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ABSTRACT
Motivation: The functioning of biological networks depends in large
part on their complex underlying structure. When studying their
systemic nature many modeling approaches focus on identifying sim-
ple, but prominent, structural components, as such components are
easier to understand, and, once identified, can be used as building
blocks to succinctly describe the network.
Results: In recent social network studies exponential random graph
models have been used extensively to model global social network
structure as a function of their “local features.” Starting from those
studies, we describe the exponential random graph models and
demonstrate their utility in modeling the architecture of biological net-
works as a function of the prominence of local features. We argue that
the flexibility, in terms of the number of available local feature choices,
and scalability, in terms of the network sizes, make this approach
ideal for statistical modeling of biological networks. We illustrate the
modeling on both genetic and metabolic networks and provide a novel
way of classifying biological networks based on the prevalence of their
local features.
Keywords: biological networks, models, ergm, p*, network structure
Contact: saul@cs.ucdavis.edu

1 INTRODUCTION
The goal of much of systems biology is to understand the functio-
ning of biological systems which, in large part, depends on their
complex underlying structure. Summarizing a biological system
into a network representation lets us study the complex structure
via the interactions among its components and the simple recur-
ring patterns, or features, which they form. Thus, when studying
the systemic nature of biological networks many modeling approa-
ches focus on simple, but prominent, structural features, as they are
easier to understand than the global networks and, once identified,
can be used as building blocks to succinctly describe the network.

One class of approaches, statistical network modeling, has
recently gained visibility in the systems biology community, and a
number of methods and models have been proposed as frameworks
for investigating large biological networks [3, 15, 17]. In those
studies, features like node degree distribution and small connec-
ted subgraphs (graphlets), have been demonstrated to capture well
some facets of biological network structure, but tools that allow us
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to systematically study these and other local features, as well as the
ways they collaborate to form the network architecture, are needed.

Outside of biology, statistical network modeling has a long
history in the social and economic networks literature. (For exam-
ple, the concept of network motifs, small subgraphs that appear in
a graph more often than expected due to chance [15], were studied
under the name triad census in 1970 [9].) But because biological
networks are much larger than social networks, application of social
network models has not historically been possible. However, recent
advances both in understanding of the behavior of these models as
well as the available multiprocessor technology have made some
application to biological networks feasible and should continue to
make further application possible.

Scaling up from recent social network modeling efforts, this paper
discusses modeling biological networks using a family of statistical
models called exponential random graph (ERG) models, also known
as p* models. ERG models provide a tool to further our understan-
ding of the network-scale interactions in biological systems. We are
particularly interested in studying the way that a network’s global
structure (and function) depend on its local structure. How does one
use an understanding of local notions such as protein-protein inter-
action, synthetic lethality, or even node degree to understand the
more global notion of the function of a network system? In this
paper, we make the following contributions:

• We introduce exponential random graph models for biological
network exploration;

• We discuss the process of modeling biological networks using
ERG models, including the choice of explanatory variables and
fitting methods;

• We illustrate the modeling on genetic networks, metabolic
networks and power-law random networks;

• We provide a novel way of classifying biological networks
based on the prevalence of their local features.

Many models currently used for biological networks are des-
criptive, and simply specify a feature of a graph. For example,
power-law networks (sometimes called scale-free) are described
as networks with a node degree distribution governed by a power
law [3]. Other biological network models specify a procedure for
creating networks. Erdös-Rényi random graphs are created by con-
sidering each pair of nodes in a given node set as a potential edge.
For each potential edge, a fair n-sided die is cast, if the die comes up
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above a given threshold, the edge is included. Otherwise, it is not.
An exponential random graph model takes a different, more general,
approach.

An ERG model models the probability distribution function (pdf)
for a given class of graphs. Given an observed graph and a set of
explanatory variables on that graph the pdf is estimated. The pdf
provides a concise summary of the class of graphs to which the
observed graph belongs, i.e. the pdf can be used to calculate the
probability that any given graph is drawn from the same distribution
as the observed graph. The advantage of this approach is that it is
very general and scalable as the architecture of the graph is repre-
sented by locally determined explanatory variables, and the choice
of explanatory variables is quite flexible and can be easily amended.

The rest of this paper is organized as follows. In Section 2, we
discuss the theory of exponential random graph models and how to
fit them. Sec. 3 contains the description of the network data sets
that we used to evaluate the ERG modeling. In Section 4, we dis-
cuss the models that we fitted and goodness of fit measurement
for ERG models. Section 5, covers the results of our explora-
tions and our experiences with both maximum pseudo-likelihood
estimation (MPLE) and Markov chain Monte Carlo maximum like-
lihood estimation (MCMC MLE). Finally, Section 6 summarizes
our conclusions, presenting the benefits of exponential random
graph models for biological networks.

2 EXPONENTIAL RANDOM GRAPH MODELS
We wish to model the probability distribution of networks explai-
ned by a given set of explanatory variables (or local patterns). Any
function from the observed graph to the real numbers can act as an
explanatory variable. As with all models, the variables to be inclu-
ded in an exponential random graph model are determined by the
modeler based on what features of the graph under study are thought
to be pertinent. An example, non-exhaustive, set of explanatory
variables is given in Table 1.

Let X be a random variable representing the matrix form of a
biological network from this distribution. To model this class of
networks, we need to estimate the probability distribution function
(PDF) for X , P (X = x). That is, if this PDF was known, we
would know the probability that an observed graph, x, is of the type
of graph that our random variable X represents. Unfortunately, the
probability distribution function of X is unknown. Therefore, we
cannot directly calculate P (X = x).

However, we can model P (X = x) with a log linear model. To
do so, we need first to identify a vector of explanatory variables,
z(x) = (z1(x), z2(x), . . . , zr(x)). These explanatory variables
can be any graph statistic (eg. number of triangle subgraphs) or any
node statistic (eg. molecular weight of molecule), but each explana-
tory variable should be a function of the observed data. To model
the pdf of X , we postulate that there exists θ = (θ1, θ2, . . . , θr)
such that:

log(P (X = x)) ∝ θ1z1(x) + θ2z2(x) + . . . + θrzr(x) (1)

∝ θT z(x) (2)

Exponentiating both sides and adding a normalizing constant, κ(θ),
to assure that the probabilities will sum to one, we get the following
model:

P (X = x) =
eθT z(x)

κ(θ)
(3)

Variable Description
k-Star The number of nodes in the network

with exactly k adjacent edges with
unconnected end points.

Triangle The number of 3-cycles in the network.
k-Cycle The number of k-cycles in the network.
k-Degree The number of nodes in the graph with

degree k.
k-Edgewise Shared
Partners

The number of edges in the network that
have exactly k shared partners.

Geometrically
Weighted Degree

The weighted sum of the counts of
each degree, weighted by the geometric
sequence, (1−e−α)i where α is a decay
parameter.

Geometrically
Edgewise Shared
Partners

The weighted sum of the number of
edges in the network that have exactly i
shared partners weighted by the geome-
tric sequence, (1 − e−α)i where α is a
decay parameter.

Maximum Geodesic The length of the longest of the shortest
paths between each pair of nodes.

Edge Count The number of edges in the graph.
Node Count The number of nodes in the graph.
Isolates The number of nodes in the network

with no neighbors.
Table 1. Exponential random graph models are flexible. This table shows
example explanatory variables.

This model is the standard log linear probability model that is used
in a wide range of fields from the social sciences to biology [12, 10].

Depending on which two of x, θ, and z(x) are known, the third
can be estimated or solved for. In practice, z(x) is a starting point
and we are typically interested in the other two quantities. For a
given θ and statistics z(x) one can simulate networks drawn from
the probability distribution P (X = x). The values θ can be thought
of as weights for the various variable values with stronger weights
indicating that a variable more strongly determines the properties of
the network distribution.

On the other hand, having observed a data matrix x and expla-
natory variables z(x) one is interested in fitting, or estimating, the
model parameters θ to the observed data, thereby characterizing the
network x in terms of the relative importance of the explanatory
variables in determining the response variable [2].

In this paper we are interested in the latter, the model, or para-
meter fitting part, i.e. we would like to estimate θ, the vector of
model parameters. Standard maximum likelihood estimation of the
parameters are difficult to apply in this case, because the function
for the normalizing constant κ(θ) is not known a priori. However,
calculating κ(θ) can be avoided by approximating the probabilities
based on differences in the z(x) statistics. There are two methods
commonly used in the statistics and social networks communities to
estimate the maximum likelihood fit to exponential random graph
models, Markov chain Monte Carlo Maximum Likelihood Estima-
tion and Maximum Pseudo-Likelihood estimation. They can also
be used for network simulation. We describe them briefly next,
and note their respective strengths and weaknesses and the types
of networks to which they can be applied.
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2.1 MCMC MLE Fitting
Markov chain Monte Carlo maximum likelihood estimation
(MCMC MLE) refers to a family of methods based on the Newton-
Raphson algorithm for maximum likelihood estimation. Let µ(θ)
be the vector of expected values of the explanatory variables and
Σ(θ) be the covariance matrix under a given parameter vector
θ. Then, the standard Newton-Rhapson algorithm with iteration

step θ̂(n+1) = θ̂(n) −
“
Σ(θ̂(n))

”−1 “
µ(θ̂(n))− z(x)

”
would

normally be used to find the maximum likelihood estimate of θ.
However, this is not feasible for exponential random graph models
because µ(θ) and Σ(θ) are not known. MCMC likelihood estima-
tion gets around this problem by estimating µ(θ) and Σ(θ). It does
so by simulating the distribution of graphs given θ and estimating
µ(θ) and Σ(θ) based on a sample from the simulated distribution.
The simulation is typically achieved through a standard MCMC
process using either Gibbs sampling or the Metropolis-Hastings
algorithm [20].

There are a number of software packages available to fit expo-
nential random graph models using MCMC MLE. These include
the statnet package for the R statistical computing environment [8]
and the SIENA software [21].

However, ERGM fitting using MCMC MLE methods is only
lately becoming non-trivial, because of both computational and
degeneracy problems. Computationally, networks much smaller
than 1000 nodes can be readily fitted on current hardware, alt-
hough recently sparse thousand node networks have been fitted
successfully [6]. Biological networks typically have thousands
(regulatory networks) if not tens of thousands of nodes (protein-
protein interaction networks) and many of them are coming within
reach of the current technology, although for multiple model fitting
of such networks parallel machines are recommended.

More fundamentally, though, some connected sets of fitted para-
meters correspond to degenerate networks (e.g. graphs with almost
no edges or nearly complete graphs) and the MCMC MLE methods
exhibit convergence problems when encountering such neighbor-
hoods, yielding networks that do not resemble the original data.
Important recent work by Snijders et al. [21] has dealt with this
problem of degeneracy and has suggested practical approaches
for avoiding it. In a nutshell, whenever strong transitive relation-
ships are suspected in a network, Snijders et al. suggest to use at
least one of two aggregate variables: the geometrically weighted
degree and the geometrically edgewise shared partners (presented
in Table 1). These variables can be used alone, or together with
their simpler counterparts, the node degrees and number of triangles
in the network and have been used succesfully to fit even large
networks [6].

2.2 Maximum Pseudo-likelihood Estimation (MPLE)
The logit p* model is a model related to p* (ERGM) in such a
way that the maximum likelihood set of parameters of a logit p*
model is an estimate of the maximum likelihood parameters of
the corresponding p* (ERG) model. The logit p* model has no
normalizing constant, κ(θ), thus allowing normal maximum like-
lihood estimation to be used to fit the logit p* model. Estimation
of the parameters of a p* network by estimating the parameters
of the corresponding logit p* model is called maximum pseudo-
likelihood estimation. The following description is a synthesis of
the descriptions presented in the social networks literature [22, 2].

Let x+
ij refer to the matrix representation of a graph identical to

the observed graph x except that in xij the edge from i to j is gua-
ranteed to exist; let x−ij refer to the matrix representation of a graph
identical to x except that the edge from i to j is guaranteed not to
exist, and let xc

ij represent the matrix identical to that of the obser-
ved graph with the exception that there is no entry at position (i, j)
in xc

ij . This single piece of information is missing from xc
ij .

A logit is the log odds of a binary random variable. That is,
for some binary random variable, Y , the logit is log(P (Y =1)

P (Y =0)
).

The random variable, X , in the p* model is not binary, but we
can get around this limitation if we consider the set of binary ran-
dom variables {Xij}, where Xij = 1 indicates that there is an
edge between nodes i and j. If we model the conditional distri-
butions, P (Xij = 1|xc

ij), P (X = x) can be calculated (by the
Hammersly-Clifford theorem [22]).

Now, note the following:

P (Xij = 1|xc
ij) =

P (X = x+
ij)

P (X = x+
ij) + P (X = x−ij)

(4)

Using this probability, we can write the expression for the odds ratio
of the graph with the edge linking i and j to the graph without this
edge.

P (Xij = 1|xc
ij)

P (Xij = 0|xc
ij)

=
P (X = x+

ij)

P (X = x−ij)
(5)

Next, substituting Equation (3), we get the following:

P (Xij = 1|xc
ij)

P (Xij = 0|xc
ij)

=
eθT z(x+

ij
)

eθT z(x−
ij

)
(6)

= eθT [z(x+
ij

)−z(x−
ij

)] (7)

Next, take the log of both sides to get the log odds ratio (logit) for
the edge (i, j), which we will call ωij :

ωij = log(
P (Xij = 1|xc

ij)

P (Xij = 0|xc
ij)

) (8)

= θT [z(x+
ij)− z(x−ij)] (9)

Defining δ(i, j) = [z(x+
ij)−z(x−ij)], gives a succinct statement of

logit p*:

ωij = θT δ(i, j) (10)

Thus, the logit for each pair of nodes (i, j) is the product of the
model parameters and the vector of network statistics that arises
when variable Xij changes from 1 to 0. This last vector, δ(i, j)
is called the difference statistics vector.

Fitting using MPLE is computationally a much simpler task than
MCMC MLE as it reduces to solving a logistic regression. In prac-
tice thousand node sparse networks can fit fairly quickly on modern
hardware. However, although both MCMC MLE and MPLE are a
approximative methods for estimating the model parameters, there
are indications that in practice MPLE may do worse than MCMC
MLE [5]. This is especially the case for networks which have strong
dyadic dependence (i.e. edges are dependent on other edges given
the rest of the graph). Note that the MPLE estimate corresponds to
the exact solution when no dyadic dependences exist in the graph.
In practice, MPLE may be a good approximation when the dyadic
dependence is weak.
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3 DATA
Our goal in this paper is to illustrate the fitting of different biologi-
cal networks using ERG models, and to note the differences between
the best fitted models and parameters among the networks, thereby
learning which variables characterize which classes of networks,
and possibly identifying groups of networks with very similar fits,
and hence similar architectures. To that end, we evaluated exponen-
tial random graph modeling using biological networks of different
origin, size and types. First, we studied two transcriptional regula-
tion networks. The first is an updated E. coli network [19] based on
the well known network available from RegulonDB [18]. In this net-
work, each node represents an operon, and an edge from one operon
to another indicates that the first operon encodes the transcription
factor that regulates the second. This network contains 418 nodes
and 578 edges. The second transcriptional regulation that we stu-
died is the network of TF-DNA binding for yeast [13], containing
106 transcription factors and 6270 genes and 1842 edges. We used
3 nested versions of this network created with different edge inclu-
sion thresholds corresponding to binding p-values of 0.01, 0.001,
and 0.0001.

Second, we considered a collection of metabolic networks for 43
organisms introduced in an earlier work [11], coming from the WIT
database. This database contains metabolic pathways that were pre-
dicted using the sequenced genomes of the several organisms. The
nodes in these networks are enzymes, substrates and intermediate
complexes, and the edges indicate an interaction. Of the 43 orga-
nisms, 6 are archea, 5 eukaryotes, and 32 bacteria. The sizes of
the networks vary from 595 nodes and 1354 edges to 2982 nodes
and 7300 edges. This group of biological networks are particularly
important to our task at hand of classifying networks based on struc-
tural similarity between them because of two reasons: (1) all 43
networks are fairly similar to each other as they all contain basic
metabolic pathways which are fairly conserved along the evolutio-
nary tree. Thus, we expect that the same choice of variables would
provide good fits for all of them; and (2) because these networks
summarize relationships between proteins and metabolites and vice-
versa, they are bipartite graphs. Hence, they have no trivial transitive
relationships and are likely to have low dyadic dependence, which
makes them well suited for the MPL estimation method.

Finally, we generated two random power-law networks. We did so
using the the preferential attachment model [3]. This model grows a
network from one edge, adding new nodes one at a time, attaching
each to an existing node with probability proportional to the degree
of that node. Both networks generated had 1000 nodes and approxi-
mately 3900 edges. In total, we used 49 large networks and treated
all of them as undirected graphs.

4 METHODS
We fitted a number of different models to the different networks
described above and investigated the relative importance of many
different explanatory variables in these networks. In addition, we
studied the relative merits of the two available methods to estimate
the fit of an exponential random graph model.

4.1 Fitting ERGMs with MCMC MLE and MPLE
The variables, z(x), used in an ERG model can be any function
from the observed graph x to the real numbers. However, as can
be seen from Equation (10), the variables actually used are, δ(i, j),
the vector of difference statistics. These difference statistics are the

differences between value of z when (i, j) is forced to be present in
the graph, and the value of z when (i, j) is forced to be absent.

To fit the ERG models with both MCMC MLE AND MPLE
methods we used the statnet package [8] for the R statistical com-
puting environment. We fit several models to networks of different
types and sizes using both MCMC MLE and MPLE. Although we
were able to fit many of our networks using both methods, we also
found that for a sizable fraction of the biological networks in our
study it was computationally intractable to fit models using MCMC
MLE. Based on the networks that we were able to fit (a selec-
tion of which is given in Section 5), it seems that MPL fitting is
often an appropriate substitute for MCMC MLE in fitting biological
networks, possibly because of their low dyadic dependence.

4.2 Explanatory Variables
We illustrate the process of choosing the explanatory variables
on the E. coli regulatory network from RegulonDB. The software
statnet supports a number of explanatory variables for undirec-
ted networks. These include Edges, k-Star, k-Degree, k-Cycle,
k-ESP, GWDegree, GWESP, and Isolates. For detailed descrip-
tions of each of these variables, see Table 1. The GWDegree
and GWESP variables are used to address the degeneracy issues
mentioned before in Sec 2.1.

To determine the variables to use in our model, we used an ite-
rative exploratory technique of progressively increasing the model
complexity. First, we fitted single variable models consisting of each
of the possible variables. Then, using the Akaike Information Crite-
rion (AIC), the goodness of fit (gof) technique outlined below and
the built-in goodness of fit method in statnet, we selected several
pairs of variables to form models. We repeated this technique for
models with 3 to 8 variables. Our results are discussed below.

4.3 Goodness of Fit
Evaluating the importance of an explanatory variable or group of
variables to the fit of an ERG model can be achieved by fitting
the model both with and without the variables in question and
comparing the goodness of fit of the two models.

By goodness of fit, we simply mean how well the model fits. To
estimate how well a model fits, statnet has a function that simula-
tes a sample of networks using the fitted model and, then, compares
the values of several explanatory variables in the orginal network to
the values of the same variables in the sampled networks. For the
purposes of our study, we created an additional method to estimate
the goodness of a fit. We compared the overlap, in terms of edges,
between the observed network and our own sample of networks
simulated using the fitted model.

In particular, to evaluate the importance of each explanatory
variable, we fitted several nested models as discussed in Section 5.2.
We used the fitted models to sample 30 networks (using statnet’s
function simulate.ergm). Then, for every pair of nodes in the origi-
nal graph, we counted the number of times that that pair of nodes
was adjacent in our sample of 30 graphs. Using these observed
adjacency frequencies, we estimated probability of an edge (pi,j)
between each pair of nodes i and j (i.e. we normalized the observed
frequencies).

We, then, created 99 nested networks, one for each p ∈
{0.99, 0.98, . . . , 0.01}. In each network, we allowed edge (i, j) iff
pi,j > p. Then, interpreting each pair of nodes in each network as
a prediction as to the presence or absence of an edge in the original
biological network, we calculated the false positve rate and the false
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Fitted with MCMC MLE Fitted with MPLE
2-Deg 3-Deg 4-Deg 5-Deg 2-Star Edges GWDeg AIC 2-Deg 3-Deg 4-Deg 5-Deg 2-Star Edges GWDeg AIC

M1 -1.71 -2.22 -2.42 -3.05 0.011 10.6 -3.78 4976 -1.44 -2.08 -2.33 -3.03 0.011 10.5 -3.77 5010
M2 -1.49 -2.18 -2.48 -3.15 0.038 - -1.08 4981 -1.51 -2.18 -2.44 -3.15 0.038 - -1.07 5020
M3 -1.63 -2.53 -2.98 -3.53 - - -0.928 5262 -1.63 -2.41 -2.72 -3.53 - - -0.911 5300
M4 - - - - -0.079 48.6 -13.8 5410 - - - - -0.079 48.6 -13.8 5450
M5 - - - - - 19.2 -6.32 5482 - - - - - 19.2 -6.32 5520
M6 - - - - 0.047 - -1.47 5581 - - - - 0.047 - -1.45 5620
M7 - - - - - - -1.35 6078 - - - - - - -1.33 6120

Table 2. The parameter values for several sample models fitted to the RegulonDB E. coli network (using MCMC MLE and MPLE).

Name Nodes Edges Triangles 2-Star 4-Cycle GWDegree GWESP AIC
Scale Free 1 1000 3933 0.026 0.027 -0.022 -1.97 - 43979
Scale Free 2 1000 3875 0.082 0.026 -0.031 -1.95 - 43813
S. cerevisiae (ChIP-chip) 6270a 1842 136 -1.13 1.14 - -60.8 189702
A. pernix (WIT) 595 1354 -14.7 -0.005 0.120 -1.68 - 12179

a This network has 106 tanscription factors and 6270 genes.
Table 3. The results of fitting 3 models on several larger networks.

negative rate of these predictions. We plotted these 99 pairs of false
positive and false negative rates as a receiver operating characteristic
(ROC) curve (Figure 1).

5 RESULTS AND DISCUSSION
Using an 80 processor cluster, we performed the iterative model
fitting procedure described above, fitting every model to the Regu-
lonDB E. coli network using MCMC MLE. The fits of a few sample
models of various complexity are shown in Table 2.

We used the RegulonDB network for the iterative fitting proce-
dure because it was one of the smallest that we considered and fitting
our large, biological networks with MCMC MLE was very difficult.

Comparing the rows of Table 2 pairwise can be illustrative. For
example, by comparing M1 and M4, one can see the effect of remo-
ving the k-Deg variables from the full model. This removal strongly
changes the other fitted parameter values. The increased weighting
of GWDegree can account for the removal of the k-Deg variables
because GWDegree is a summary statistic for all of the k-Deg varia-
bles. Next, compare M2 and M3; this represents the removal of the
2-Star variable from the model. In this case, the other model parame-
ter values don not significantly change, indicating the independence
of 2-Star from all the other parameters.

After we had explored several models using the RegulonDB net-
work, we attempted to fit a few of them to other, larger networks
using MCMC MLE. A few larger networks that we were able to
fit can be seen in Table 3, where only the best fitting models are
reported.

Comparing the rows in Table 3, shows that the parameter choice
will need to vary from network to network. For example, the value
for Triangles varies wildy across all of the networks. In fact, the
two networks with large, anomolous values for the Triangles varia-
ble are both not likely to contain many triangles because of their
structure. This example shows the importance of picking the correct
parameters when attempting to fit a network.

Although some authors have reported that fitting large networks
with MCMC MLE can lead to diverging parameter estimates [6], we
found this not to be the case with our biological networks. For every
network and model that we attempted to fit, the parameter estimates
either converged or appeared to be convering to finite values.

Additionally, as mentioned above, the GWDegree variable was
included in most of our models because it has been shown in earlier
work to reduce degeneracy in the model fits. However, including
this variable tended to slow computation and may have prevented
fitting from finishing for some models on larger networks.

5.1 Comparison of MCMC MLE and MPLE
We were able to fit several of the large biological networks in our
data set using MCMC MLE, but we weren’t able to fit all of the
networks in our data set. At this time, MCMC MLE is probably
not feasible for many large networks such as seen in bioinforma-
tics. Each iteration in the MLE algorithm requires the simulation of
a sample population of networks using MCMC, but this process is
quite time and space intensive for large networks. Simply because
large networks have more edges, the mixing time for Gibbs samp-
ling is longer. So, each network in the population takes much longer
to simulate, and each iteration in the MLE requires from hundreds
to thousands of networks be simulated.

Although MCMC MLE provides superior fits over maximum
pseudo-likelihood estimation, we would like to know if we can use
MPLE as a substitute fitting method for networks where MCMC
MLE fails. To answer this question, we compared the model fits
to the RegulonDB network, where we were able to fit using both
MCMC MLE and MPLE.

MCMC MLE and MPLE fits can be compared in Table 2. The
results show that for these models, the parameter values are quite
similar. Further, for all of the models and networks given in Table 3,
the parameter values were similar for the MCMC MLE and MPLE
fits. Unfortunately, we were unable to include the MPLE parameter
values due to space constraints. Previous researchers have shown
that MCMC MLE is superior to MPLE when there is strong dyadic
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Fig. 1. We used the fitted parameters to sample several networks and then
using the sampled networks as an edge predictor of the original network, we
calculated a false positive rate and a false negative rate. This plot shows the
false positive rate versus the false negative rate (an ROC plot). The models
that included gwdegree and 2-star or edges all performed well.

dependence, but there is not necessarily strong dyadic dependence
in biological networks. For example, in the WIT networks, there
are no triangle graphlets. So, in cases where strong dyadic depen-
dence is not suspected, MPLE fitting can serve as a computationally
feasible substitute for MCMC MLE fitting.

5.2 Goodness of Fits
After fitting the nested sequence of models, we performed the good-
ness of fit test described in Section 4.3. The results can be seen
in Figure 1. We found that with biological networks, we achieved
acceptable fits as long as we included the network statistic GWDe-
gree. This is in line with similar results in social networks and
biology. The degree distribution of the network appears to be a con-
tributing factor in the overall structure. However, as can be seen
in Figure 1, the various k-Degree variables are not, in themselves,
enough to give the best fit.

5.3 Classifying Networks via Their Topological Profiles
Associating network topology to biological function is a major goal
in systems biology. Recently, researchers have reported success
characterizing networks by using network motif profiles to classify
various evolved and designed networks [16]. Others have similarly
used local network topology to infer the likeliest mechanisms of the
networks’ evolution or design [4].

To demonstrate the utility of ERGMs for biological network
modeling, we sought to classify all 49 networks in our data set
using each network’s fitted parameters as its profile. We chose to
use the model model = 4-Deg + 5-Deg + 2-Star + GWDegree for
each of the networks and fitted the model using maximum pseudo-
likelihood estimation. As mentioned before using MPLE instead of
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Pyrococcus furiosus
Mycobacterium leprae
Mycobacterium bovis
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Haemophilus influenzae
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Thermotoga maritima
Mycobacterium tuberculosis
Rhodobacter capsulatus
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Enterococcus faecalis
Helicobacter pylori
Chlamydia trachomatis
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Methanococcus jannaschii
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Rickettsia prowazekii
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Escherichia coli
Pseudomonas aeruginosa
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Deinococcus radiodurans
Bacillus subtilis
Mycoplasma genitalium
Mycoplasma pneumoniae
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E. coli (RegulonDB)
Scale Free 2
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Fig. 2. Heatmap of the Euclidean distance matrix of the networks’ profiles.

MCMC MLE here was acceptable because the WIT networks were
found to have low transitivity and likely low dyadic dependence.

We calculated the Euclidean distance matrix between the para-
meter profiles of all the networks and used it to cluster the set of
networks using complete-linkage hierarchical clustering. The sym-
metric heatmap of the distance matrix is given in Figure 2, with the
cluster dendrogram attached on top. The apparently strong cluster
structure within it indicates that ERGM parameter profiles can be
used as a means to classify these networks.

Looking at the whole heatmap, the clusters segregated strikin-
gly well the networks by biological type or experimental origin.
Namely, the two scale-free random nets were clearly separated from
all the other networks. Similarly, the E. coli gene network cluste-
red together with the three TF-DNA gene networks from ChIP-chip
studies, while all four together were well isolated from the other
clusters. Of note here is that the gene networks exhibit different
architecture from the two scale-free networks. In addition all 43
WIT metabolic networks clustered closer together than to either the
scale-free or gene regulation networks.

Next, it is very interesting to examine the clusters of only the 43
metabolic networks. Here we give some very general taxonomic and
functional observations which were derived by consulting bacterial
resources on the Internet, in particular EBI’s Karyn’s Genomes web-
site 1. In the following we use the two letter abbreviations for the 43
organisms from Figure 2, given on the x axis. Firstly, of note is
the fact that the five eukaryotic genomes AT, EN, OS, SC, and CE
clustered near each other, because of their very similar parameter
profiles as evidenced by the dendrogram, while the six archea orga-
nisms were spread around in different clusters. Secondly, one of the
clusters was comprised almost exclusively (13 out of 16 organisms)

1 http://www.ebi.ac.uk/2can/genomes/genomes.html
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of non-motile organisms (the cluster at the lower right corner of the
heatmap), while another cluster (fourth from the top along the dia-
gonal) all but one of the organisms (DR) were motile. Finally, the
fifth cluster from the top consists of only eukaryotes and anaerobic
bacteria.

Although appealing, it is impossible to speculate further on the
reasons for, or the meaning behind the functional features or phe-
notypes of organisms clustered together without a more detailed
associative study of the parameter profiles and organisms features.

These results make it plausible that ERGM parameter profiles can
be used for structural classification of different biological networks.
They also raise the possibility that functional features of organisms
that have a systemic level network manifestation are more likely to
come up as class differentiators in such studies. Hence, classification
using parameter profiles derived from ERGM models can be poten-
tially used to identify system level functional features in biological
networks.

6 CONCLUSION
In this paper we have introduced exponential random graph models,
a family of network models that have previously been used to study
social networks, and we have demonstrated their utility in mode-
ling biological networks. In addition, we have argued that fitting
exponential random graph models to biological networks can best be
achieved using pseudo-likelihood maximization. We demonstrated
that topological profiles derived from biological networks by fitting
ERG models can be used to classify organisms in clearly separate
biological and functional groups.

There are a number of reasons that exponential random graph
models should be considered for use in biology. First, the sta-
tistics underlying ERG models are more principled than seen in
the previous network modeling efforts in biology. Previous efforts
in biology have relied on comparing networks to simulated ran-
dom networks (which depend heavily on the random model) or
investigating a single network feature such as degree distribu-
tion [15, 14, 23, 1, 3]. Second, exponential random graph models
allow for much more flexibility than current biological network
models. As seen in Table 1, the explanatory variables can be
almost anything including subgraph counts, shortest path lengths,
clusteredness and simple graph statistics. This flexibility allows
researchers to ask and answer specific questions. For example, rese-
archers have suggested that PPI networks are arranged in a hierarchy
of modules [7]. The hierarchy is usually identified using one or more
properties of the nodes in the network. Logit p* models provide
an independent method to investigate this phenomenon. A further
reason that exponential random graph models should be considered
for biological networks is that they provide an excellent framework
for the comparison of networks. Finally, exponential random graph
models provide a method to control for lower order effects by inclu-
ding them in the model. That is, if there is a suspected bias in the
parameter of interest due to some lower level variable. The resear-
cher can test and correct for this bias by including a parameter for
the lower level variable in the model.
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[11]Hawoong Jeong, Bálint Tombor, Réka Albert, Zoltán N. Oltvai, and Albert-László
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