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1 Introduction 

As biology enters an era where the genomes of several or- 
ganisms have been completely sequenced, the next great 
challenge is determining gene regulatory networks. Ev- 
ery gene has one or more activators, biochemical sig- 
nals which are necessary to start transcription of the 
gene. Without the presence of the activator, only low 
level expression of the given gene can occur. Genes also 
have inhibitors, biochemical signals which prevent the 
expression of a particular gene even in the presence of 
an appropriate activator. Only a small number of genes 
function as activators or inhibitors, but identifying them 
is an important and diflicult problem. A gene regufa- 
tory network defines the complicated structure of gene 
products which activate/inhibit other gene products. 

Identifying gene regulatory networks from experi- 
mental data is now an area of extremely active research. 
New experimental technologies in molecular biology (par- 
ticularly oligonucleotide arrays [ll] and micro arrays) 
now make it possible to quickly obtain vast amounts of 
data on gene expression in a particular organism un- 
der particular conditions. For example, Cho, etal [3] 
recently published a 17-point time series data set mea 
suring the expression level of each of 6601 d&rent genes 
for the yeast Saccharomycea cemhiae, obtained using 
an Affymetrix hybridization array. Wen, et.al [16] has 
generated Qpoint times series for the expression levels 
using RT-PCR of each of 112 genes involved in the rat 
nervous system development. Associating functions to 
genes based on this huge amount of data is en important 
and challenging problem. 
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In this paper, we propose a methodology for mak- 
ing sense of large, multiple time-series data sets arising 
in expression analysis, and evaluate it both theoreti- 
cally and through a case study. Fii, we build a graph 
representing all putative activation/inhibition relation- 
ships by analyzing the expression profiles for all pairs of 
genes. Second, we prune this graph by solving a combi- 
natorial optimization problem to identify a small set of 
interesting candidate regulatory elements. We do not 
assert that we identify “the” regulatory network as a 
result of thii computation. However, we believe that 
our approach quickly enables biologists to iden@ and 
visualize interesting features from raw expression array 
data sets. 

We have implemented our methodology and applied 
it to the analysis of the Saccharomycea cereuisiae data 
set. In this paper, we report on our implementation and 
the results of our data analysis. 

The problem of inducing gene regulation networks 
has recently come to the computational biology commu- 
nity. Initial attempts at modeling gene expression abd 
programs to induce regulatory networks from data in- 
clude [2,10,13]. To take fullest advantage of laboratory 
experiments that can be performed in which a given set 
of genes can be explicitly expressed or repressed, and 
the consequences of these genes on expression biologi- 
cally determined, Akutsu, etal. [l] considers the prob 
lem of designing a minimum-size series of experiments 
guaranteed to result in the identification of the correct 
regulatory network. 

The candidate regulatory network proposed by our 
system depends upon the specific optimization crite- 
ria employed in the second phase of our procedure, al- 
though our experiments suggest that the optimal net- 
work is surprisingly robust to changes in the objective 
function. We use a simulated annealing-based optimizer 
to provide the maximum flexibility in our prototype 
system. However, a natural objective criteria suggests 
an interesting combinatorial problem. For thii partic- 
ular model, the mazimum gene regulation problem, we 
present several algorithmic and complexity results, in- 
cluding: 

l We show that the maximum gene regulatory prob- 
lem is NP-complete, even for DAGs with highly 
restricted vertex degrees. 
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z We provide two different approximation algorithms 
for this problem. The first, based on a simple but 
counter-intuitive randomized assignment achieves 
an approximation ratio of ((6 - l)/2)a % 0.38. 
The second, based on linear programming relax- 
ation, yields a l/a-factor approximation. 

z We provide an O(n312) exact algorithm for the 
special case of networks of outdegree 5 2. 

Our paper is organized as follows. We introduce 
our model in Section 2, and report on our implemen- 
tation and case study in Section 3. In Section 4, we 
present our algorithmic results for the maximum gene- 
regulation problem. 

2 A Model for Analyzing Expression Data 

Our approach begins with a data set monitoring the ex- 
pression level of each gene as a function of time. Such 
data sets are now becoming available. J. DeR.isi et.al[4] 
recently made public a seven-point time series dataset 
for each gene in Saccharomyces cereviaiae. An even bet- 
ter dataset, with 17 sample points per gene, has been 
produced by Cho, etal[3] and is the focus of our exper- 
imental work. 

By analyzing the expression data, we can determine 
whether gene a is a candidate activator or inhibitor of 
gene 5. If the peak of a’s growth curve occurs before the 
leading edge of 5’s growth curve, then a is a candidate 
activator of b; if the peak of a’s growth curve occurs 
before the trailing edge of b’s growth curve, then a is 
a candidate inhibitor of 5. Most of these relations are 
spurious, so we seek to identify (or at least suggest) the 
real regulatory network from the data. 

The result of thii analysis is an edgelabeled directed 
graph, where the vertices of the graph correspond to 
specific genes, and an activator-labeled (inhibitor-labeled) 
arc (a,b) means that a is a candidate activator (in- 
hibitor) of 5. 

We seek to delete excess edges from this graph so as 
to maximize the number of vertices with at least one 
activator and one inhibitor edge into it, subject to the 
constraint that the remaining edges from each vertex 
are either all activators or all inhibitors. Thus no sin- 
gle gene functions in the roles of both activator and 
inhibitor. This is a reasonable simplifying assumption 
biologically since activation and inhibition operate by 
different mechanisms, although exceptions no doubt ex- 
ist. To summarize, we define the following mazimum 
gene regulation problem: 

Given a directed graph with (A/I) labeled 
edges, assign each vertex either an A or I 
label so as to maximize the number of ver- 
tices with both input A and I labels, after 
deleting all whose label di&rs from its par- 
ent vertex. 

We will use a variant of this optimization function 
in our experiments, which also seeks to minimize the 
number of regulatory (A or I) elements. as reported 
in Section 3.5. Theoretical results for the original opti- 
mization function are presented in Section 4. 
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3 implementation and Evaluation 

To evaluate the effectiveness of our methodology on real 
data, we experimented with the Saccharomycea cere- 
visiae data set of [3] that measures the expression level 
of each of the 6601 OFtJ?s of Saccharomycee cenzviaiae 
at 17 points, sampled every ten minutes during roughly 
two complete cell division cycles. 

We sought to extract enough information from this 
data to build a candidate activation/inhibition relation- 
ship graph, and analyze thii graph to suggest possible 
regulatory elements. Dealing with the inherent errors in 
such data sets requires us to first employ certain signal 
processing procedures before we can &ectively analyze 
the expression data. 

3.1 P-Filtering 

Our fh-st processing step was to filter away OR& which 
did not appear to contribute to regulation, either (1) 
because their absolute expression levels were below a 
detection threshold where fluctuations were more likely 
noise than signal, or (2) the gene was expressed, but 
showed so little variation over time as to imply that it 
is probably inactive or not involved in regulation. 

For these reasons we employed the following filtering 
criteria: 

Absolute expnmion - Only accept ORFs that had 
an expression of > 200 in at least one of the 17 
data points. 

Relative ezpmsion - Only accept ORFs whose 
maximum and average expression levels satisfied 
(MAX - AVG)/AVG > 0.1. 

After employing these filters, 3131 ORFs remained 
in our data set. 

3.2 Clustering 

Many of the remaining time series expressions had such 
closely aligned signatures that we deemed them as hav- 
ing identical regulatory impact. For this reason, we de- 
cided to cluster them so that any two ORFs in the same 
cluster were highly similar to each other. ‘lb compare 
0R.F expression profiles the correlation coefficient of the 
profiles as a similarity measure. We set a lower bound of 
0.85 below which we didn’t allow two di&rent clusters 
to merge. 

We used the well-known average linkage method of 
clustering 181, where each of the clusters wes identified 
by an average, or consensus, function, at any point dur- 
ing the execution of the algorithm. Thii t~nsensus was 
obtained as an average of all the 0-s that belonged to 
that cluster. Once the clusters were determined, the av- 
erage expression functions became the consensus func- 
tion we used to represent the cluster for the rest of the 
project. 

We used the average linkage method because: 

l Single linkage methods gave rise to long chains of 
OR& in which points at the opposite ends me 
not necessarily strongly correlafed; 



l Complete linkage methods were too restrictive in 
that they yielded many small clusters, which still 
resembled each other very much. 

To minimize the effect of chaining, we set an up 
per limit on the number of OR& per cluster. Forcibly 
breaking a large cluster into two clusters had no adverse 
implications for our method, since these two clusters 
would presumably show the same regulatory behavior. 

In the end we got 308 well-separated clusters, ex- 
amples shown in Figure 1. We note that [3] reports on 
a cluster analysis of the 416 cycle-dependent periodic 
genes in this data set. 

Figure 1: Large, but representative ORF clusters in Sac- 
chammyees ecrevisioe. 

3.3 Smoothing 

To facilitate the identification of candidate activation 
/ inhibition relationships between consensus functions, 
we simplified each time series in the following way. In 
our filtered, consensus ORF expression functions, peaks 
describe potentially meaningful expression events, so we 
partition each expression pro6Ie into peaks. Each peak 
is described by its start point, maximum point and end 
point, and interpolated linearly in our simplified repre- 
sentation. 

We used the following criteria to find peaks: 

l Any data point with greater than average expres- 
sion is a part of a peak; and 

l All consecutive points with greater than average 
expression, lying between two points with less than 
average expression belong to the same peak. 

We decided to use these smoothed profiles instead 
of the raw data itself because it was apparent that ex- 
perimental conditions created non-monotonicities in the 
raw data. We also didn’t use a standard convolution 
smoothing, based on Fourier transforms because (1) our 
time series did not contain sufficient data points to ben- 
efit from such filtering, (2) the output of the Fourier 
convolution would have had to be simplified again, at 
which point it would have became very similar to our 
triangle model, and (3) our algorithm wss much simpler 
to implement, and faster to execute. 

Thii smoothing technique gave us good results, as 
shown in Figure 2. Thii is because most of the peaks 
in the original data were narrow (at most 4 time units 
wide), and usually only 2 time units wide. For some of 
the wider peaks (wider than 4 time units) thii method 
gave arguable, but not unreasonable results. 

Figure 2: Good and not-as-good examples of cluster 
smoothing in Saccharumyces cercuiaiae. 

3.4 Activation-Inhibition Scores 

Once the peaks have been identified, they define the 
leading and trailing edges we will use to determine the 
activation/inhibition grades. We used the following ob- 
jective function to measure how strongly one peak acti- 
vates or inhibits another. Intuitively, peak A is a good 
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candidate to activate peak B if the Sxxling edge” of 

More formally, we measure the activation grade G,(A, _ , 

peak A appears “slightly before” the “leading edge” of 
peak B. Similarly, peak A is a good candidate to inhibit 

G,(A, B) = C3/(e(D’+D2’2)) 

peak B if the “leading edge” of A is after the “leading 
edge” of B, and “close enough” to the “trailing edge” 
of B. 

We used a simulated annealing-based optimizer to re- 
fine our candidate graph. The optimizer takes as input 
a graph in which the edges have a label (A or I) with 
a numerical weight measuring the strength of the given 

R, labeling. The optimizer outputs a suggested labeling of 

where DI = Batart-&tart+1 and Dz = IS,,-&,,I. 
The exponential decay ensures that this grade falls off 
very rapidly with distance, and the function gives more 
weight to the distance between the start points of the 
leading edges (01) than to the distance between their 
maximal. A similar grade is given for inhibition: 

where DI = Bmas - Astort + 1 and Da = had - A,,,. 
Finally the total grade is obtained as follows by aligning 
the peaks between two profiles, awarding all matched 
peaks A, B the score Ga(A, B) or Gi(A, B), and paying 
a penalty of Cz((w - 1) X h) for any unmatched peak, 
where w is the width and h is the height of the peak, 
thus making the penalty proportional to the area of the 
peak. The constants we used were Cs = C4 = 1.0 and 
Cz = 0.1. Examples of good activator and inhibitor 
candidates appear in Figure 3. 

Gi(A, B) = C&e(D’+Da’2)) 

the vertices in the graph, which maximizes a given opti- 
mization function.-In the experiments reported below, 
we seek to maximize f(G), where 

f(s) = -C,(mnt(A) + count(I)) + 

c max(ui[II) x m=(u@]) 
vi W(G) 

where for each vertex we get credit for the maximal in- 
hibiting and activating in-edge and we pay penalty pro 
portional to the total number of vertices that are not 
labeled either A nor I. This function reflects our de- 
sire to have small number of regulatory elements which 
in turn activate a lot of things using strong activation 
edges. Note that the optimization function used in Sec- 
tion 4 does not capture this notion of minimizing the 
number of candidate regulatory elements. 

The state transition mechanism we employ randomly 
changes the label of a randomly chosen vertex, and up 
dates the cost if there is any change. 

3.6 Results 

To identify the constants which identify the most inter- 
esting candidate networks, we experimented 10 different 
values for the penalty constant C, ranging corn 0.1 to 
4.0 in equal intervals on each of three different cutoff 
values weakest edges. The flat regions in the curves 
of activating/inhibiting vertices and regulated vertices 
versus C, presented in Figure 4, demonstrate that our 
network ls fairly robust in the face of difference choices 
of the critical constants. 

‘lb derive a single consensus network from a series 
of 100 simulated annealing runs, Figure 5 presents size 
of the induced subgraph of the network whose vertices 
were labeled consistent in at least p% of the runs. Again, 
the long flat regions shows that our network is relatively 
robust in the face of different parameters. 

From these plots, we selected the parameters C = 2, 
cutoff = 0.5 and p = 95% as the basis for our final can- 
didate network, shown in Figure 11. Thii network con- 
tains 7 proposed activators and 8 proposed inhibitors, 
and such interesting features as activator/inhibitor pair 
(clusters 107 and 170), which between them fifteen other 
clusters. Prof. James Konopka, a yeast specialist in 
the Dept. of Microbiology at Stony Brook, reviewed 
our network and observed several potentially interest- 
ing features, including (1) a cell division cycle regulator 
(CDCll YJKO83C) in activator cluster 266, (2) genes 
involved in DNA replication in inhibitor cluster 93, and 
(3) several genes involved with amino acid synthesis in 
regulator clusters 170 and 254. The identity of all ORFs 
in each regulatory cluster in included in the appendix. 

Figure 3: Kzamples of good candidate activator (on top) 
and inhibitor (on bottom) palm. 

4 Algorithmic and Complexity Results 

In this section, we consider theoretical issues in identi- 
fying the optimal regulatory network when we seek to 
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Figure 4: The effect of edge threshold and penalty con- 
stants on the proposed regulatory network. 

Figure 5: The effect of decision threshold on the number 
of labeled and regulated vertices. 

Figure 6: 
Reducing the formula {{u1,i72,u~},{vz,~~,~~}} to au 
instance of maximum gene regulation. 

maximize the number of genes which are both activated 
and inhibited, subject to the constraint that each gene 
may be an activator or an inhibitor, but not both. In 
Section 4.1, we establish that the problem is hard even 
for very restricted networks. Approximation results are 
provided in Section 4.2. Finally, exact algorithms for 
interesting special cases are discussed in Section 4.3. 

4.1 Hardness of Gene Regulation 

It is not surprising that the maximum gene regulation 
problem is hard, but it perhaps surprising that its hard- 
ness does not require feedback edges, as is the case for 
the stable gene regulatory problem of [l]. 

Theorem 1 Gene regulation is NP-complete, even for 
directed-acyclic graphs of constant in/out-degree. 

Proof: Clearly gene regulation is in NP - guess a 
vertex-label assignment, delete all mislabeled edges from 
the graph, and verify that the requisite number of ver- 
tices are satisfied - meaning that they have both an 
activator and inhibitor edge in the final subgraph. 

To show hardness, we use a reduction from 3-SAT. 
Each boo&an variable Vi will be represented by four ver- 
tkw (K, Vi, KA, &I) with the following edges: (K, KA), 

(vi,&A) labeled es activators, and (vi, Vfr), (vi,&,) 
labeled as inhibitors. Further Via has an inhibitor in- 
put, while L$I has an activator input. The only way* 
satisfy both ViA and Vi1 is to assign vertices Vi ail Vi 
to be different types (activator/inhibitor), thus corre 
spending to the truth assignments true and false. 

Each clause will be represented by a two-vertex gad- 
get. The first vertex of the clause gadget will have 0 
indegree, and one outgoing edge (labeled activator) to 
the second vertex of the gadget. This second clause ver- 
tex Ci will have incoming edges (labeled inhibitor) from 
each literal vertex in the defining clause. See Figure 6 
for an example. It can be easily verified that all the ver- 
tices with nonzero indegree can be satisfied if and only 
if the original boolean formula is satisfiable. 

Since 3-SAT remains hard even if no literal appears 
in more than five clauses [5], gene regulation remains 
hard if each vertex has outdegree at most 7 and indegree 
at most 4. I 
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4.2 Approximability 

In this section, we consider two classes of randomized 
approximation algorithms for the problem of maximum 
gene regulation. In Section 4.2.1, we obtain a factor 
R 0.38 approximation algorithm, which is improved to 
a factor 0.5 in Section 4.2.2. We note that the former 
heuristic is perhaps of more practical interest, because it 
can be implemented easily and efficiently, thus capable 
of handling the graphs associated with the genomes of 
ye& and higher organisms. 

4.2.1 Biased Random Vertex Assignment 

Observe that assigning the label of each vertex to be A 
or I uniformly at random yields a factor l/4 approxi- 
mation. Each vertex that can be expressed must have 
at least one A and I edge into it, each of which will be 
labeled appropriately with probability l/2. By linear- 
ity of expectation, this means we expected to satisfy at 
least l/4 of optimal. 

Note that this strategy does not even look at the out- 
going edges of each vertex to whether there are in fact 
any A or I edges. A seemingly smarter idea, to weight 
the probability of labeling a vertex A or I according to 
the fraction of labeled outgoing edges, doesn’t lead to 
a constant factor approximation. Consider a complete 
directed graph on n vertices, with a directed cycle of n 
I edges, and the rest of the edges labeled A. This ran- 
domized algorithm will pick roughly one vertex to be 
labeled I, and only activate one gene. However, the op- 
timal strategy would be to select all but one vertex to 
be I, thus activating n - 1 genes. 

Consider the following randomized vertex labeling 
algorithm. For every vertex w, if the number of acti- 
vator (inhibitor) outedges is greater than the number 
of inhibitor (activator) outedges, assign label activator 
(inhibitor) to v with probability p and label inhibitor 
(activator) to w with probability 1 -p. Note that this 
assignment remains biased even if the number of acti- 
vator outedges equals the number of inedges. We fix a 
preferred label and stick to it for all balanced vertices 
of the graph. 

This algorithm partitions the edges of G into two 
classes according the probability of selection, where ma 
jority class El edges were selected with probability p 
and minority class Ez edges were selected probability 
1 - p. Denote the number of edges in El and E2 by 
ei and e2, respectively. This assignment scheme implies 
that ei 2 er. 

Lemma 2 For any indegree 5 2 network G, the above 
assignment approximates the maximum gene regulation 
to within a factor of p2 for any l/2 < p 5 213. 

ProoE The vertices whose inputs are of same label 
will never be satisfied and thus are excluded. Then we 
group the rest set of vertices with exactly two inputs 
into three classes according to whether its input edges 
are (1) two members of El, (2) one member of El and 
one of ES, or (3) two members of E2. Let vi, WZ, and 
va denote, respectively, the number of vertices for these 
three classes, and w = ~1 +Q+v~. The expected number 
of satisfied vertices Apx(G) for G under this scheme is: 

Apx(G) = p2u1 + p(1 - p)v2 + (1 - p)2w3 

= p2v+03---p2)U2+(1--p)U3 

Observe that e2 = v2 + 2~3, since each vertex in v2 is 
incident one EZ edge and each each vertex in v3 on two 
E2 edges. A simple argument from linear programming 
gives the following inequalities for the last two terms in 
Apx(G) : 

(p - 2p2)ez 5 (p - 2p2)u2 + (1 - 2p)us 5. (i - p)e2 

As each vertex has only two input edges, w = (ei + 
e2)/2 and so 

Apz(G) 1 p2u + 0, - 2p2)ez 
1 p2el /2 + (p - 3p2/2)e2 

For l/2 5 p < 2/3 then p - 3p2/2 I 0 so Apx(G) 2 
p2e1/2. 

Becall that ei 2 e2, and so the optimal assignment 
can validate at most ei edges and thus at most e1/2 ver- 
tices. Thus the ratio of Apx(G)/Opt > (p2e1/2)/e1/2 = 
pa, giving the result. 1 

Corollary 1 For any 5 2 indegree network G, the above 
assignment yields a d/9-approximation to maximum gene 
regulation, when p = 213. 

Corollary 1 is not the best result possible - we note 
that a factor l/2 approximation algorithm for indegree 
2 networks follows from Trevisan’s [14] factor 21Bk ap 
proximation of maximum k conjunctive &i&ability. 
However, Lemma 2 can be used to generalize our as- 
signment to arbitrary degree gene regulatory networks. 
Since any vertex without both acceptor and inhibitor- 
labeled edges can never be satisfied, its input edges can 
be deleted from G without effect. 

Theorem 3 Maximum gene 
7 

ulation of G can be ap- 
proximated to a factor of (( 5 - 1)/2)’ # 0.38 times 
optimal, with high probability. 

Proof: Our probability assignment scheme has two 
steps. First, we construct an indegrel network Gi 
as follows. All indegree- nodes from G will appear in 
Gi. Gi will also contain two super source vertices, one 
for activators (so) and one for inhibitors (at) are added, 
shown as black nodes in Figure 7. Any vertex t from G 
which is the sink for multiple activator (inhibitor) edges 
and one inhibitor (activator) edge will have these acti- 
vator (inhibitor) edges replaced in Gi by one edge from 
sa (si). See Figure 7. Thus every vertex in Gr has at 
most two inputs. 

By Lemma 2, setting p = (a - 1)/2 yields an ap- 
proximation of ((fi- 1)/2)’ to the optimal in Gi. For 
each of the vertices in Gr , we make the same probabil- 
ity assignment to the corresponding vertices in G. Now 
we assign all unassigned vertices to be activators with 
probability p. 

We claim that this assignment for G has an expected 
approximation factor of p2. Observe that any vertex 
with 2 2 activator inputs and 1 2 inhibitor inputs have 
at least a (1 - p”)” > p2 probability of being satisfied, 
for p = (&- 1)/2. A y rt I% n ve ex om Gi was satisfied 
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Figure 7: Building an indegree- network Gr from G by 
adding SUP= source vertices sa, and si. 

in Gr with probability 2 p”, and so it is in G. Each 
remaining vertices in G has one input activator-labeled 
(inhibitor-labeled)) and at least two inputs labeled in- 
hibitor (activator). They are more likely satisfied in G 
than Gl , because the two super source were correctly la 
beled in Gr with probability p, while the probability of 
at least one of the z22 majority edges being correctly la 
Fled is at least l-p , which equalsp for p = (h-1)/2. 

4.2.2 An Improved Approximation Algorithm 

The best approximation algorithms known for many 
logic optimization problems follow from solving a lin- 
ear or semidefinite programming relaxation, and then 
rounding the optimized solutions into integer solutions 
for the original problem. Goemans and Williamson [S] 
first used positive linear programming relaxation to give 
a 3/4-apprmdmation algorithm for maximum satisfia- 
bility, and later [7] improved the factor to 0.758 by us- 
ing semidefinite programming relaxation. ‘Bevisan [15] 
givesa21-k -approximation algorithm for MAX k CONJ 
SAT problem. Here we show that maximum gene regu- 
lation can be approximated to a l/2 factor using posi- 
tive linear programming relaxation. 

Let Cj denote the boolean formula associated with 
vertex uj, and let Cj+ and CJT denote the set of active 
tors and inhibitors respectively Thus 

Cj = ( V Vi) A ( V lVi> 

iECj’ SC; 

Clearly Vj is satisfied if and only if Cj is satisfied. Con- 
sider the following integer programming formulation of 
the maximum gene regulation problem. 

zj 5 Ci(Zct Xi for all j 

Subject to Zj I C,$ (1 - Xi) for all j 
OsXi<l’ for all i 
O<Zj<l for all j 

If we associate xi with vi and zj with Cj, the lm- 
ear programming solution of thii LP provides an upper 
bound to the solution of the maximum gene regulation 
problem. However, a feasible solution (x, z) may not be 
integral. 

Lemma 4 Let (x, z) be a feasible solution for this LP. 
Randomly assign Vi to be 0 or 1 according to the value 
Of Xi: 

Pr[Vi = l] = 4 ‘+$ 

Then 

Ls = Pr[ v 1 3 
Vi = 1] > 4 + 

2 
iECj' 

RJ = Pr[ V Vi=O]~~+~ 

itZC7 

Proof: Let k be the size of CT, thus 

Lj = l-~ic~~(l-(~+~)) 
= 1 - n,,&(; - 5, 

1” for (r*+‘;+yh)k 1 yl...vk 

= I-(“- 
LieC+ Di 

--%-)” 

2 l-(&gy for Zj 5 Ciec+ Xi in LP 
j 

Let Y = 1- (i - 
Y is 

3)” and the first order derivative of 

dY 3 zjk 

dk- --(---) 4 2k 
3 2’ 1 

xln(--2)xkx-x 4 2k a- 3 zj>o 2k2 - 

when k 2 1 and 0 5 zj 2 1, which means Y monotoni- 
cally increases in the range of k E [l, +oo). Thus 

12 
Ylk>l 2 Ylk=l = 4 + 2 

and it holds when k is a positive integer (in Lj) and so 

The bound for Rj follows similarly. 1 

For any feasible solution (x, z), this rounding scheme 
satisfies Cj with expected value: 

E(G) = Pr[ V Vi = l] X Pr[ V Vi = O] 
iECj’ iECj- 

= LjRj 
LP : Maximize C zj 

j 
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since 

Thus 

E(S)=CE(Cj)~C~=~CZj 
j j j 

Since this result holds for any feasible solution, includ- 
ing the optimal one: 

Theorem 5 This randomized rounding scheme yields 
an $-approximation to the maximum gene regulation 
problem. 

4.3 Restricted Degree Networks 

In light of our hardness results, we consider the special 
cases of networks of restricted degrees. We give an effi- 
cient algorithm for case where each vertex has outdegree 
5 2. Conversely, we show that the problem is hard even 
when each vertex has indegree < 2. 

Figure 8: (a) a a-input, 2-output network and (b) the 
resulting matching graph. 

For any network G we define the following dual graph 
D(G). We say a vertex v in G is variable if it has both 
outgoing activator and inhibitor edges; otherwise v is 
either a j&d activator or j&d inhibitor vertex. Each 
variable vertex vi of G will define three vertices in D(G); 
‘&A, tlil, and vi. Each fixed vertex Vi will define vertices 
Vi,4 and Vi1 plus the outdegree of Vi many vertices each 
labeled vi. Each activator edge (Vi, Vj) of G defines an 
edge (vi, VjA), while inhibitor edges (Vi, Vj) of G defines 
an edge (v(,vjr). In the case of fixed vertices, care is 
taken to use each copy of vi only once. Finally, D(G) 
will contain an edge (ViA,ViI) for each W&X Vi of G, 
whether it is fixed or variable. This construction is il- 
lustrated in Figure 8. 

Lemma 6 For any maximum output degree 5 2 net- 
work G, the maximum number of satisfiable vertices in 
G equals the cardinality of the maximum matching in 
D(G) - 

Proof: First, we show how to construct a cardinality 
z + n matching in D(G) for any vertex labeling of G 
which satisfies x of n genes/vertices. For each satis- 
fied vertex vj, the vertex labeling defines at least one 
pair of activator and inhibitor vertices vh and vi, and 
SO the matching contains edges (~~,vjA) and (Vi,tJjr). 
For each unsatisfied vertex vk, the matching will con- 
tain the edge (?&A, t&I). This defines a matching since 
any variable vertex vj will be used at most once, and 

there are suflicient copies of any fixed vertex to be used 
as needed. 

Conversely, suppose we are given a mtimum match- 
ing &f of size 2 + n in D(G). If any pair Of v&im VkA 
and Vkl for some 15 k 5 n are not both used in M, we 
can replace the matching edge adjacent to one of them 
with the edge (vkA,vkl) without changing the size of 
the matching. Now each vertex vi will take the label of 
the vertex to which it is adjacent in the matching. The 
vertices which are satisfied by this labeling are exactly 
the ones for which the edge (r&A, r&I) do not appear in 
the matching, of which there must be 2 of in a matching 
ofsizex+m. 1 

Theorem 7 Maximum gene regulation can be solved in 
O(n312) time for n-vertex networks of outdegree 5 2. 
R&her, it can be solved in lineur time when each gene 
has indegree and outdegree of at moet two. 

Proof: By Lemma 6, we have reduced this problem 
to maximum carclmality matching in D(G). Micah and 
Vazlrani [12] find maximum matchings in O(fim) time. 
The result follows since dual graph contains O(n) edges. 

For the indegree 2 case, observe that each vertex in 
D(G) must have degree at most two when each vertex of 
G has indegree and outdegree of at most two. Therefore, 
the connected components of D(G) consist only of paths 
and cycles, and so the matching can be found via depth- 
first search in linear time. I 

For networks of indegree 2 2, there ls at most one 
possible vertex label assignment to satisfy any given ver- 
tex. This constraint was exploited in Theorem 7 to yield 
an efficient algorithm for the lndegree 2, outdegree 2 
case. We can exploit connections between the follow- 
ing logic problems to show that general indegree $ 2 
networks are not sufficient to yield a polynomial-time 
algorithm. 

l M&mum 2-SAT - Given a set of clauses each 
consisting of exactly two boolean literals, find the 
assignment which maximizes the number of satis- 
fied clauses. 

l Minimum &SAT - Given a set of clauses each con- 
sisting of exactly two boolean literals, find the a+ 
~;~u~snt which minim&s the number of satisfied 

l Maximum 2-of-a-SAT - Given a set of clauses each 
consisting of exactly two boolean llterals, find the 
assignment which maximizes the number of satis- 
fied clauses, where both literals must be true to 
satisfy a clause. 

l Restricted matimum 2-of-2-SAT - Given a set of 
clauses each consisting of exactly two boolean lit- 
erals (one of which is complemented), find the as- 
signment which maximizes the number of satisfied 
clauses, where both literals must be true to satisfy 
a clause. 

Lemma 8 Restricted maximum 2-of-2-SAT is NP-complete. 

101 



Proof: Maximum 2-SAT and minimum 2-SAT are well- 
known NP-complete problems [9]. The hardness of max- 
imum 2-of-2-SAT follows by a simple reduction from 
minimum 2-SAT, where both liter& of each clause (z, y) 
is converted into the clause (3, 5). Needing both z 
and y to satisfy a clause yields the boolean formula 
(z and y) = not ( not z or not y). Thus maximizing 
the number of and terms equals minimizing the num- 
ber of or terms. 

The hardness of restricted maximum IL-of-ZSAT fol- 
lows by a simple reduction from maximum 2-of-2-SAT, 
since any Zof-ZSAT clause (z,~) is equivalent to the 
restricted Zof-a-SAT clause (z, 8). 1 

Theorem 9 Maximum gene regulation is NP-complete, 
euen when n&ricted to networks of indegree 2 2. 

Cl cz 

Figure 9: Reducing the boolean 
formula {{~r,uz},{8z,us}} to an instance of indegree 
5 2 mavimum gene regulation. 

Proof: By a reduction from restricted maximum 2-of-2- 
SAT. We construct a low indegree variable gadget with 
A edges (wi, urir) and (vi, u,iz) and I edges (vi, uriz) and 
(vi, u,,ii ) enforces that vi and & have opposite labels to 
&idy one of each pair of uyil and uyiz. With SUEI- 
ciently many such pairs of vertices, we ensure that the 
maximum gene regulation conforms with a truth assign- 
ment. Thii construction is illustrated in Figure 9. 

Each clause C, = (c<, uj ) is represented by a clause 
V&~X C, and ~CS (vi, c,) (labeled I) and (rij,cz) (la- 
beled A). Because the reduction is from restricted 2-of- 
ZSAT, each clause gadget will have exactly one A and 
one I input, and thus satisfiable iff the 2-of-ZSAT clause 
is. Mtimizing the number of satisfied genes is equiva 
lent to maximizing the number of satisfied clauses. 1 
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Appendix: Activator and inhibitor Clusters 

Below, we list the orfs in each cluster corresponding to 
proposed regulatory elements. The ORF identification 
names are the same used in [3]. Plots of the activa- 
tor/inhibitor pair of clusters 170 and 107 appear in Fig- 
ure 10. 

Figure 11: Candidate regulatory network for C = 2, 
cutoff = 0.5 and p = 95%, with candidate activators in 
boxes and candidate inhibitors in diamonds. 

Figure 10: Expression profiles of the activator-inhibitor 
pair of clusters 170 and 107. 

l cluster 12 - Activator - YCLO47c/ YBRO24w/SCO2 

l cluster 30 - Inhibitor- YDR237W/ YBR.lSlw/ YDL078C/MDH3 
l cluster 67 - Activator - YGR282CIBGL2 YERO3lc/YPT31 

YGL076C/RPLGA-exl 
l cluster 99 - Inhibitor- YKLllSW/ABFl YJRO6OW/CBFl 

cluster 107 - Inhibitor - YJL143W/TIM17 YKL207W/ 

cluster 118 - Activator - YLRO58c/SHM2 YDlUllGc/ 
YDR602c/SAM2 YKL175W/ 

cluster 167- Activator-YMR046C/fYMRO45C/Blf 

cluster 170 - Activator- THR3 LYSAS LYSAM LYSM 
THR5 THB.3 LYSA5 LYSAM LYSAS LYSAS LYSAM 
LYSAS THR5 THR.3 LYSA5 LYSAM LYSAS THFl5 

duster 209 - Inhibitor- YORO14W/RTSl YNLd21C/TOM70 

cluster 238 - Activator - YOR272W/ YCRO72c/ 

cluster Q.l - Inhibitor- YOR346W/ YBRO86c/ YBRllSc/LYS2 
YELO13w/ 

cluster 254 - Inhibitor- YPL135W/ YBLO43w/ YCLXO9wJ 
YCL025c/AGPl YCRO23C/ YDLlQIC/SHMl YDROlQC/GCVl 
YDRO68W/DOSl YDR174W/ YDR38OW/ YFFW33C/QCR6 
YGL186C/ YGLlGlC/ YHRO18c/ARG4 YHRO29C/ 
YILllGW/HIS5 YJRO48W/CYCl YJRlOSC/CPAZ YJRUOC/ 
YLRO93c/ YLR3SQC/BDFl YMRO58W/FET3 YMRO62C/ 
YMR189W/ YNL259C/ATXl YNL142W/MEP2 YNL129Wj 
YNLlOOW/ YOLO64C/MET22 YOLO58W/ARGl YORO36W/PEPl: 
YORUOC/ARGll YOR202W/HIS3 YOR203W/ YOR311C/ 
YPL25OCf 
cluster 266 - Activator- YPLO32C/ YDL056W/MBPl 
YJL092W/HPR5 YJRO76C/CDCll YJRO83C/ YJR112W/NNFl 
YKLO52C/ YKLO49C/CSE4 YKROlOC/ YLLO32c/ YLRO45c/STU2 
YMROO3W/ YMR215W/ YNL238W/KEX2 YNROOSW/ 
YNRO28W/ YORO73W/ YOR372C/ 
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