined in Sect. 3. We report the results of our preliminary stud-
ies in Section 4. In the last section we summarizes the findings and describe



our current and future directions in both expanding the model and utilizing the
hierarchy graphs in different ways.

1.1 Coregulation and Coexpression

Out current work is novel in that it proposes a model for coregulation based
on attributing identifiable events in expression signals to cis-modules. We also
describe an original structure, the Regulation Hierarchy.

Differentiating between coexpressed and coregulated genes is important in
particular for gene network inference. In previous, work Pilpel et al. proposed [7]
and later improved [8] methods to identify clusters of genes which are co-regulated
and co-expressed at the same time. They achieved this by scoring coexpression
for genes which share overrepresented elements in the upstream regions. Al-
though our goal is seemingly the same since we are also attempting to resolve
coregulation from coexpression, here we are interested in resolving coregulation
from expression data, based on the shared events model. We don’t aim to resolve
actual binding sites in this paper; instead we are after the coregulation hierarchy,
and we only use time-course expression data. We discuss later some future uses
for the coRegulation Hierarchy.

A few studies recently have focused on identifying modules of genes by consid-
ering variety of available data: gene expression, sequence, and TF-DNA location.
The working definition for a module in them varies between a group of strongly
coexpressed genes in a subset of experiments to a group of genes coregulated
by the same factors and sharing a function [9]. In both extremes though the
definition of a module is somewhat fuzzy as genes can be taken in or out of it
while the module doesn’t change. Our definition of a cis-module, a variant of
that of Davidson [2], is a group of transcription factors that has an indivisible
functional effect on transcription; in other words there is a sense of minimality or
atomicity to it. Time-course expression data cannot predict the actual content
of a cis-module; other data is needed for that (gene knockout expression data
can also be used).

The small number of different patterns evident in time-course gene expres-
sion data, especially the cycling genes set by Spellman et al. [5], has motivated
several studies into evaluating the possibility of decomposing the expression sig-
nals into a combination of a few basic signals. In particular the study by Holter
et al. [10] identifies a small number of characteristic modes in microarray time-
series data [5], as discovered by Singular Value Decomposition. Such studies
although informative about the range of the transcriptional signals under spe-
cific conditions, and arguably successful in correlating functional gene categories
with specific modes of regulation, do not address the issue of coregulation.

2 Gene Expression Events

We define Putative Elementary Expression Events (PEEEs) as functionally im-
portant part of the expression signals. For our purposes, these are parts of the



signals that either increase or decrease. They are identified using a modified
version of the edge detection algorithm by Filkov et al. [4]

There, events were defined as biologically meaningful changes in expression
with time. In the ideal case, with no fluctuations in the signals, events would
correspond to monotonically increasing or decreasing smooth curves between
local optima. Because large-scale gene expression data is far from ideal, signals
are smoothed out as follows. Starting from the initial time point, and proceeding
to the right iteratively, over the rest of the time points, the events are identified,
grown, and possibly merged, so long as the expression change is in the same
direction (i.e. increase or decrease) as the rest of the event, with tolerances for
default and random fluctuations in expression levels, as well as with a biologically
significant cap on the maximum length of an event. The original method uses one
neighbor on both sides of time points to label them local minima, local maxima
and in-between. But edges can be missed that way because of noise in the data.
We improve on this by using two neighbors on both sides of a local optimum to
label the points more accurately.

The result is a list of putative events, or PEEEs, for each gene. Each event
is a run of points that either increases or decreases in expression. We showed
previously [4] that these lists of events can be used to identify gene regulatory
relationships between genes with greater fidelity than the whole expression sig-
nals. In addition, the putative events lists for pairs of genes can be aligned to
discover any shared events.

3 Regulation Hierarchy Graphs

The idea behind the Regulation Hierarchy is to build a structure that captures
the shared regulator information between genes. The Regulation Hierarchy is
meant to be an invariant view of regulation from both the sequence and gene
expression.

The Regulation Hierarchy (RH) is defined as a directed graph, G, = (V, E,.)
over the genes in an organism, V = {g1,92,...,9n}, where there is an edge
between two nodes if the set of TF modules regulating one is a subset of the set
of the TF modules regulating the other, and the direction of the edge is from
the smaller toward the larger set of regulators. That is, if Mod(x) is the set of
modules regulating node z, then for every pair of genes (nodes) 7 and j, (i,j) € E
if Mod(i) C Mod(j). If i and j share regulating modules but none dominates
the other, then neither (i,j) € E nor (j,i) € E. For example, there is only one
relationship between the genes in Fig. 1, and that is Gene4 < Gene3. The rest
of the gene pairs don’t have order relationships although they share regulators
(and sub-signals).

We define the following two additional hierarchy graphs, which in contrast
to the regulation hierarchy can be easily obtained from existing data. First is
the TF hierarchy (TFH), defined as Gy = (V, Eyy), where if T f(x) is the set of
transcription factors that can bind to the cis-region of gene z then (i, j) € Ey if
Tf(i) CTf(j)- The second hierarchy is the Expression Hierarchy (EH), defined



as Ge = (V, E.), where if Peee(x) is the set of PEEEs present in the expression
signal of gene = then (i,j) € E, if Peee(i) C Peee(y).

It should be clear that E C FEy; since the modules are hierarchies of TF's
and that there is no overlap between modules (by the second assumption of
regulation modularity above). Also, since PEEEs correspond to modules, ideally
E. CE.

With ideal data, these three hierarchies would be directed, and transitively
closed graphs, where if (i,5) € E and (j,k) € E then (i,k) € E. They would
also be acyclic except for the trivial cycles which will happen between two genes
sharing exactly the same regulators.

3.1 Utility of the Regulation Hierarchies

From the RH one can readily answer if two genes are coregulated by looking
up if they have the same ancestor. Also, with the RH and the TFH one can
explore TF modules, whereas from the RH and EH the basic expression signals
corresponding to modules can be found.

In addition, RH can be a powerful tool for building regulatory networks.
Namely, the RH establishes classes of coregulated genes-information that can
help bound the in-degrees of nodes during inference.

In this paper we show how to obtain the Expression Hierarchy and the TF
hierarchy, and explore how well they coincide. Again ideally E, C E:y. We use
both to illustrate how one can identify TF modules.

3.2 Adjusting for Real Data

Real data of course is noisy. Thus we have to allow for some fuzziness in the
regulation hierarchies. In addition, data sets with which we will be working
below will be clusters of gene expression signals as opposed to individual signals.
Thus each cluster contains a number of coexpressed genes, whose curves are
to us indistinguishable. Here we describe how to derive the expression and TF
hierarchies from noisy clusters of genes.

Expression Hierarchy The data used for the EH is time-course expression
data (see below), from which PEEESs have been identified for each gene. An edge
is created between two nodes based on the overlap score of their PEEE lists.
If the nodes are clusters of genes, the average of their expression signals is the
representative signal for that cluster. Then the PEEE list for the average is the
PEEE list for that node.

We define the overlap score for edge (i, j) by using a combination of following
two scores:

(i) Si; = |Peee(i)NPeee()|, i.e number of common PEEEs present in the event
sets of both nodes;

(i) Si—; = |Peee(i)|—|Peee(i) N Peee(j)|, i.e. number of PEEEs present in node
1 but not in j.
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We consider an edge present if the overlap is Z, standard deviations more than
average. This z-score will serve as our threshold for the edges in E.. To ensure
the containment relationship but allow for noisy data we add the constraint that
S;—; is less than 30% of the overlap. In other words, for an edge (i, j) we allow
for some PEEEs to be in ¢ but not in j. The 30% we determined to be a well
balanced cap on such events.

TF hierarchy The data used for the TFH is TF-DNA interaction location
data (see below). An edge (i,j) in the TFH graph is established by carefully
evaluating the overlapping and non-overlapping sets of TFs between nodes i and
j. The nodes here are clusters of genes, so we count the overlap between pairs
within and between clusters.

An edge (4,7) is defined by using a combination of following three scores:

(i) A, intercluster overlap of TFs. The score is obtained by counting the number
of common TFs for all pairs formed by genes in cluster i and cluster j.
(ii) B, intracluster overlap of TFs. The score is obtained by counting the number
of common TFs for all pairs formed by genes in cluster .
(iii) C, intracluster overlap of TFs. The score is obtained by counting the number
of common TFs for all pairs formed by genes in cluster j.

Then,
(i,) € Byyif A> A+ Z50 and B< C )

We consider an edge present if the TF overlap is Z;; standard deviations more
than average. To ensure the containment relationship we add the constraint that
B is less than C.

4 Preliminary Studies

Here we use two separate data sets of yeast. The first is a time-course, genome-
wide, gene expression data, known as the Cell Cycling Genes data, from Spellman
et al. [5] Although somewhat dated, we used this data set because it is still one
of the best time-course data expression data sets around, mostly because of the
length of the series (i.e. number of measurements) as well as the sampling times
which are small enough to capture some of the important processes in yeast. The
data set consists of four separate time-series measurements of expression for each
gene, totaling 76 measurements, for about 6200 genes of yeast. We impute the
missing values using KNNimpute [11]. We concatenate all the measurements
and obtain a 76 length real-valued vector for each gene. The second data set
is the TF-DNA data by Lee et al. [6]. The set consists of 6200 x 106 P-values



indicating the confidence of binding for each of 106 TFs to all 6200 genes of
yeast. By selecting a confidence value for each gene we obtain a TF profile of
binding (i.e. a list of TFs that bind to the closest intergenic region to that gene).
We used P = 0.001 which was used in the original analysis by the experimenters.

The Cell-Cycling Genes data set does not have too many features, i.e. the
expression signals do not have many degrees of freedom as the conditions to
which the genes were exposed in that experiment were not diverse. Thus one
need to lower the dimensionality of the expression matrix, since over 6000 sig-
nals presents an overkill and will result in a large number of spurious events
identified. So we clustered the data into a smaller number of clusters which
should all be sufficiently different and offer variety of sub-signals. The genes’
expression vectors were clustered using average-link hierarchical clustering with
the Pearson’s correlation as the distance measure. The clustering goal was indis-
tiguishability of curves within clusters under visual observation. The resulting
87 clusters are the nodes in the hierarchy graphs.

For the Expression Hierarchy we create an average expression profile for each
cluster by averaging the expression vectors from the Cell Cycling genes data. We
run our modified edge detection algorithm to detect events (see Section 2). An
event profile is created for each gene, consisting of runs of points labeled as in-
creasing or decreasing. Pairs of profiles are overlapped and the events matching
in location and direction are counted as common events. For the TF Hierar-
chy we create a regulation profile for each gene using the TF-DNA data. Then
we calculate the overlap score between two clusters, from the expression data
clustering, as defined above.

To test our model of regulation we compare the two resulting hierarchies, the
EH and TFH. In ideal conditions, E, C Eyy, i.e. all the edges in EH should be
in TFH.

4.1 Efficacy of the Model: Comparing the Hierarchies

As a part of our preliminary studies we built several different EH and TFH, for
different values of the z-scores Z. and Z;;. We also generated random graphs on
the 87 nodes by permuting the expression data and running the algorithms to
identify PEEEs and score them on this permuted data. The results for Z.r > 0.5
and Z.5 > 1 are shown in Fig. 2.

Several things are evident from the figure. First of all the edges in the Ex-
pression Hierarchy correspond very well to the edges in the TF Hierarchy. As a
matter of fact, with increasing Z, we get up to 71% matches. The second ob-
servation is that the results are significant: the random graphs have many fewer
edges (down to about 10%) that match the TFH. So we did in fact get most of
the edges from the EH in TFH.

We also notice that the number of edges in EH is about 10% to 20% of
those in TF H. This was to be expected as the genes were not exposed to many
different conditions during the Cell Cycling Genes experiment, so the actual
range of expression signals captured only a small number of modules’ effects.
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Fig. 2. Comparing the inferred Expression Hierarchy to a known TF Hierarchy, at two
different thresholds of TF factor overlap Z;¢ > 0.5 (560 edges) and Z; f > 1 (290 edges).
The total number of edges in Ee, for 5 varying thresholds of overlap, together with the
true positives and the expected (random) matches is given. The correct predictions
increase from 48% and 71%, with the expected number decreasing to 1/6 of that (for
Zgy > 0.5). In (b) although the statistical significance of the results is better than in
(a) the sensitivity is lowered.

4.2 Inspecting the Hierarchy

The resulting clusters and hierarchy graphs can be obtained from our Web site:
graphics.cs.ucdavis.edu/ nyshah/Regulation.Here we omit them for space
considerations and report on some initial observations. First of all the hierarchy
of the yeast genome is shallow with the longest paths being of length at most 5.
This is well in agreement with other studies [12].

Next we examined coregulated nodes in the partially ordered graph by com-
paring the TFs from the TF-DNA location data set. Note that each node is a
cluster of genes. The following are modules of TFs that were common to at least
three genes between coregulated nodes. Together with the genes we give some
annotation either from SGD [13] or individual references. Some of the TFs in the
modules are known to act together while the others are not. More TF modules
are available at our Web site.

Cluster 4 (12 genes) 4 regulated by FKH2, MCM1 and NDD1 MCM1
is a known yeast cell cycle regulator during the M and M/G1 phases. FKH2 is
involved in the regulation of the SIC1 cluster, whose member genes are expressed
in the M/G1 phase of the yeast cell cycle, and are involved in mitotic exit [14].
NDD1 is a high-dosage suppressor of cdc28-IN, essential for expression of a subset
of late S phase specific genes in yeast [15].

Cluster 6 (12 genes) 4 regulated by all of GAL4, GAT3, RGM1, YAP5
GAL4 is a well known transcription factor for the GAL structural genes, which



encode galactose metabolic proteins. GAT3 (YLRO013w) is a protein encoding
GATA-family zinc finger motifs, known transcription factors [16]. RGM1 is a
putative transcriptional repressor with proline-rich zinc fingers. YAPS is a bZIP
protein and a known transcription factor.

Cluster 13 (25 genes) 6 regulated by MBP1, SWI6 SWI6 is a transcrip-
tion cofactor, forms complexes with DNA-binding proteins Swidp and Mbplp
to regulate transcription at the G1/S transition. MBP1 is a cell-cycle regulating
transcription factor.

5 Discussion and Directions

We presented here a model based approach to elucidating coregulation from time-
course gene expression measurements. We introduce the Regulation Hierarchy
as a structure that usefully summarizes transcriptional regulation, show how
it relates to two more practical structures, the expression and TF hierarchies,
and approximate it using gene expression data. Using publicly available data on
gene expression and TF-DNA binding in yeast we were able to get encouraging
results supporting the utility of the Regulation Hierarchy, and its derivation from
expression data. We demonstrate one particular use for the RH by combining it
with the TF-DNA data and identifying TF regulatory modules.

Again these are preliminary studies, and there are many things on which we
need to improve. Our method for identifying PEEE is ad hoc and dated; better
methods from time-series analysis will likely yield better PEEEs. The overlap
scores can also be improved upon by doing alignment and maximal overlaps
for example. But in spite of the deficiencies, our approach works as a proof of
concept.

The biggest goal in front of us is building the regulation hierarchies from
static expression data, of which there is thousands of available sets for yeast. If
that is possible, which we do not know yet, the resulting hierarchies would have
many more edges, as the genes would have been exposed to significantly more
conditions than the ones in the data we used.

And of course as we mentioned before the regulation hierarchies are not ends
in themselves but stepping stones toward identifying interactions between genes
and gene products on a large-scale. In particular, they can be used jointly with
gene expression data to limit the in-degree of nodes during network inference,
which can speed up the process significantly.
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