
July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

INTEGRATING MICROARRAY DATA

BY CONSENSUS CLUSTERING

VLADIMIR FILKOV

Computer Science Dept., University of California, One Shields Ave.

Davis, CA 95616, USA

filkov@cs.ucdavis.edu

STEVEN SKIENA

Computer Science Dept., SUNY Stony Brook

Stony Brook, NY 11794, USA

skiena@cs.sunysb.edu

With the exploding volume of microarray experiments comes increasing interest in
mining repositories of such data. Meaningfully combining results from varied experi-
ments on an equal basis is a challenging task. Here we propose a general method for
integrating heterogeneous data sets based on the consensus clustering formalism. Our
method analyzes source-specific clusterings and identifies a consensus set-partition which
is as close as possible to all of them. We develop a general criterion to assess the potential
benefit of integrating multiple heterogeneous data sets, i.e. whether the integrated data
is more informative than the individual data sets. We apply our methods on two popular
sets of microarray data yielding gene classifications of potentially greater interest than
could be derived from the analysis of each individual data set.

Keywords: microarray data integration; consensus clustering; median partition heuristics

1. Introduction

Microarray experiments provide measures of gene expression levels under a given

set of experimental conditions. Varying the experimental conditions even slightly

can potentially reveal differentially expressed genes, or groups of genes with similar

expression patterns. As the volume of microarray data grows, there is increasing

interest in mining large data repositories. However, meaningfully combining exper-

imental data from diverse sources is a difficult problem.

There have been several previous attempts toward general integration of biologi-

cal data sets in the computational biology community. Marcotte et al.,1 for example,

give a combined algorithm for protein function prediction based on microarray and

phylogeny data, by classifying the genes of the two different data sets separately,

and then combining the gene pairwise information into a single data set. Pavlidis

et al.2 use a Support Vector Machine algorithm on similar data sets to predict gene

functional classification. Both methods need hand tuning with any particular type

of data both prior and during the integration for best results. Ad hoc approaches

1

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

2 Filkov, V. and Skiena, S.

to data integration are difficult to formulate and justify, and do not readily scale to

large numbers of diverse sources, since different experimental technologies have dif-

ferent types and levels of systematic error. In such an environment, it is not always

clear that the integrated product will be more informative than any independent

source.

Among general methods for integration and analysis of biological data, cluster-

ing is arguably among the most popular and useful. Clustering methods have been

particularly successful in organizing microarray data and identifying genes of simi-

lar or differential expression.3,4 We propose a methodology of consensus clustering

as an approach to integrating diverse sources of similarly clustered microarray data.

We seek to exploit the popularity of cluster analysis of biological data by integrating

clusterings from existing data sets into a single representative clustering based on

pairwise similarities of the clusterings. Under reasonable conditions, the consensus

cluster should provide additional information to that of the union of individual data

analyses. The goals of consensus clustering are to (1) integrate multiple data sets

for ease of inspection, and (2) eliminate the likely noise and incongruencies from

the original classifications.

In this paper:

• We develop heuristics for performing consensus clustering, specifically for

that of solving the median partition problem on set partitions, that work

well in practice on problems with hundreds of data sets (e.g. distinct mi-

croarrays) of thousands of entities (e.g. all genes in yeast).

• We investigate the use of consensus clustering for increasing the reliability

of microarray gene expression data. We show that the consensus cluster is

robust, even when derived from small numbers of independent observations

each with up to 25% false classifications.

• There is no guarantee that integrating two different noisy data sets yields

a more meaningful result than either data set on its own. We develop

a general data-independent criterion for assessment of the efficacy of a

consensus clustering.

• To prove the utility of our methods in practice, we integrate collections of

various data sets, of both real and simulated data. We show how similar

clusterings can be identified by experiment clustering (as opposed to gene

clustering), and show that biologically similar experiments indeed cluster

together.

• Statistical p-values are essential to evaluate the meaningfulness of a pro-

posed consensus clustering. We propose two classes of p-values which enable

us to measure the significance of the amount of agreement between a “gold

standard” cluster and a given consensus set partition.

Our paper is organized as follows. In Section 2 we show how to compare clus-

terings for similarity. The consensus clustering problem is formally described in

Section 3, together with an overview of prior work. Heuristics and the theory be-

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 3

hind them is given in Section 4. We discuss the implementation and testing of our

heuristics in Section 5. In Section 6 we describe the data sets and their clustering.

The results of integrating the data sets are given in Section 7. In Section 8 we

outline some results on p-values related to our work. We conclude this paper in

Section 9 with a discussion and plans for future directions.

2. Comparing Clusterings

Our consensus clustering idea depends on quantifying the pairwise similarity be-

tween different clusterings. A clustering is a grouping of objects by similarity, where

an object can belong to only one cluster. If we disregard the distances between the

clusters, a clustering is equivalent to a set-partition.

Formally, a set-partition, π, of I = {1, 2, . . . , n}, is a collection of disjunct, non-

empty subsets (blocks, clusters) that cover I. We denote the number of blocks in π

by |π|, and indicate them as B1, B2, ..., B|π|. If a pair of different elements belong

to the same block of π then they are co-clustered, otherwise they are not.

Many measures of set-partition similarity have been developed and implemented

toward solving different classification problems successfully. Among these measures,

the simplest and widely used is the Rand index.5 Others include the Adjusted Rand

(correction of Rand for chance) by Hubert and Arabie,6 the Fawlkes and Mallows

measure,7 and the Jaccard index.8 All of these measures are based on enumeration

of pairs of co-clustered elements in the partitions. Table 1 shows the contingency

table for two set-partitions π1 and π2 based on the number of matches/mismatches

in the co-clustered pairs in the partitions.

Table 1. Contingency Table for Two Partitions.

π1 / π2 co-clustered not co-clustered

co-clustered a b

not co-clustered c d

Thus, a equals the number of pairs of elements co-clustered in both partitions,

b equals the number of pairs of elements co-clustered in π1, but not in π2, etc.

Hence, a and d are counts of pairs that have been consistently clustered in both

partitions (i.e. number of matches), and b and c indicate inconsistencies between

the partitions (i.e. number of mismatches). Notice that a+b+c+d =
(

n

2

)

, the total

number of different pairs of n elements.

The Rand index is defined as R(π1, π2) = (a + d)/
(

n
2

)

.5 This is the number of

pairwise agreements between the partitions, normalized so that it lies between 0

and 1. The complementary measure, Rand distance, is defined as 1 − R(π1, π2) =

(b+ c)/
(

n
2

)

and it gives the frequency of pairwise disagreements between π1 and π2.

For our measure of choice we accept the un-normalized form of the Rand distance

d(π1, π2) = b + c . (1)

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

4 Filkov, V. and Skiena, S.

This distance measure satisfies the triangle inequality and is equivalent9 to the

symmetric difference between the sets of all co-clustered pairs in π1 and π2 (i.e. the

symmetric difference of the equivalence relations induced by the partitions).a

We note that the symmetric difference distance has a nice property that it is

computable in linear time. Namely, a + b and a + c are computable in O(|π1|),

O(|π2|) resp., (as the sums of the number of co-clustered pairs in each partition,

i.e.
∑|π1|

i=1

(

Bi

2

)

, and similarly for π2). Also, it is possible in O(n) time to compute

a.12 Thus, we will consider computing d(π1, π2) an O(n) operation for any two

partitions of n elements.

3. Consensus Clustering

A consensus set-partition should be representative of the given set partitions. In

terms of similarity it should be close to all given ones, or in terms of distance, it

must not be too far from any of them. One way to do this is to find a partition that

minimizes the distance to all the other partitions.

CONSENSUS CLUSTERING (CC): Given k partitions, π1, π2, . . ., πk, and

d(., .), the symmetric difference distance on any two partitions, find a consensus

partition π that minimizes

S =

k
∑

i=1

d(πi, π) . (2)

This problem is known in the literature as the median partition problem. Implic-

itly, it appears as early as the late 18th century.13 The first mathematical treatment

goes back to Régnier10 in 1965, where the problem is transformed into an integer

program, and a branch and bound solution is proposed. Mirkin11 offers an inter-

esting axiomatic treatment, using properties of equivalence relations to prove some

bounds on the solution. Krivanek and Moravek14 and Wakabayashi,15 using differ-

ent approaches, proved in 1986 that the median partition problem is NP-complete.

A nice axiomatic treatise of the problem is given by Barthélemy and Leclerc.16

Wakabayashi13 gives an in-depth graph-theory analysis of the median partition

problem, from a perspective of relations, and concludes that approximating rela-

tions with a transitive one is NP-complete in general.

CC is NP-complete in general, yet it is not known whether it is NP-complete

for any particular k. The case of k = 1 is trivial, since the partition itself gives an

optimal solution. The case of k = 2 is also simple: given two set-partitions, any of

them solves the problem optimally. Namely, here we want to minimize d(π1, π) +

d(π, π2). The triangle inequality yields: d(π1, π) + d(π, π2) ≥ d(π1, π2), and we

obviously achieve this minimum by choosing either π1 or π2. Nothing is known for

k ≥ 3.

aRégnier10 and Mirkin11 were among the first to propose the use of the symmetric difference
distance as a dissimilarity measure between two relations, and make attempts at the problem of
finding a median relation.

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 5

In light of its hardness, exactly solving large instances of CC is intractable.

Even so, exact methods have been implemented. Tüshaus17 offers a branch and

bound approach, which works only for small n. Wakabayashi13 and Grötschel and

Wakabayashi18 give a Cutting planes solution, which works well for n in the hun-

dreds.

A variety of approximations like linear programming relaxations of the inte-

ger program,10 Lagrangian Relaxation,19 hill-climbing heuristics,10,20 and meta-

heuristics like taboo search and simulated annealing,20 have also been applied to

this problem. But none of these approximations have yielded any performance guar-

antees.

4. Heuristics

We present three different heuristics for the median partition problem. In Section 4.1

we present a simple factor-2 approximation algorithm. Then we give two fast, local

search heuristics, a greedy and a Simulated Annealing, based on one element moves

from one block to another in the median partition. We discuss the implementation

in Sec. 5

4.1. A Factor-2 Approximation

Algorithm 1. Best-of-k (BOK)

Given an instance of CC, select a partition π ∈ {π1, π2, . . . , πk} that minimizes

S =
∑k

i=1 d(πi, π).

In other words, this algorithm yields one of the given partitions which minimizes

the distance from it to all the others.

Claim 1. Algorithm 1 is factor-2 approximation to problem CC.

The proof follows from the following two lemmas.

Lemma 1. For any instance of CC, Algorithm 1 gives a solution at most 2 times

larger than the optimal.

Proof. Let πopt be a partition that minimizes the sum
∑k

i=1 d(πi, πopt) in CC.

For any fixed partition πj , 1 ≤ j ≤ k, let Sj =
∑k

i=1 d(πi, πj). Further, let Sopt =
∑k

i=1 d(πi, πopt). Then, because for any pair πi, πj ∈ {π1, . . . , πk}, d(·, ·) obeys

the triangle inequality d(πi, πj) ≤ d(πi, πopt) + d(πopt, πj), the sums Sj satisfy the

following:

Sj =
∑k

i=1 d(πi, πj) ≤
∑k

i=1 [d(πi, πopt) + d(πopt, πj)]

= Sopt + k · d(πopt, πj) .
(3)

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

6 Filkov, V. and Skiena, S.

If we sum up the above inequalities for all Sj ’s, we get

k
∑

i=1

Sj ≤ k · Sopt + k ·
k

∑

j=1

d(πopt, πj) = k · Sopt + k · Sopt = k · 2Sopt , (4)

where, on the left side, we have k numbers that add up to at most k times 2Sopt,

on the right. Then, from the pigeon-hole principle, it follows that at least one of

the k sums Si must be smaller than 2Sopt. Therefore, the smallest of the sums Si

is never greater than 2Sopt.

Lemma 2. For some instances of CC, Algorithm 1 produces solutions arbitrarily

close to 2 times the optimal solution.

Proof. We demonstrate a family of instances of CC, for which our algorithm can

do no better than 2(k−1)/k times the optimal. Consider the following k partitions

(n > k):

π1 = {{1, 2}, {3}, {4}, . . . , {n− 1}, {n}}

π2 = {{1, 3}, {3}, {4}, . . . , {n− 1}, {n}}

· · ·

πi = {{1, i + 1}, {3}, {4}, . . . , {n − 1}, {n}}

· · ·

πk = {{1, k + 1}, {3}, {4}, . . . , {n− 1}, {n}} .

(5)

Since each of the above partitions has only one pair of co-clustered elements,

and no elements are co-clustered in any pair of partitions, we have

d(πi, πj) =

{

2 if i 6= j

0 if i = j .
(6)

Obviously, whichever partition Algorithm 1 picks will yield a sum of distances

2(k−1). But, if we take α = {{1}, {2}, . . . , {n}} to be a solution instead, the sum of

distances from all the partitions to α is k, because d(πi, α) = 1, for any i. Since this

solution cannot be better than the optimal one, we have that our approximation is

never better than 2(k − 1)/k on the above instance.

This makes Algorithm 1 a factor-2 approximation. The time complexity of the

algorithm is O(k2n), since it takes O(n) to compute the distance between any two

partitions, and there are O(k2) pairs.

4.2. One Element Moves

Another approach guesses an initial solution for the median, and improves the

solution by moving around the elements from one block to another. The initial

guess can be random, or, for example, the output of Algorithm 1.

One element moves between blocks are a natural way to move from one to

another set-partition. For example moving element 4 from block 1 into block 2 of

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 7

{{1, 4, 5}, {2, 3}} gives {{1, 5}, {2, 3, 4}}. If moves into empty blocks, and moves

from singleton blocks are allowed, it is clearly possible to get from a given set-

partition to any other. Thus, one element moves can be used to explore the set of

all set-partitions.

Next, we show how the sum of distances changes after a one element move. We

define the characteristic vector of a set-partition, πp, as: rijp = 1 iff i and j are

co-clustered, and rijp = 0 otherwise. Then it can be shown that the symmetric

difference distance becomes

d(π1, π2) =
∑

1≤i<j≤n

(rij1 + rij2 − 2rij1rij2) . (7)

Then, the sum of distances in CC of a median partition π, with characteristic

vector rij , to the given partitions π1, π2, . . . , πk can be written as:

S =
∑

1≤p≤k

∑

1≤i,j≤n

(rij + rijp − 2rijrijp) , (8)

or after some algebra

S =
∑

1≤i,j≤n

rij(k − 2
∑

1≤p≤k

rijp) +
∑

1≤i,j≤n

∑

1≤p≤k

rijp . (9)

Let us define some useful shorthands at this point. For given i, j the matrix

rij. =
∑

1≤p≤k rijp counts the number of times i and j are co-clustered in all Rp

set-partitions. Obviously 0 ≤ rij. ≤ k. For convenience we let Kij = k − 2rij., and

note that all Kij are of the same parity as k and range between −k and k. We

also let
∑

1≤i,j≤n

∑

1≤p≤k rijp =
∑

1≤i,j≤n rij. = R. With all the above, our sum

becomes

S =
∑

1≤i,j≤n

rijKij + R . (10)

Let π be our initial guess for a median partition, and let its blocks be

B1, B2, . . . , B|π|, B|π|+1, where the last block is the empty block. Then moving

one-element, say x, from B1 to B2, amounts to transforming the set-partition

π = {B1, B2, . . . , B|π|+1} into π′ = {B1/{x}, B2 ∪ {x}, . . . , B|π|+1}. Since we al-

low moves into empty blocks too, the total number of blocks to which an element

can move is always |π|.

Thus, if r′ij is the characteristic vector of π′ the decrease in S after an element

move is

∆S =
∑

1≤i,j≤n

(rij − r′ij)Kij . (11)

Because π and π′ are very similar it is obvious that most of rij will be equal

to their counterparts r′ij . The following straight forward Lemma quantifies exactly

which rij , r
′
ij are different.

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

8 Filkov, V. and Skiena, S.

Lemma 3. Let π′ be the set-partition obtained after moving element x in π to

a different block. Also let rij and r′ij be the characteristic vectors of π and π′,

respectively, as defined above. Then

• if i 6= x and j 6= x then rij − r′ij = 0;

• if i = x or j = x and rij = 1 then r′ij = 0;

• if i = x or j = x and r′ij = 1 then rij = 0.

The following is a direct consequence of the above.

Corollary 1. Moving x in π from block Ba to Bb, yields

∆Sx:a→b =
∑

all j ∈ Ba

j 6= x

Kxj −
∑

all j ∈ Bb

j 6= x

Kxj . (12)

Thus, to calculate ∆S after moving x into a different block, we need only go

through the Kij ’s associated with the elements in the blocks where x is moving to

and from. The matrix K can be calculated from the n × n matrices rij., which in

turn can be obtained by pre-processing πp, 1 ≤ p ≤ k in time O(n2k). This gives us

a fast way, O(|Ba| + |Bb|) steps, to update the sum of distances S after a move of

an element.

4.3. Simulated Annealing

We use the fast update above to design a Simulated Annealing algorithm for the

median partition problem. The target function to minimize is S, the sum of dis-

tances. A transition is a random pair of an element x, 1 ≤ x ≤ n, and a block to

move it to blockto, 1 ≤ blockto ≤ |π + 1|.

Algorithm 2. Simulated-Annealing-One-element-Move (SAOM)

Given k set-partitions πp, p = 1..k, of n elements,

(1) “Guess” an initial median π

(2) Pre-process the input set-partitions to obtain Kij

(3) SA (trans.: (x, blockto), function: S)

4.4. Greedy Algorithm

An alternative to performing random one element moves is to perform best one

element moves, at each step (greedy), toward a better median partition (while such

moves exist). We pre-process π into a matrix M , where the rows are the elements

of π and the columns its blocks (plus an empty block). An entry Mij is indicative

of the cost of moving element i to block j, calculated as follows

Mij =
∑

all l ∈ Bj

l 6= i

Kil . (13)

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 9

Here Kil = k − 2ril. and Bj is defined as above. We let Mi,|π|+1 = 0.

In addition to M , two n element arrays, mb and mv are maintained, where mvi

is equal to the least of all entries Mij in row i, and mbi is equal to the block (i.e.

second index) of the smallest of all entries Mij in row i. M and the vectors mv and

mb can be obtained from rij. and π in O(n2), since we sum over n values for each

element.

The best one element move in π is the one that maximizes ∆S, given that

∆S > 0. It is easy to show from Cor. 1 that

∆Sx:a−>b = Mxa − Mxb . (14)

As Mxa is fixed, maximizing ∆S is equivalent to finding the minimal Mxb, which

is mvx. Thus, the best one-element move for x is to block mbx. There are no one

element moves left if Mi,blocki
− mvi ≤ 0 for all elements i.

Once the best one element move has been identified it is easy to see that the

updates of M , the vectors mv and mb, and finally S can be done in O(n) time.

Algorithm 3. Best-One-element-Move (BOM)

Given k set-partitions πp, p = 1..k, of n elements,

(1) “Guess” an initial median π

(2) Pre-process the input set-partitions and π to obtain Kij and Mij

(3) Until best one element moves exist perform them and update S, M , mv, and

mb after each.

The correctness of Step 3 of this algorithm follows from Cor. 1 and the fact the

the minimal sum of distances (i.e. the optimal solution) is never larger than the

sum of distances for the approximation median partitions at any iteration. If a best

move exists, one is always found and it brings π closer to the optimal.

The running time consists of two parts: pre-processing time and element move

identification and update time. Pre-processing takes O(n2k) + O(n2) = O(n2k)

time. Identifying the best one-element move is linear in n. The updates in Step 3

are also linear in n.

5. Implementation

We have developed a general software system, CONPAS (CONsensus PArtitioning

System),9 as a unified framework for handling set-partition data structures and

operations on them, as well as data extraction interfaces. In it we implemented the

three heuristics above, BOK, BOM, and SAOM. We used the algorithms of Wilf21

to generate and enumerate set-partitions. Overall the algorithms are very close to

real time. In its final version, the slowest of the three heuristics, SAOM, runs in

under a minute on an instance of n = 1000, k = 300, on a 450MHz PII, 192MB

RAM PC.

Next, we assess the performance of our heuristics in practice by (1) comparing

the overall performance of all heuristics on five simulated and three real data sets,

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

10 Filkov, V. and Skiena, S.

and (2) analyzing in detail the best heuristic’s (SAOM) performance on completely

random input, and on meaningful but noisy input. In the next section we describe

our studies on real data sets and point out some interesting findings.

5.1. Comparison of the three heuristics

In our first study we compare the overall performance of the three heuristics on 7

data sets, five of simulated and two of real data. Preliminary studies indicated that

SAOM and BOM do not depend on the number of set-partitions given initially, when

that number is higher than 20. Further studies are needed for smaller number of set

partitions. Thus, all five simulated data sets, R1, . . . , R5 consist of 50 random set-

partitions. The number of elements in the set-partition is n = 10, 50, 100, 200, 500

respectively. The two real data sets, yst and ccg, are described in Section 6. The

results are shown in Table 2, where the resulting consensus partitions are summa-

rized by the average sum of distances to the given set-partitions, i.e. Avg. SOD

= S/(k
(

n
2

)

).

Table 2. Tests on seven data sets show good
performance of SAOM.

Data n k BOK BOM SAOM

yst 541 173 0.172 0.165 0.139

ccg 541 73 0.186 0.176 0.139
R1 10 50 0.173 0.147 0.138
R2 50 50 0.094 0.086 0.061
R3 100 50 0.059 0.054 0.036
R4 200 50 0.313 0.256 0.231
R5 500 50 0.418 0.399 0.351

BOM was always seeded with the result from BOK, and SAOM with a random

partition. Although both SAOM and BOM start from a seed partition, and thus

their results are expected to vary with the choice of it, we noticed that overall,

SAOM was not dependent on the seed partition. BOM, however, was very dependent

on the seed. It invariably produced better results when the seed was closer to the

consensus. Its results were poor in general when seeded with a random partition.

The SAOM is averaged over 20 runs.

As expected, the hill-climbing, and the simulated annealing did better than

best-of-k in every test (there could be a data set, though, for which Best-one-move

cannot find a one element move toward a better consensus, thus performing no

better than BOK). In all of the 7 test data sets SAOM did better than BOM.

Our conclusion is that SAOM does a good job in bettering the consensus, often

better than 20% than BOK, and is therefore our heuristic of choice for solving CC

in practice.

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 11

5.2. Efficacy of Consensus Clustering

Next, we did a more detailed study to analyze the behavior of SAOM on random

set-partitions. For various n ranging from 50 to 1000, we generated 50 random set-

partitions of n elements, and ran SAOM 100 times for each n. The results of the

study are reported in Table 3.

Table 3. The dependence of the Con-
sensus Partition Avg. SOD on n is
non-monotonic.

n Avg. SOD n Avg. SOD

20 0.1143 250 0.3816
30 0.0864 300 0.4416
40 0.0682 400 0.4327
50 0.0577 500 0.3658
75 0.0423 600 0.3112
100 0.0341 700 0.2719
120 0.2246 800 0.2407
150 0.2142 900 0.2163
200 0.2948 1000 0.1963

It is clear from the table that on random data the Avg. SOD values of the con-

sensus are distributed around means that depend on the number of elements in the

set-partitions. The dependence is complex though, most likely because the Symmet-

ric Difference distance is not normalized or corrected for chance. Note the apparent

non-monotonicity of the dependence. If the partitions are strictly bi-partitions,

then the dependence is strictly monotonous (experimental observation). Thus we

suspect that the expected number of blocks in a set-partition of size n is intimately

connected to the random symmetric difference distance, although more studies are

needed.

This table can be used to tell if the consensus partition is meaningful (i.e. how

close (tight) are the data set’s partitions). Namely, if the Avg. SOD of a consensus

partition of a given profile of set-partitions is close to the average in the table for

that n, then we can conclude that the profile of set-partitions are likely too spread

out for the consensus to be informative.

5.3. A Noise Study

We designed a noise study to assess how well our algorithm eliminates inherent

noise in the original clusterings. Given a set-partition, noise is introduced in it by

performing one element moves. If n is the number of elements in partition π, and

m the number of one element moves, we define the amount of noise as: m/n. An

m-noise neighborhood of a partition includes all partitions at most m one element

moves away from it. We show elsewhere that one element moves are a good measure

of noise.9

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

12 Filkov, V. and Skiena, S.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80

d(
C

on
se

ns
us

, O
rig

in
al

)
(a

ve
ra

ge
d

ov
er

 1
00

 r
un

s)

Noise (# one element moves / size of set-partition * 100)

n = 20
n = 50

n = 100
n = 150
n = 200
n = 300
n = 500
n = 800

Fig. 1. Performance of the SAOM heuristic under noise. Each point represents 20 runs of the
SA, for k = 50 given set-partitions. Evidently, good results are obtained even for noise levels of
up to 25%.

To evaluate our algorithm on noisy input, we performed a Monte-Carlo study

where for a given level of noise, we generated k random set-partitions in the m-noise

neighborhood of an original one, and then calculated their consensus partition. We

repeated this 100 times for each noise levels between 10 and 80%, and for different

values for n (the size of the set-partitions), and k, their number. The results for the

SAOM heuristic are shown in Fig. 1.

6. Data and Clusterings

We applied our methods to expression data of yeast (Saccharomyces cerevisiae).

A comprehensive resource for yeast microarray data is the Saccharomyces Genome

Database at Stanfordb where more than 770 experiments on yeast are available (as

of February, 2004). Here we will use the popular data sets by Cho et al.,3 Spellman

et al.,22 and Gasch et al.,23 all obtained from the SGD. See Filkov et al.24 for

reviews of methods used to analyze the data of the first two.

The Cho et al. and Spellman et al. data sets were produced in studies of cell cy-

cling genes of yeast. The first one consists of 17 microarray plates (17 experiments),

bhttp://genome-www.stanford.edu/Saccharomyces/

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 13

of 6601 orfs. The second, consists of three different data sets (alpha, cdc15, and elu)

of 18, 24, and 14 experiments, respectively of 6177 orfs. Both of these experiments

are known as the cell cycling genes (ccg) experiments, consisting of 73 experiments.

In the third experiment, also known as the yeast stress (yst) experiment, the

responses of 6152 yeast orfs were observed to 173 different stress conditions, like

sharp temperature changes, exposure to different chemicals, etc.

To cluster the microarray data sets we used our own clustering tools, developed

in earlier studies,25 based on median link, hierarchical clustering, with the Euclidean

metric as the measure of distance. We clustered the yeast ORFs for each experiment

in the data sets. We set a threshold of 50 clusters in our clustering tool. The data

sets were cleaned of missing values by discarding rows that had any, and the ORFs

were matched across all data sets, leaving us with 541 genes and 246 set partitions.

7. Integrating Real Data

The idea of consensus clustering is to combine similar clusterings into one represen-

tative clustering. We judge the benefit of an integration by whether the resulting

Avg. SOD is close to the Avg. SOD of a similar number of random set-partitions.

In Sec. 7.1 we show interesting results of consensus clustering of integrated data

sets, when we don’t know how close the clusterings are. In Sec. 7.2 we aim to do a

better job by first identifying similar clusterings, via clustering of the clusterings,

and then finding the consensus within those similar groups of clusterings.

7.1. All experiments

First of all, we attempted to integrate the set-partitions from the Spellman et al.

data. The combined data set totals 56 conditions (18 in alpha, 24 in cdc15, and 14

in elu).

SAOM was run on each three of the Spellman’s subsets, and on the combined

set. The resulting Avg. SODs are: alpha, 0.1121, cdc15, 0.1042, elu, 0.1073, and

combined, 0.107. We want the Avg. SOD to be as small as possible, thus, integrating

the data sets is beneficial for all but cdc15, which appears to be a “tighter” set to

begin with. The others benefit from the integration, especially alpha. An interesting

thing happens when the Cho et al. data is integrated with the Spellman et al. data.

Namely, the 17 set-partitions of Cho et al. yielded a consensus with Avg. SOD of

0.145. When joined to the 56 partitions of Spellman et al. the Avg. SOD dropped

to 0.1392. Compared to the above, Spellman’s data is tighter than Cho’s, and only

the second one benefits overall from the integration.

Integrating across studies, we used our heuristic on all 246 set-partitions of yst

and ccg. Individually, they scored Avg. SODs of 0.1771 and 0.1392, respectively,

and integrated an Avg. SOD of 0.1659. This goes to say that Gasch’s data was not

as “tight” as the cell cycling genes data. Again, there was a certain gain from the

integration.

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

14 Filkov, V. and Skiena, S.

Our consensus method is useful in all these cases in that it offers a data inde-

pendent way to assess whether an integration is beneficial or not.

The resulting consensus can be used both as a strong clustering of the data and

as a discovery tool. Here we report on two random examples from the consensus

of Spellman’s data, illustrative of its general utility in discovery. The following

two genes were, as expected, co-clustered: YPR178w, a pre-mRNA splicing factor,

and YOL039w, a structural ribosomal protein. Both are involved in transcription.

Likewise the following two genes occur together: YHL027w, a meiosis transcription

factor, and YLR097c, whose function is unknown.

Although there were some benefits to the integration of the whole data sets,

they are not spectacular. This was to be expected as the 246 experiments were

different, and thus caused different reactions in the yeast genes. To do a better job

at the consensus we must identify similar experiments, i.e. experiments in which the

genes were clustered similarly, according to the symmetric difference. We describe

one way to do that in the next section.

7.2. Clustered Experiments

We used the symmetric difference distance to cluster the clusterings (i.e. identify

similar experiments). First off, we built a matrix of distances between all 246 clus-

terings. Then, we fed this distance matrix into our clustering tool (average link,

hierarchical clustering with Euclidean distance as the metric). Again we limited

the output to 50 clusters. The elements of each cluster are experiments, named

following the original experiments. Thus, ccg comprise of alpha∗, cdc∗, and elu∗,

and yst of the rest. The resulting clusters are given at our web site.c

The resulting clusters show without a doubt that biologically similar experi-

ments actually cluster together (most of the cell-cycle experiments are clustered in

separate groups from the rest, although there are more than one such clusters).

For each cluster of experiments (i.e. set-partitions), we calculated the consensus

clustering. The resulting Avg. SODs show better consensuses, i.e. tighter sets, than

the overall integration of the previous section. We noticed that for smaller number

of experiments in a cluster, the Avg. SOD becomes larger than the one of all 246

set-partitions. This is due to normalization issues with the Avg. SOD of consensuses

of small sets rather than the tightness of the consensus (as mentioned above for

k < 20 this becomes an issue).

Another interesting thing is that time course experiments from both data sets

clustered together and yield very nice consensuses. This, arguably, points toward

the utility of microarray data as genome-scale tools for monitoring periodic gene

change. Please refer to our website for more insight into the clusters.

The procedure described above is in fact a general method for meaningful mi-

croarray data exploration and integration: (1) identify similar experiments, and (2)

chttp://www.cs.ucdavis.edu/∼filkov/integration/

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 15

compute the consensus for the similar groups of experiments. As we see the obtained

consensus partitions are likely to be very meaningful biologically.

8. P-values for Set Partitions

A common approach to evaluating the quality of a given clustering of a given data

set is to check whether known properties of the items are reflected within the clus-

tering. For example, in clustering microarray gene expression data, we would expect

a subset of genes with identical promoter binding sites to appear within the same

experimentally-derived cluster. However, without rigorous associated probabilities

(p-values) the significance of such observations can be unclear.

8.1. Fixed Size Partitions

Our first class of p-values evaluates the likelihood that the given cluster occurs

within a part of a random partition of n items into k parts.

We note that the number of such partitions is counted by {n

k}, the Stirling

numbers of the second kind, which are defined by the recurrence

{n

k} = k{n − 1
k } + {n − 1

k } . (15)

The Bell numbers B(n) count the total number of set partitions of n items, and are

given by

B(n) =

n
∑

k=1

{n

k} . (16)

We define p1(n, k, a, b) to be the probability that there exists a part containing

at least a members of a predefined subset of b items in a random partition of n

items into k parts.

We claim that p1(n, k, a, b) can be efficiently computed for a > b/2 using the

formula:

p1(n, k, a, b) =

∑b

i=a

(

b

i

)

∑n−b

j=0

(

n − b

j

)

{n − (i + j)
k − 1 }

{n

k}
. (17)

Our argument is based on counting the number of set partitions containing such

a prescribed block. When a > b/2, such a block can occur at most once in any given

partition. The elements of this block consist of i ≥ a elements from the subset of b

elements and j of the n− b remaining elements. The remaining n− (i+ j) elements

must form a set partition with k − 1 parts.

8.2. Fixed Shape Partitions

Our second class of p-values evaluates the likelihood that the given cluster oc-

curs within a part of a random partition of prescribed shape. Note that the the

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

16 Filkov, V. and Skiena, S.

probability which a given cluster appears within a partition into n − 1 elements

and a singleton set is much larger than a bipartition into equal-sized subsets. By

conditioning on the shape of such partitions we can correct for such phenomena.

Let p = {p1, . . . , pk} be an integer partition of n, i.e. a multiset of positive

integers such
∑k

i=1 pk = n.

We define p2(p, a, b) to be the probability that there exists a part containing

at least a members of a predefined subset of b items in a random set partition of

shape p.

We claim that p2(p, a, b) can be efficiently computed using the recursive formula:

p2(p, a, b) =

P

b

i=a

„

b

i

«„

n − b

p1 − i

«

„

n

p

«

+

P

a−1

i=0

„

b

i

«„

n − b

p1 − i

«

p2({p2,...,pk},a,b−i)
„

n

p

« .

(18)

where p2({}, a, b) = 0 for a > 0 and p2({}, a, b) = 1 if a = 0 ≤ b.

Our argument is based on counting the number of ways that the first block of

size p1 contains the given cluster, by selecting the i > a of b prescribed elements,

and p1 − i non-prescribed elements. If the first block does not contain the requisite

number, we count the number of sub-partitions of shape {p2, . . . , pk} which do,

conditioned on the number of unused prescribed elements.

9. Discussion and Future Work

In this paper we described a combinatorial approach for integrating heterogeneous

data based on consensus clustering, and developed very fast heuristics for it. Because

of their generality and speed, our algorithms are of independent interest in data

mining, classification and consensus theory, especially since they work on large

instances. On artificial data the algorithms perform very well, identifying a good

consensus even under significant noise. We were able to get interesting results by

applying them to real data, although more experiments are needed to assess the

real value of the method. In the last section we presented a general method for

microarray data integration, hypothesis generation and discovery, similar to two

dimensional clustering, but independent of specific data similarity metrics.

We are working to improve our consensus clustering methods in several ways,

but mostly to establish a fully autonomous, objective way to assess when data sets

can be integrated and yield a more informative consensus than the individual clas-

sifications. In a forthcoming paper26 we compare our best heuristic to a popular

heuristic for consensus clustering, the majority rule, and conclude that ours betters

it. We also follow-up on refining the consensus clustering by using clusters of experi-

ments, as in Sec. 7.2. Finally we address missing data with our method by imputing

the missing values based on values of genes with which they are co-clustered in the

consensus.

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

Integrating Microarray Data by Consensus Clustering 17

We mention here that there is interest for similar problems in AI and data mining

communities. Recently, Strehl and Ghosh27 addressed a similar problem as ours,

which they also call consensus clustering. Their optimization problem considers

a different function, one based on information theoretic concepts of commonness

between clusters, and their solution is based on different heuristics. Although the

methods are different (our methods are independent on the number of clusterings,

theirs are insensitive to missing data) it would be interesting to compare them

systematically.

References

1. M. Marcotte, M. Pellegrine, M. J. Thompson, T. Yeates, and D. Eisenberg. A com-
bined algorithm for genome wide prediction of protein function. Nature, 402:83–86,
1999.

2. P. Pavlidis, J. Weston, J. Cai, and W. Noble. Learning gene functional classifications
from multiple data types. J. Comp. Bio., 9:401–411, 2002.

3. R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. Wolfs-
berg, A. Gabrielian, D. Landsman, D. Lockhart, and R. Davis. A genome-wide tran-
scriptional analysis of the mitotic cell cycle. Mol. Cell, 2:65–73, 1998.

4. M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci., 85:14863–14868, 1998.

5. W. Rand. Objective criteria for the evaluation of clustering methods. J. Amer. Stat.

Assoc., 66(336):846–850, 1971.
6. L. Hubert and P. Arabie. Comparing partitions. J. Class., 2:193–218, 1985.
7. E. Fawlkes and C. Mallows. A method for comparing two hierarchical clusterings. J.

Amer. Stat. Assoc., 78:553–584, 1983.
8. M. Downton and T. Brennan. Comparing classifications: An evaluation of several

coefficients of partition agreement, June 1980. Paper presented at the meeting of the
Classification Society, Boulder, CO.

9. V. Filkov. Computational Inference of Gene Regulation. PhD thesis, State University
of New York at Stony Brook, 2002.

10. S. Régnier. Sur quelques aspects mathematiques des problemes de classification au-
tomatique. ICC Bull., 4:175–191, 1965.

11. B. Mirkin. The problems of approximation in spaces of relations and qualitative data
analysis. Information and Remote Control, 35:1424–1431, 1974.

12. M. Bender, S. Sethia, and S. Skiena. Efficient data structures for maintaining set
partitions. In Proc. SWAT, 2000.

13. Y. Wakabayashi. The complexity of computing medians of relations. Resenhas IME-

USP, 3:323–349, 1998.
14. M. Krivanek and J. Moravek. Hard problems in hierarchical-tree clustering. Acta

Inform., 23:311–323, 1986.
15. Y. Wakabayashi. Aggregation of Binary Relations: Algorithmic and Polyhedral Inves-

tigations. PhD thesis, Universitat Augsburg, 1986.
16. J.-P. Barthélemy and B. Leclerc. The median procedure for partitions. In I. Cox,

P. Hansen, and B. Julesz, editors, Partitioning Data Sets, volume 19 of DIMACS

Series in Descrete Mathematics, pages 3–34. AMS, Providence, RI, 1995.
17. U. Tüshaus. Aggregation Binärer Relationen in des Qualitativen Datenanalyse, vol-

ume 82 of Mathematical Systems in Economics. Berlin: Athenäum, 1983.
18. M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem.

July 10, 2006 2:4 WSPC/INSTRUCTION FILE filkov-ijait04

18 Filkov, V. and Skiena, S.

Math. Program., 45:59–96, 1989.
19. M. Shader and U. Tüshaus. Ein subgradienten-verfahren zur klassification qualitativer

daten. O.R. Spektrum, 7:1–5, 1985.
20. S. de Amorim, J.-P. Barthélemy, and C. Ribeiro. Clustering and clique partitioning:

Simulated annealing and tabu search approaches. J. Class., 9:17–41, 1992.
21. A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Academic Press, 1978.
22. P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D. Bot-

stein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization. Mol. Bio. Cell, 9:3273–
3297, 1998.

23. A. Gasch, P. Spellman, C. Kao, O. Carmen-Harel, M. Eisen, G. Storz, D. Botstein, and
P. Brown. Genomic expression programs in the response of yeast cells to environment
changes. Mol. Bio. Cell, 11:4241–4257, 2000.

24. V. Filkov, S. Skiena, and J. Zhi. Analysis techniques for microarray time-series data.
J. Comp. Bio., 9:317–330, 2002.

25. T. Chen, V. Filkov, and S. Skiena. Identifying gene regulatory networks from experi-
mental data. In S. Istrail, P. Pevzner, and M. Waterman, editors, Proc. of 3rd Ann.

Int. Conf. Comp. Mol. Bio. , pages 94–103. ACM Press, 1999.
26. V. Filkov, S. Skiena Heterogeneous Data Integration with the Consensus Clustering

Formalism In Proc. of DILS (to appear), 2004.
27. A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for com-

bining partitionings. In Proc. of AAAI, pages 93–98. AAAI/MIT Press, 2002.

