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ABSTRACT

Since the introduction of the Perfect Phylogeny Haplotyping (PPH) Problem in RECOMB
2002 (Gusfield, 2002), the problem of finding a linear-time (deterministic, worst-case) solu-
tion for it has remained open, despite broad interest in the PPH problem and a series of
papers on various aspects of it. In this paper, we solve the open problem, giving a practical,
deterministic linear-time algorithm based on a simple data structure and simple operations
on it. The method is straightforward to program and has been fully implemented. Simula-
tions show that it is much faster in practice than prior nonlinear methods. The value of a
linear-time solution to the PPH problem is partly conceptual and partly for use in the inner
loop of algorithms for more complex problems, where the PPH problem must be solved
repeatedly.

Key words: Perfect Phylogeny Haplotyping (PPH) Problem, Haplotype Inference Problem,
linear-time algorithm, shadow tree.

1. INTRODUCTION

Haplotypes have recently become a key unit of data in genetics, particularly human genetics.
The International Haplotype Map Project (Helmuth, 2001; IHMC, 2003) is focused on determining

the common SNP haplotypes in several diverse human populations. It is widely expected that correlations
between occurrences of specific haplotypes and specific phenotypes (such as certain diseases) will allow the
rapid location of genes that influence those phenotypes, and there are already several successful examples
of this strategy. However, collecting haplotype data is difficult and expensive, while collecting genotype
data is easy and cheap. Hence, almost all approaches collect genotype data and then try to computationally
infer haplotype pairs from the genotype data.

1.1. Introduction to the PPH problem

In diploid organisms (such as humans) there are two (not completely identical) “copies” of each chro-
mosome and hence of each region of interest. A description of the data from a single copy is called a
haplotype, while a description of the conflated (mixed) data on the two copies is called a genotype. In
complex diseases (those affected by more than a single gene), it is often much more informative to have
haplotype data (identifying a set of gene alleles inherited together) than to have only genotype data.
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Today, the underlying data that forms a haplotype is usually a vector of values of m single nucleotide
polymorphisms (SNP’s). A SNP is a single nucleotide site where exactly two (of four) different nucleotides
occur in a large percentage of the population. In general, it is not feasible to examine the two haplotypes
separately, and genotype data rather than haplotype data is usually obtained. Then one tries to infer the
original haplotype pairs from the observed genotype data. We represent each of the n input genotypes as
vectors, each with m sites, where each site in a vector has value 0, 1, or 2. A site i in the genotype vector
g has a value of 0 (respectively, 1) if site i has value 0 (or 1) on both the underlying haplotypes that
generate g. Otherwise, site i in g has value 2. Note that we do not know the underlying haplotype pair
that generates g, but we do know g.

Given an input set of n genotype vectors of length m, the Haplotype Inference (HI) Problem is to find
a set of n pairs of binary vectors (with values 0 and 1), one pair for each genotype vector, such that
each genotype vector is explained (can be generated by the associated pair of haplotype vectors). The
ultimate goal is to computationally infer the true haplotype pairs that generated the genotypes. This would
be impossible without the implicit or explicit use of some genetic model, either to assess the biological
fidelity of any proposed solution, or to guide the algorithm in constructing a solution. The most powerful
such genetic model is the population-genetic concept of a coalescent (Tavare, 1995; Hudson, 1990). The
coalescent model of SNP haplotype evolution says that without recombination the evolutionary history of
2n haplotypes, one from each of 2n individuals, can be displayed as a rooted tree with 2n leaves, where
some ancestral sequence labels the root of the tree, and where each of the m sites labels exactly one
edge of the tree. A label i on an edge indicates the (unique) point in history where a mutation at site i

occurred. Sequences evolve down the tree, starting from the ancestral sequence, changing along a branch e

by changing the state of any site that labels edge e. The tree “generates” the resulting sequences that appear
at its leaves. In terminology closer to computer science, the coalescent model says that the 2n haplotype
(binary) sequences fit a perfect phylogeny. See Gusfield (2002) for further explanation and justification of
the perfect phylogeny haplotype model.

Generally, most solutions to the HI problem will not fit a perfect phylogeny, and this leads to the
following.

The Perfect Phylogeny Haplotyping (PPH) Problem: Given an n by m matrix S that holds n genotypes
from m sites, find n pairs of haplotypes that generate S and fit a perfect phylogeny.

It is the requirement that the haplotypes fit a perfect phylogeny and the fact that most solutions to the
HI problem will not that enforce the coalescent model of haplotype evolution and make it plausible that a
solution to the PPH problem (when there is one) is biologically meaningful.

The PPH problem was introduced by Gusfield (2002) along with a solution whose worst-case running
time is O(nmα(nm)), where α is the extremely slowly growing inverse Ackerman function. This nearly
linear-time solution is based on a linear-time reduction of the PPH problem to the graph realization
problem, a problem for which a near-linear-time method (Bixby and Wagner, 1988) was known for over
15 years. However, the near-linear-time solution to the graph realization problem is very complex (only
recently implemented) and is based on other complex papers and methods, and so taken as a whole,
this approach to the PPH problem is hard to understand, to build on, and to program. Further, it was
conjectured by Gusfield (2002) that a truly linear-time (O(nm)) solution to the PPH problem should be
possible.

After the introduction of the PPH problem, a slower variation of the graph-realization approach was
implemented (Chung and Gusfield, 2003a), and two simpler, but also slower methods (based on “conflict-
pairs” rather than graph theory) were later introduced (Bafna et al., 2003; Eskin et al., 2003). All three
of these approaches have best- and worst-case running times of �(nm2). Another paper (Wiuf, 2004)
developed similar insights about conflict-pairs without presenting an algorithm to solve the PPH problem.
The PPH problem is now well known (for example discussed in several surveys on haplotyping methods
[Bonizzoni et al., 2003; Halldórsson et al., 2003a, 2003b; Gusfield, 2004]). Related research has examined
extensions, modifications, or specializations of the PPH problem (Kimmel and Shamir, 2004; Halperin and
Eskin, 2004; Eskin et al., 2004; Damaschke, 2003, 2004; Barzuza et al., 2004) or examined the problem
when the data or solutions are assumed to have some special form (Halperin and Karp, 2004; Gramm et al.,
2004a, 2004b). Some of those methods run in linear time, but work only for specializations of the full
PPH problem (Gramm et al., 2004a, 2004b) or are correct only with high probability (with some model)
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(Damaschke, 2003, 2004). The problem of finding a deterministic, linear-time algorithm for all data has
remained open, and a recent paper (Bafna et al., 2004) shows that conflict-pairs methods are unlikely to
be implementable in linear time.

1.2. Main result

In this paper, we completely solve the open problem, giving a deterministic, linear-time (worst-case)
algorithm for the PPH problem, making no assumptions about the form of the data or the solution. The
algorithm is graph theoretic, based on a simple data structure and standard operations on it. The linear-
time bound is trivially verified, and the correctness proofs are of moderate difficulty. The algorithm is
straightforward to implement, and has been fully implemented. Tests show it to be much faster in practice
as well as in theory, compared to other existing programs. As in some prior solutions, the method provides
an implicit representation of all PPH solutions.

In addition to the conceptual value of our solution, its practical value can be significant. Currently, the
full structure of haplotypes in human populations and subpopulations is not known, and there are some
genes with high linkage disequilibrium that extends over several hundred kilobases (suggesting very long
haplotype blocks with a perfect or near-perfect phylogeny structure). So it is too early to know the full
range of direct application of this algorithm to long sequences (see Chung and Gusfield [2003b] for a
more complete discussion). Moreover, faster algorithms are of practical value when the PPH problem is
repeatedly solved in the inner loop of an algorithm. For example, in Chung and Gusfield (2003b) and
Wiuf (2004), one finds, from every SNP site, the longest interval starting at that site for which there is a
PPH solution. Moreover, there are applications where one may examine subsets of sites to find subsets for
which there is a PPH solution. In such applications, efficiencies in the inner loop will be significant, even
if each subset is relatively small.

2. THE SHADOW TREE

Our algorithm builds and uses a directed, rooted graph, called a shadow tree as its primary data structure.
There are two types of edges in the shadow tree: tree edges and shadow edges, which are both directed
towards the root. Tree and shadow edges are labeled by column numbers from S (with shadow edges
having bars over the labels). For each column i in S, there are a tree edge, labeled i, and a shadow edge,
labeled i, in the shadow tree. The end points of each tree and shadow edge are called connectors and can
be of two types: H or T connectors, corresponding to the head or tail of the edge.

The shadow tree also contains directed links. From a graph theory standpoint these are also edges, but
we reserve the word edge for tree and shadow edges. Links are used to connect certain tree and shadow
edges and are needed for linear-time manipulation of the shadow tree. Each link is either free or fixed and
always points away from an H connector. When we say edge E links to E′, we mean there is a link from
the H connector of E to a connector of E′.

Since links can point to either an H or a T connector, the “parent of” relationship between edges is
not the same as the “links to” relationship and is defined recursively: if an edge links to the root, then its
parent is the root. If an edge E links to the T connector of an edge Ep, then the parent of E, p(E), is
defined as Ep. However, if E links to the H connector of an edge E′, p(E) is defined to be the same as
p(E′). For convenience, we define the parent of a connector as the parent of the edge that contains the
connector. See Fig. 1 for an illustration of all these elements.

Tree edges, shadow edges, and fixed links are organized into classes, which are subgraphs of the shadow
tree. Every free link connects two classes, while each fixed link is contained in a single class. We will
see later that each class in the shadow tree encodes a subgraph that must be contained in all solutions to
the PPH problem. In each class, if the links (which are all fixed) are contracted, then the remaining edges
form two rooted trees (except for the root class, which has only one rooted tree), where if one subtree
contains a tree edge the other contains its shadow edge. The roots of the two subtrees are called the class
roots of this class, and every class root is an H connector. Each class X (except for the root class) attaches
to one other unique parent class p(X) with two free links. Each link goes from a class root of X to a
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FIG. 1. Edge 1 is the parent of edges 2 and 5. Each pair (i, i) forms a class. Class 2 attaches to its parent class 1
by linking its class root 2H to join point 1T, and 2H to join point 1T. As a continuing example, edges 4 and 4 will be
added later.

distinct connector in p(X). The connectors in p(X) that are linked to are called join points. As an example,
see Fig. 1.

2.1. Operations on the shadow tree

As the algorithm processes the matrix S, new edges are added to the shadow tree and information about
old edges is updated. Three operations are used to update the shadow tree, edge addition, class flipping,
and class merging.

An edge is added to the shadow tree by creating a single edge class, consisting of the edge and its
shadow edge, and then linking both edges to certain connectors in the shadow tree. Both edges of the first
class created in the algorithm are linked to the root with fixed links.

A class X can flip relative to its parent class p(X) by switching the links that connect X to p(X). A
flip does not change any class roots or any join points, but simply switches which of the two class roots
links to which of the two join points. See Fig. 2 for an example.

The algorithm may choose to merge two classes yielding a larger class. A class X may merge with its
parent class p(X), or two classes having the same parent class may merge. No other merges are possible.

FIG. 2. The result of flipping the class of edges 5 and 5 and flipping the class of edges 6 and 6 in Fig. 1, followed
by merging these two classes. Free links are drawn as dotted lines with arrows, while fixed links as solid lines with
arrows.
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FIG. 3. The result of flipping the class of edges 2 and 2 in Fig. 2, followed by merging it with the class of edges 5
and 5. The class roots of the merged class are 2H and 2H.

In the first case, the free links connecting X to p(X) are changed to fixed links, and the class roots of
p(X) become the class roots of the new class. See Fig. 2 for an example. In the second case, when two
classes X and X′ have the same parent class and edges that contain class roots of X and X′ have same
parent edges, the links from the class roots of X become fixed and are changed to point to the class roots
of X′ (assuming that column numbers of edges that contain class roots of X′ are smaller than those of the
class roots of X). After merging, the class roots of X′ become the class roots of the new class. See Fig. 3
for an example of this case. Three or more classes can be merged by executing consecutive merges.

The algorithm can walk up in the shadow tree by following links from H connectors of tree or shadow
edges, until the walk reaches the root. The algorithm can efficiently find class roots and join points of a
class by walking up in the shadow tree and checking whether a link encountered is fixed or free.

2.2. Mapping the shadow tree to all PPH solutions

We say that a tree is contained in a shadow tree if it can be obtained by flipping some classes in the
shadow tree followed by contracting all links and shadow edges. The following is the KEY THEOREM
that we establish in this paper. The proof is given in Section 4.5.

Theorem 2.1. Every PPH solution is contained in the final shadow tree produced by the algorithm.
Conversely, every tree contained in the final shadow tree is a distinct PPH solution.

For example (Fig. 4), by flipping the class of 2, 2, 3 and 3 and then performing the required contractions,
we get all PPH solutions for S, which are root(1(2), 3) and root(1(3), 2). Note that flipping the root class
results in the same tree. Thus, a final shadow tree with p classes implicitly represents 2p−1 PPH solutions.

The KEY THEOREM implies that each class in the final shadow tree encodes a subgraph that is
contained in ALL solutions to the PPH problem. In fact, this is true throughout the algorithm. That is,
at any point in the algorithm (even in the middle of processing a row of the input), if X is a class in
the current shadow tree and G is the graph (consisting of one or two rooted trees) obtained from X by
contracting all the links and shadow edges in X, then every solution to the PPH problem contains the (one
or) two trees in G.

2.3. Invariant properties

The linear-time PPH algorithm processes the input matrix S one row at a time, starting at the first row.
At every step, the algorithm maintains certain properties of the shadow tree which are necessary for the
correctness and the running time.
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FIG. 4. The final shadow tree after processing the given genotype matrix. It’s an implicit representation of all PPH
solutions for S.

We define three functions col, te, and se. Function col takes an edge or a connector as input and
returns the column number of that edge or the column number of the edge which the connector is part of.
Function te (or se) takes a column number or an edge as input and returns the tree edge (or shadow edge,
respectively) of that column number or edge. If the input is the root of the shadow tree, then functions
col, te, and se each returns the root.

For any column Ci in S, we define the leaf count of column Ci as the number of 2’s in column Ci

plus twice the number of 1’s in column Ci . We assume throughout the paper that the columns of S are
arranged by decreasing leaf count, with the column containing the largest leaf count on the left.

Theorem 2.2. The shadow tree has the following invariant properties:

Property 1. For any column i in S, the edge labeled by i is in the shadow tree if and only if the shadow
edge i is also in the shadow tree; i and i are in the same class, and are in different subtrees of the
class (except for the root class).

Property 2. Each class X (except for the root class) attaches to exactly one other class p(X) by two free
links, and the two join points j1 and j2 are in different subtrees of p(X) unless p(X) is the root class.
Links within a class are always fixed links.

Property 3. Along any directed path towards the root, the column numbers of the edges (tree or shadow
edges) strictly decrease. Also, for any two edges E and E′, if E was added to the shadow tree while
processing a row k and E′ was added when processing a row greater than k, then E′ can never be
above E on any path to the root in the shadow tree.

Property 4. Let X, j1, and j2 be as in Property 2. At least one of j1 and j2 (say j1) is the T connector
of a tree edge in the parent class. If j2 is an H connector or the T connector of a shadow edge, then
col(j2) ≤ col(j1).

Property 5. For any column Ci , if the parent of te(Ci) (or of se(Ci), respectively) is shadow edge se(Cj ),
then te(Cj ) is on the path from se(Ci) (or te(Ci), respectively) to the root of the shadow tree.

Property 6. Two edges that have the same parent in a shadow tree must have been added to the growing
shadow tree during the processing of different rows.

Property 7. Let TE be a tree edge in the shadow tree, and let SE be its corresponding shadow edge. The
union of the edges on the paths from TE and SE to the root of the shadow tree is invariant. Also, the
set {p(TE), p(SE)} is invariant.

Proof. It is easy to verify that these properties hold for each tree edge i, shadow edge i, and the class
of edges i and i, after they are just added to the growing shadow tree by the construction of Procedure
NewEntries (see Section 4.4). Next, we prove that the theorem holds after every possible operation to
the shadow tree. The only permitted operations that modify the shadow tree are adding new edges, class
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flipping, and class merging. Adding new edges to the shadow tree does not change anything originally
in the shadow tree. Clearly it will not affect any property. Class flipping switches which class root links
to which join point, but it keeps the same roots of the class and the same join points in its parent class.
Therefore, these properties hold for edges i, i, and the class of edges i and i after every possible class
flipping. Class merging of two classes X1 and X2 results in one merged class X, and the class roots and
join points of one of classes X1 and X2, say X1, become the class roots and join points of class X. In
addition, class merging does not change the parent relation of each edge in the shadow tree. Therefore,
these properties hold for edges i, i, and the class of edges i and i after every possible class merging. Thus,
these properties are invariant throughout the algorithm.

3. SOME DEFINITIONS

We use Ei to denote an edge and Ci to denote a column number (i is an integer between 1 and m). The
class of edge Ei is defined as the class that contains Ei . The class root of Ei is defined as the root of the
subtree that contains Ei , in the class of Ei . The class of Ci is defined as the class that contains te(Ci).

For two columns Ci and Cj , Cj < Ci means that column Cj is to the left of column Ci in S. The root
is defined as smaller than any column number.

A 2 entry Ci in row k means that the entry at column Ci and row k in S has a value 2. A new 2 entry
Ci in row k means that there is no 2 entry at Ci in rows 1 through k − 1. An old 2 entry Ci in row k
means there is at least one 2 entry at Ci in rows 1 through k − 1.

When we say a PPH solution, restricted to the columns in shadow tree ST, we mean a tree obtained
from a PPH solution after contracting all edges corresponding to columns not in ST. We say that a tree
T contained in shadow tree ST is in a PPH solution if T can be obtained from a PPH solution after
contracting all edges corresponding to columns not in ST. By saying that a column Ci is not in ST , we
mean that the tree edge and the shadow edge labeled by Ci and Ci are not in ST .

We define the function cnt , which takes a pointer (used in the algorithm) as input and returns the
connector to which the pointer points.

4. ALGORITHM

For ease of exposition, in this section, we first describe a linear-time algorithm for the PPH problem
where S is assumed to consist of distinct columns which only contain entries of value 0 and 2 and the
all-zero sequence is the ancestral sequence in any solution. We will relax these assumptions and solve the
general PPH problem in Section 5. The following lemma is immediate (proven by Gusfield [2002]):

Lemma 4.1. Given S, let T be a solution to the PPH problem for S (if one exists) and let Ei be the
edge in T labeled by Ci , i.e., the edge where site Ci mutates. Then the number of leaves in T below Ei is
exactly the leaf count of column Ci . It follows that along any path in T to the root, the successive edges
are labeled by columns with strictly increasing leaf counts.

The algorithm processes the input matrix S one row at a time, starting at the first row. We let T (k)

denote the shadow tree produced after processing the first k rows of S. For row k + 1, the algorithm puts
the column numbers of all old 2 entries in row k + 1 into a list OldEntryList and puts column numbers of
all new 2 entries in row k + 1 into a list NewEntryList.

The algorithm needs two observations. First, all edges labeled with columns that have 2 entries in row
k + 1 must form two paths to the root in any PPH solution, and no edges labeled with columns that have
0 entries in row k + 1 can be on either of these two paths. Second, along any path to the root in any PPH
solution, the successive edges are labeled by columns with strictly increasing leaf counts (see Lemma 4.1).
These two observations are simple, but powerful, and intuitively are the reason why we can achieve linear
time, while no such solution exists for the general graph realization problem.

The algorithm processes a row k + 1 from S using three procedures. The first procedure, OldEntries,
tries to create two directed paths to the root of T (k) that contain all the tree edges in T (k) corresponding



PERFECT PHYLOGENY HAPLOTYPING PROBLEM 529

to columns in OldEntryList by manipulating existing classes in T (k). Those two paths cannot have tree
edges in common and may contain some shadow edges. The subgraph defined by those two directed paths
is called a hyperpath. The process of creating a hyperpath may involve flipping some classes and may also
identify classes that need to be merged, fixing the relative position of the edges in the merged class in all
PPH solutions. In the second procedure, FixTree, the algorithm locates any additional class merges that are
required. In the third procedure, NewEntries, the algorithm adds the tree and shadow edges corresponding
to the columns in NewEntryList and may do additional class merges. The resulting shadow tree is T (k+1).

procedure PPH(S)
{
for k = 1 to n {

Put column numbers of all old 2 entries in row k into OldEntryList;
Put column numbers of all new 2 entries in row k into NewEntryList;
Initialize CheckList to an empty list;
call procedure OldEntries;
call procedure FixTree;
call procedure NewEntries;

}}

Procedure OldEntries is divided into two procedures, FirstPath followed by SecondPath. Procedure
FirstPath constructs a path (called FirstPath) to the root that consists of tree edges of some column
numbers in OldEntryList. The shadow tree produced after this procedure, applied to row k + 1, is denoted
by TFP (k + 1).

4.1. Procedure FirstPath for row k + 1

4.1.1. Procedure FirstPath at a high level. We assume that column numbers in OldEntryList (and other
lists used later) are ordered decreasingly, with the largest one, Ci , at the head of the list. By the definition
of leaf count, column numbers in OldEntryList are also ordered by increasing leaf count, with Ci having
the smallest leaf count. The algorithm performs a front-to-back scan of OldEntryList, starting from Ci ,
and a parallel walk up in T (k), starting from edge te(Ci). Let Cj denote the next entry in OldEntryList,
and let Ep be the parent of te(Ci) in T (k). If Ep and te(Ci) are not in the same class, then let E′

p denote
the resulting parent of te(Ci) if we flip the class of Ci . If E′

p is a tree edge and col(Ep) ≤ col(E′
p), then

the algorithm will flip the class of Ci and set Ep to E′
p (by Property 4 of Theorem 2.2 if E′

p is a shadow
tree, then col(Ep) ≥ col(E′

p)). This class flipping is done to simplify the exposition in the paper and has
the effect that the parent of te(Ci) is the tree edge with the larger column number between Ep and E′

p.
The ideal case is that Ep is the tree edge te(Cj ), in which case we can move to the next entry in

OldEntryList and simultaneously move up one edge in T (k). The ideal case continues as long as the next
entries in OldEntryList correspond to the parent edges encountered in the shadow tree and those edges are
tree edges. The procedure ends when there is no entry left in OldEntryList, and we move to the root of
the shadow tree.

However, there are three cases, besides the ideal case, that can happen. One case is that Ep is a shadow
edge, which can only happen when te(Ci) and Ep are in the same class (by Property 4 of Theorem 2.2
and the class flipping above). Then we simply walk past Ep (i.e., let Ep = p(Ep)), without moving past
entry Ci in OldEntryList. The second case is that Ep is a tree edge (denoted TEp), but col(TEp) < Cj .
This indicates that te(Ci) and te(Cj ) can never be on the same path to the root (proven by Lemma 4.3),
and the algorithm adds Cj to the head of a list called CheckList, to be processed in Procedure SecondPath.
The third case is that Ep is a tree edge (denoted TEp), but col(TEp) > Cj (and hence col(TEp) has a
0 entry in row k + 1). This indicates that edges te(Ci) and TEp must be on different paths to the root
of T (k + 1)(proven by Lemma 4.2), and the algorithm flips the class that contains te(Ci) to avoid edge
TEp. In that case, the algorithm will also merge the classes containing te(Ci) and TEp to fix the relative
position of those edges in any PPH solution. However, if te(Ci) and TEp are in the same class when this
case occurs, then even flipping the class of te(Ci) will not avoid the problem, and hence the algorithm
reports that no PPH solution exists. As an example, see Fig. 5.
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FIG. 5. The shadow tree after processing the first two rows of this genotype matrix is shown in Fig. 1. The shadow
tree at the end of Procedure FirstPath for row 3 is shown in Fig. 2. Lists shown are for row 3.

4.1.2. Procedure FirstPath in detail

procedure FirstPath
{
while (there are entries in OldEntryList not processed in this procedure) do {

Ci = the largest unprocessed column number in OldEntryList;
Cj = the second largest unprocessed entry in OldEntryList. If Ci is the only unprocessed entry in

OldEntryList, then let Cj = root.
/* We use pointer p1 to point to the end of the FirstPath that is closer to the root. */
Let p1 point to the H connector of te(Ci);

repeat until encountering an “exit Repeat” or “exit Algorithm” statement {
/* Use a while loop to achieve the property that if there is a fixed link from cnt (p1), then it links

to a T connector. */
while (there is a fixed link from cnt (p1) to an H connector) do {

Let p1 point to the H connector which cnt (p1) links to;
}
if (there is a fixed link from cnt (p1) to a T connector), then {

/* The edge containing cnt (p1) and its parent edge are in the same class. */
if (cnt (p1) links to a shadow edge), then {

Let p1 point to the H connector of the shadow edge which cnt (p1) links to; /* skip the
shadow edge */

}
else (cnt (p1) links to a tree edge), then {

TEp = the tree edge which cnt (p1) links to;
/* Since cnt (p1) and TEp are in the same class, by the definition of a class, TEp must be

on the path from te(Ci) to the root in the shadow tree. */
if (col(TEp) = = Cj ), then {

record that te(Ci) is below TEp on FirstPath;
mark Ci as processed by this procedure;
exit Repeat;

}
else if (col(TEp) < Cj ), then {

/* In this case te(Cj ) and te(Ci) cannot be on the same path to the root. This is because
te(Ci) and TEp are in the same class, so by the definition of a class no edge can
be inserted between them. But placing te(Cj ) on a path above TEp or below te(Ci)

would violate Lemma 4.1. So, since te(Ci) is chosen to be on FirstPath, te(Cj ) must
be on the second path. */

put Cj into CheckList, mark Cj as processed by this procedure;
Cj = the second largest unprocessed entry in OldEntryList. If Ci is the only unpro-

cessed entry in OldEntryList, then let Cj = root;
}



PERFECT PHYLOGENY HAPLOTYPING PROBLEM 531

else (Cj < col(TEp)), then {
We claim no valid PPH solution exists, report failure and exit Algorithm;
/* Because te(Ci) and TEp are in the same class, TEp must be on the path from te(Ci)

to the root, while col(TEp) has a 0 entry in this row. */
}

} /* end else (cnt (p1) links to a tree edge) */
} /* end if (there is a fixed link from cnt (p1)) */

else (there is a free link from cnt (p1)), then {
/* cnt (p1) and its parent are in different classes. Clearly p1 now points to the class root of

te(Ci). */
Let root1 be the class root of te(Ci) and root2 be the class root of se(Ci).
/* Clearly root1 and root2 are different. root2 can be located by following links from se(Ci)

to the root, until a free link is encountered. */

if (root1 links to an H connector) or (root1 links to the T connector of a shadow edge), then {
flip the class of Ci so that root1 links to the T connector of a tree edge; /* Such a

T connector exists by Property 4 of Theorem 2.2. */
}
else if (root2 links to the T connector of a tree edge with a larger column number than that of

the tree edge that root1 links to), then {
/* When this occurs, root1 links to a T connector of a tree edge. */
flip the class of Ci so that root1 links to the T connector of a tree edge with a larger

column number than that of the tree edge that root2 links to;
}
TEp = the tree edge which root1 links to;
Eq = the edge which root2 links to;

if (col(TEp) = = Cj ), then {
record that te(Ci) is below TEp on FirstPath;
mark Ci as processed by this procedure;
exit Repeat;

}
else if (col(TEp) < Cj ), then {

/* We refer to this point in the algorithm as “Sibling Case 1”, and say that Ci “places” Cj

into CheckList. In this case te(Cj ) and te(Ci) cannot be on the same path to the root.
This is proven in Lemma 4.3 below. */

put Cj into CheckList, mark Cj as processed by this procedure;
Cj = the second largest unprocessed entry in OldEntryList. If Ci is the only unprocessed

entry in OldEntryList, then let Cj = root;
}
else (Cj < col(TEp)), then {

/* col(TEp) has a 0 entry in this row, so TEp cannot be on the path from te(Ci) to root.
*/

/* This flip and merge is denoted Flip/Merge Case 1, and is justified in Lemma 4.2. */
flip the class of Ci to walk around TEp on the FirstPath to the root;
merge the class of Ci with the class of TEp by setting the links from root1 and root2 as

fixed;
}

} /* end else (there is a free link from cnt (p1)) */
} /* end repeat */

}} /* end while, end Procedure FirstPath */

At this point, we prove two lemmas that will be part of our overall proof of correctness of the algorithm.
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Lemma 4.2. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose the algorithm performs a flip/merge in Procedure FirstPath for row k + 1. Let
T ′(k) be the shadow tree T (k) after that flip/merge, and note that as a result, T ′(k) contains some, but
not all, trees contained in T (k). Then, a tree T contained in T (k) is not contained in T ′(k) only if T is
not in any PPH solution. In looser terms, any tree contained in T (k) that is lost by doing the flip/merge
is not in any solution to the PPH problem.

Proof. When the flip/merge (Flip/Merge Case 1 in the pseudocode) occurs in Procedure FirstPath,
column Ci has a 2 entry in row k +1, while col(TEp) has a 0 entry in row k +1. So TEp cannot be on the
path from te(Ci) to the root in any PPH solution that explains S. However, before doing the flip/merge,
TEp is on the path from te(Ci) to the root in the shadow tree. So any tree contained in T (k), where the
class of Ci is not first flipped relative to the class of TEp, will not be in any PPH solution. It follows that
any tree contained in T (k) that is lost by doing the flip/merge is not in any PPH solution.

Lemma 4.3. Assume that every PPH solution, restricted to the columns in the shadow tree T (k),
is contained in T (k). If Sibling Case 1 (in pseudocode of Procedure FirstPath) is reached during the
processing of row k + 1, then te(Cj ) and te(Ci) cannot be on the same path to the root in any solution
of the PPH problem.

Proof. Let root1 and root2 be as given in the algorithm when Sibling Case 1 is reached. Let Er denote
the edge that contains root1. By the actions of the algorithm before Sibling Case 1 is reached, either root2
links to an H connector or to a T connector of a shadow edge, or both root1 and root2 link to T connectors
of tree edges (three cases). By definition, TEp (the parent edge of Er at this point) denotes the edge that
root1 is linked to, and Eq denotes the edge that root2 is linked to. By Property 4 of Theorem 2.2, in the
first and second cases above, and by the explicit action of the algorithm in the third case, it follows that
col(Eq) ≤ col(TEp). At Sibling Case 1, col(TEp) < Cj < Ci by the explicit actions of the algorithm.
Hence, col(Eq) ≤ col(TEp) < Cj < Ci .

By the lemma assumption, every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Hence, it suffices to prove that no matter how the classes of T (k) are flipped, edges
te(Ci) and te(Cj ) are never on the same path to the root in T (k). By Property 2 of Theorem 2.2, the
parent of Er is either edge TEp or edge Eq no matter how the classes of T (k) are flipped. Hence, te(Cj )

can never be the parent of Er in any way that the classes of T (k) are flipped. But by Property 3 of
Theorem 2.2 and the fact that col(Eq) ≤ col(TEp) < Cj , te(Cj ) cannot be above TEp or Eq . Similarly,
since Cj < Ci , te(Cj ) cannot be below te(Ci) in any way that the classes of T (k) are flipped. Since
Er and te(Ci) are in the same class, by the definition of a class te(Cj ) cannot be in between te(Ci)

and Er . No matter how the classes of T (k) are flipped, edges te(Ci) and te(Cj ) are never on the same
path to the root in T (k). Hence, te(Ci) and te(Cj ) cannot be on the same path to the root in any PPH
solution.

Lemmas 4.2 and 4.3 together essentially say that when Procedure FirstPath takes any “nonobvious”
action, either flipping and merging classes or putting a column number into Checklist, it is “forced” to
do so. The algorithm may perform other class flips and merges in other procedures described later. The
correctness of those actions will be proven by lemmas similar to Lemma 4.2 and 4.3.

4.2. Procedure SecondPath for row k + 1

4.2.1. Procedure SecondPath at a high level. At the end of Procedure FirstPath, any columns in
OldEntryList, whose corresponding tree edges are not on FirstPath, have been placed into CheckList. In
the simple case, Procedure SecondPath tries to construct a second path (called SecondPath) to the root
that contains all the tree edges in T (k) corresponding to columns in CheckList. In general, Procedure
SecondPath constructs a SecondPath and may modify the FirstPath constructed previously. The goal is
that FirstPath and SecondPath together contain all the tree edges in T (k) corresponding to columns in
OldEntryList and the two paths have no tree edges in common. The shadow tree produced after this
procedure is denoted by TSP (k + 1), and it contains a hyperpath for row k + 1.
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Procedure SecondPath: Let Ci be the largest column number in CheckList, and let Cj denote the next
entry in CheckList. The algorithm performs a front-to-back scan of CheckList, starting from column Ci ,
and a parallel walk up in TFP (k + 1), starting from edge te(Ci). The parent of te(Ci) in TFP (k + 1),
denoted Ep, is obtained in the same way as in Procedure FirstPath.

The rest of the algorithm is similar to Procedure FirstPath, with two major differences. First, the second
case in Procedure FirstPath (when Ep is a tree edge, and col(Ep) < Cj ) now causes the algorithm
to determine that no PPH solution exists. Second, the third case in Procedure FirstPath (when Ep is a
tree edge, denoted TEp, and col(TEp) > Cj ) now indicates two possible subcases. In the first subcase,
if col(TEp) has a 0 entry in row k + 1, then as in Procedure FirstPath, the algorithm determines that
edges te(Ci) and TEp must be on different paths to the root of T (k + 1) and it does a flip/merge as in
Procedure FirstPath. In the second subcase, if col(TEp) is in OldEntryList, but not in CheckList, then it
must be that TEp is on FirstPath. Therefore, SecondPath is about to use a tree edge that is already on
FirstPath, and hence some action must be taken to avoid this conflict. In this case, there is a direct way
to complete the construction of SecondPath. The algorithm calls Procedure DirectSecondPath and ends
Procedure SecondPath.

Procedure DirectSecondPath decides whether TEp must stay on FirstPath, or whether it must be on
SecondPath, or whether it can be on either path to the root (it can be shown that only these three cases
yield valid PPH solutions). The procedure also performs the appropriate class flips and merges to ensure
that TEp stays on the path chosen by the algorithm regardless of later class flips, in the first two cases, or
that FirstPath and SecondPath have no tree edge in common, in the third case.

Procedure DirectSecondPath: Recall that te(Ci) is the tree edge on SecondPath whose parent edge
is TEp. Let TEpc denote the tree edge on FirstPath whose parent edge is TEp at the end of Procedure
FirstPath. The following tests determine which path to put TEp on.

Test1: If after flipping the class of Ci and the class of TEpc, TEp is either on both FirstPath and SecondPath,
or on none of them, then no hyperpath exists for row k + 1 and hence no solution exists for the PPH
problem.

Test2: If TEp is in the same class as TEpc (respectively, te(Ci)), then TEp must be on FirstPath (respec-
tively, SecondPath).

Test3: First try to flip the class of Ci and the class of TEpc so that TEp is on FirstPath (respectively,
SecondPath), but not on SecondPath (respectively, FirstPath). If the try succeeds and there does not exist
a hyperpath in the shadow tree after the flip, then TEp must be on SecondPath (respectively, FirstPath).
See Fig. 6 for an example.

FIG. 6. Suppose this figure shows the shadow tree T (k) for some matrix S. If the OldEntryList of row k+1 contains
column indices 1, 3, 4, and 5, then in Procedure DirectSecondPath for row k + 1 the FirstPath consists of tree edges
5, 3, and 1, TEp is edge 3, TEpc is edge 5, Ci = 4, and the algorithm determines that TEp must be on the path
from TEpc to the root in any PPH solution (only flag2 will be set in Procedure DirectSecondPath in detail). If the
OldEntryList of row k + 1 contains column indices 1, 2, 3, 4, and 5, then in Procedure DirectSecondPath for row
k + 1 the FirstPath consists of tree edges 5, 3, and 1, TEp is edge 3, TEpc is edge 5, Ci = 4, and the algorithm
determines that TEp must be on the path from te(Ci) to the root in any PPH solution (only flag1 will be set in
Procedure DirectSecondPath in detail).
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If the test results indicate that TEp must be on both FirstPath and SecondPath, then no hyperpath exists
for row k + 1 and hence no solution exists for the PPH problem.

If the test results indicate that TEp must be on FirstPath (respectively, SecondPath), then flip the class of Ci

and/or the class of TEpc so that TEp is on FirstPath (respectively, SecondPath), but not on SecondPath
(respectively, FirstPath), and merge the classes of TEp, Ci , and TEpc.

If the test results show that TEp can be on either path, then for concreteness, flip either the class of Ci or
the class of TEpc so that TEp is on FirstPath, but not on SecondPath, and merge the class of Ci with
the class of TEpc.

As an example, the shadow tree at the end of Procedure SecondPath for row 3 of the matrix in Fig. 5
is shown in Fig. 3. In this example, the algorithm determines that tree edge 1 can be on either FirstPath
or SecondPath.

4.2.2. Procedure SecondPath in detail

procedure SecondPath
{
while (there are entries in CheckList not processed in this procedure) do {

Ci = the largest unprocessed unprocessed column number in CheckList;
Cj = the second largest unprocessed entry in CheckList. If Ci is the only unprocessed entry in

CheckList, then let Cj = root.
/* Pointer p1 is used to locate the end of the SecondPath that is closer to the root. */
Let p1 point to the H connector of te(Ci);

repeat until encountering an “exit ” statement {
/* Use a while loop to achieve the property that if there is a fixed link from cnt (p1), it links to a

T connector. */
while (there is a fixed link from cnt (p1) to an H connector) do {

Let p1 point to the H connector which cnt (p1) links to;
}
if (there is a fixed link from cnt (p1) to a T connector), then {

/* The edge containing cnt (p1) and its parent edge are in the same class. */
if (cnt (p1) links to a shadow edge ), then {

Let p1 point to the H connector of the shadow edge which cnt (p1) links to; /* skip the
shadow edge */

}
else (cnt (p1) links to a tree edge), then {

TEp = the tree edge which cnt (p1) links to;
/* Since cnt (p1) and TEp are in one class, by the definition of a class, TEp must be on

the path from te(Ci) to root in the shadow tree. */
if (col(TEp) = = Cj ), then {

mark Ci as processed by this procedure;
exit Repeat;

}
else if (col(TEp) < Cj or col(TEp) is not in OldEntryList), then {

We claim no PPH solution exists, report failure and exit Algorithm;
/* We refer to the above step as Step NoSib 1 and justify it in Lemma 4.5. */

}
else (Cj < col(TEp) and col(TEp) is in OldEntryList), then {

/* col(TEp) is not in CheckList but is in OldEntryList, so TEp is on FirstPath. Second-
Path cannot also include it and some action must be taken to change one of the two
paths. That change is determined in Procedure DirectSecondPath. */

call procedure DirectSecondPath;
exit procedure SecondPath;
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}
} /* end else (cnt (p1) links to a tree edge) */

} /* end if (there is a fixed link from cnt (p1)) */

else (there is a free link from cnt (p1) ), then {
/* cnt (p1) and its parent are in different classes. Clearly p1 points to the class root of te(Ci).

*/
Let root1 be the class root of te(Ci) and root2 be the class root of se(Ci).
if (root1 links to an H connector) or (root1 links to the T connector of a shadow edge), then {

flip the class of Ci so that root1 links to the T connector of a tree edge; /* Such a
T connector exists by Property 4 of Theorem 2.2. */

}
else if (root2 links to the T connector of a tree edge with a larger column number than that of

the tree edge that root1 links to), then {
/* When this occurs, root1 links to a T connector of a tree edge. */
flip the class of Ci so that root1 links to the T connector of a tree edge with a larger

column number than that of the tree edge that root2 links to;
}
TEp = the tree edge which root1 links to;
Eq = the edge which root2 links to; /* col(Eq) ≤ col(TEp) */

if (col(TEp) = = Cj ), then {
mark Ci as processed by this procedure;
exit repeat;

}
else if (col(TEp) < Cj ), then {

We claim no PPH solution exists, report failure and exit algorithm;
/* We refer to the above step as Step NoSib 2 and justify it in Lemma 4.4 */

}
else if (Cj < col(TEp), and col(TEp) is not in OldEntryList), then {

/* This flip and merge is another instance of Flip/Merge Case 1, and is justified by
Lemma 4.2. */

flip the class of Ci to walk around TEp on the SecondPath to the root;
merge the class of Ci with the class of TEp by setting the links from root1 and root2 as

fixed links;
}
else (Cj < col(TEp), and col(TEp) is in OldEntryList), then {

/* col(TEp) is not in CheckList but is in OldEntryList, so TEp is on FirstPath. SecondPath
cannot also include it and some action must be taken to change one of the two paths.
That change is determined in Procedure DirectSecondPath. */

call procedure DirectSecondPath;
exit procedure SecondPath;

}
} /* end else (there is a free link from cnt (p1)) */

} /* end repeat */
}} /* end while, end Procedure SecondPath */

procedure DirectSecondPath
{
/* This procedure gives a direct way to finish the construction of the hyperpath for row k + 1 in situations

where it is called. All variables in this procedure initially have same values as in Procedure SecondPath
before this procedure is called. */

Mark Ci as processed by Procedure SecondPath;
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Find the tree edge (denoted TEpc) which is recorded as below TEp on FirstPath (in Procedure FirstPath)
and let Cpc denote its column number; /* TEpc may not presently be a child of TEp. Ci , Cpc, and
col(TEp) are all in OldEntryList. */

if (te(Ci) and TEpc are in the same class, and have the same class root), then no PPH solution exists,
because no hyperpath can contain all the edges te(Ci), TEpc, and TEp. exit Algorithm;

if (te(Ci) and TEp are in the same class), then {
Set flag1; /* indicating that TEp must be on the path from te(Ci) to the root in any PPH solution */

}
else if (the set of tree edges on the path from root2 to the root of the shadow tree is NOT identical to the

set of tree edges of all unprocessed column numbers in CheckList), then {
Set flag1; /* See Fig. 6 for an example. */

}
if (te(Cpc) and TEp are in the same class), then {

Set flag2; /* indicating that TEp must be on the path from TEpc to the root in any PPH solution */
}
else {

The class of Cpc has two class roots. One of them links to TEp. Let rootpc1 be that class root, and
let rootpc2 be the other class root.

/* rootpc1 and rootpc2 can be located by following links from TEpc and se(Cpc) until two free links
are encountered. */

/* The next condition can be checked in linear time because edges on the path from rootpc2 to the
root of the shadow tree are labeled by decreasing column numbers. */

if (the set of tree edges on the path from rootpc2 to the root of the shadow tree is NOT identical to
the set of tree edges of all unprocessed column numbers in CheckList), then {

Set flag2; /* See Fig. 6 for an example. */
}

}

if (both flag1 and flag2 are set) then {
No PPH solution exists (see Lemma 4.7), report failure and exit Algorithm;

}
else if (flag1 is set and flag2 is not set) then {

/* This flip and merge is denoted Flip/Merge Case 2, and is justified by Lemma 4.8. */
flip, if necessary, the class of Cpc, so that TEp is not on the path from TEpc to the root;
merge the class of Ci with the class of TEp and the class of Cpc by setting links from root1, root2,

rootpc1, rootpc2 as fixed;
}
else if (flag2 is set and flag1 is not set) then {

/* This flip and merge is another instance of Flip/Merge Case 2, and is justified by Lemma 4.8. */
flip, if necessary, the class of Cpc, so that TEp is on the path from TEpc to the root;
flip the class of Ci , so that TEp is not on the path from te(Ci) to the root;
merge the class of Ci with the class of TEp and the class of Cpc by setting links from root1, root2,

rootpc1, rootpc2 as fixed;
}
else (neither flag1 nor flag2 are set, i.e., neither te(Ci) nor TEpc are forced to be on the same path as TEp

to the root), then {
/* In this case the parent edges of the class roots of classes Ci and Cpc are the same (see Lemma 4.9) */
/* This flip and merge is denoted Flip/Merge Case 3, and is justified by Lemma 4.10. */
flip the class of Ci to walk around TEp on the second path to the root;
merge the class of Ci with the class of Cpc by removing links from rootpc1 and rootpc2, and adding

a fixed link from rootpc1 to root2, and a fixed link from rootpc2 to root1;
} } /* end Procedure DirectSecondPath */
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Lemma 4.4. Assume that every PPH solution, restricted to the columns in the shadow tree T (k),
is contained in T (k). If Step NoSib 2 (in pseudocode of Procedure SecondPath) is reached during the
processing of row k + 1, then there is no solution to the PPH problem.

Proof. By assumption, every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Hence, it suffices to prove that if Step NoSib 2 is reached in Procedure SecondPath,
then no tree contained in T (k) is a PPH solution, restricted to the columns in T (k).

Let root1 and root2 be as given in the algorithm when Step NoSib 2 is reached. Let Er denote the edge
that contains root1. If Step NoSib 2 is reached, then the parent of Er is either edge TEp or edge Eq no
matter how the classes of T (k) are flipped, Er and te(Ci) are in the same class, and col(Eq) ≤ col(TEp) <

Cj < Ci . These are exactly the same conditions where Lemma 4.3 applies. Thus, no matter how the classes
of T (k) are flipped, edges te(Ci) and te(Cj ) are never on the same path to the root in T (k).

Let C1 be the column that places Ci into CheckList in Procedure FirstPath. We know that Ci < C1, and
by the proof of Lemma 4.3 edges te(Ci) and te(C1) are never on the same path to the root in T (k), no
matter how the classes of T (k) are flipped. If C1 also places Cj into CheckList in Procedure FirstPath,
then by the proof of Lemma 4.3 edges te(Cj ) and te(C1) are never on the same path to the root in T (k),
no matter how the classes of T (k) are flipped. Thus, there cannot be a hyperpath containing te(Cj ), te(Ci),
and te(C1) in T (k), and hence in any PPH solution. However, there are two entries in columns Cj , Ci ,
and C1 in row k + 1 of S, so every PPH solution must have a hyperpath that contains those three edges.
Hence, there is no PPH solution in this case.

Now suppose Cj is placed into CheckList in Procedure FirstPath by column C2 (C2 �= C1). Note that
neither C1 nor C2 is in CheckList. We know that Cj < C2, and by the proof of Lemma 4.3 edges te(Cj )

and te(C2) are never on the same path to the root in T (k), no matter how the classes of T (k) are flipped.
We can observe from Procedure FirstPath that the set of columns placed into CheckList by C1 (or C2) is
contiguous with C1 (respectively, C2) in OldEntryList. Then, since Cj < C2, Ci < C1, and Cj < Ci , it
follows that Cj < C2 < Ci < C1. When Step NoSib 2 is reached, col(Eq) ≤ col(TEp) < Cj < C2 < Ci .
For column C2, these are exactly the same conditions where Lemma 4.3 applies. Thus, no matter how the
classes of T (k) are flipped, edges te(C2) and te(Ci) are never on the same path to the root. Thus, there
cannot be a hyperpath containing te(Cj ), te(Ci), and te(C2) in T (k), and hence in any PPH solution.
However, there are two entries in columns Cj , Ci , and C2 in row k + 1 of S, so every PPH solution must
have a hyperpath that contains those three edges. Hence, there is no PPH solution in this case.

Lemma 4.5. Assume that every PPH solution, restricted to the columns in the shadow tree T (k),
is contained in T (k). If Step NoSib 1(in pseudocode of Procedure SecondPath) is reached during the
processing of row k + 1, then there is no solution to the PPH problem.

Proof. When Step NoSib 1 is reached in Procedure SecondPath, edge TEp is the tree edge which
cnt (p1) links to. Let Ec be the edge that contains cnt (p1). Edge Ec may or may not be the same as
te(Ci). However, we know that edges TEp, Ec, and te(Ci) are in the same class, and Ec is on the path
from te(Ci) to the root in T (k). By the definition of a class, TEp will be on the path from te(Ci) to the
root in T (k) no matter how the classes of T (k) are flipped.

Edge TEp is in T (k), so if col(TEp) is not in OldEntryList, then there must be a 0 entry in col(TEp).
But, there is a 2 entry in column Ci in row k + 1, so when col(TEp) is not in OldEntryList, there can be
no solution to the PPH problem.

Now, consider the case that col(TEp) is in OldEntryList. In that case, it must be that col(TEp) < Cj <

Ci . Next we prove that te(Ci) and te(Cj ) cannot be on the same path to the root in any PPH solution.
By the lemma assumption, every PPH solution, restricted to the columns in T (k), is contained in T (k).
Hence, it suffices to prove that no matter how the classes of T (k) are flipped, edges te(Ci) and te(Cj ) are
never on the same path to the root in T (k). Since TEp is on the path from te(Ci) to the root in T (k) and
both edges are in the same class, edge te(Cj ) cannot be between TEp and te(Ci) no matter how the class
of T (k) is flipped. But by Property 3 of Theorem 2.2 and the fact that col(TEp) < Cj , te(Cj ) cannot be
above TEp. Similarly, since Cj < Ci , te(Cj ) cannot be below te(Ci) in any way that the classes of T (k)

are flipped. Hence, te(Ci) and te(Cj ) cannot be on the same path to the root in T (k) and in any PPH
solution.
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Further, Cj and Ci are both in Checklist. These are the same facts established in the second paragraph
of the proof of Lemma 4.4 and the only facts needed in the third and fourth paragraphs of that proof.
Hence, the remainder of the proof of Lemma 4.5 is identical to third and fourth paragraphs of the proof
of Lemma 4.4.

Lemma 4.6. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). If Procedure DirectSecondPath sets flag1 (respectively, flag2), then TEp must be on the
path from te(Ci) (respectively, TEpc) to the root in any PPH solution.

Proof. We will explicitly prove the lemma for flag1. The proof for flag2 is symmetric. By the lemma
assumption, if te(Ci) and TEp are in the same class when flag1 is set, then TEp must be on the path from
te(Ci) to the root in any PPH solution.

Next we prove that if TEp and te(Ci) are not in the same class when flag1 is set (and so certainly
are not in the same class in T (k)), then TEp must be on the path from te(Ci) to the root in any PPH
solution. By the lemma assumption, every PPH solution, restricted to the columns in T (k), is contained
in T (k). So, we can prove the lemma by proving that TEp must be on the path from te(Ci) to the root
in any way that the classes of T (k) can be flipped to obtain a PPH solution, restricted to the columns in
T (k). Equivalently, in order for there to be a hyperpath in T (k) for row k + 1, the classes of T (k) must
be flipped so that TEp is on the path from te(Ci) to the root.

By Property 1 of Theorem 2.2, the two roots of the class of Ci in T (k) link to join points, call them j1
and j2, in a single parent class. Since TEp is the parent of root1 (the class root of te(Ci)), when Procedure
DirectSecondPath is called, either j1 or j2 is the T connector of TEp (say j1). The class of TEp remains
the parent class of Ci , and j1 and j2 remain the join points of the class of Ci , no matter how the classes
of T (k) are flipped. Again by Property 1 of Theorem 2.2, the roots of the class of TEp link to a single
parent class. Let J be the union of the edges on the paths from j1 and j2 to the root in T (k). It follows
that after any flip of classes in T (k), J remains the union of the edges on the resulting two paths from
j1 and j2 to the root of the resulting shadow tree. The paths may change, but the union of the edges on
those paths cannot change from what it is in T (k).

Let CJ be the set of classes of T (k) that contain the edges in set J . Since Procedure SecondPath works
bottom up in T (k), at the time the algorithm calls Procedure DirectSecondPath, no class in CJ has been
flipped in Procedure SecondPath, and so the path from j1 to the root is exactly the subpath of FirstPath
from j1 to the root, and the path from j2 has not changed since the end of Procedure FirstPath. Hence,
if the required hyperpath for row k + 1 goes through both j1 and j2, then the tree edges in J must be
exactly the tree edges on FirstPath from j1 to the root, together with the edges that remain on CheckList
at the point flag1 is set. But flag1 is set under the condition that the set of tree edges on the path from
root2 (and hence from j2) to the root of the current shadow tree is not identical to the set of tree edges
of all the column numbers in CheckList. Hence, when flag1 is set, J does not have exactly the required
set of tree edges, and so the hyperpath for row k + 1 cannot go through both j1 and j2 in order for PPH
solutions to exist.

Now, both col(TEp) and Ci are old entries in row k+1, so any hyperpath for row k+1 must go through
the tree edges TEp and te(Ci). Further, in any choice of flipping classes in T (k), either TEp is on the
path from te(Ci) to the root or the class root of te(Ci) will link to j2. In the latter case, the hyperpath
will go through both j1 and j2. But as shown above, that is impossible when flag1 is set in order for PPH
solutions to exist, and this completes the proof of the lemma.

Lemma 4.7. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Then (in Procedure DirectSecondPath) TEp must be on the path from exactly one
of te(Ci) and TEpc to the root in any PPH solution, and no valid PPH solution exists if Procedure
DirectSecondPath sets both flag1 and flag2.

Proof. First we prove that no matter how the classes of T (k) are flipped, edges te(Ci) and TEpc cannot
be on the same path to the root in T (k). Suppose Ci < Cpc. The proof for the case that Cpc < Ci is
symmetric. By Property 3 of Theorem 2.2, TEpc cannot be on the path from te(Ci) to the root in T (k). So
we need to prove only that te(Ci) cannot be on the path from TEpc to the root in T (k) in any choice of
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flipping classes of T (k). The proof is by contradiction. Suppose that te(Ci) can be on the path from TEpc

to the root in T (k) in some way of flipping classes. Edge TEpc is recorded as below TEp in Procedure
FirstPath, and TEp is the first tree edge on the path from TEpc to the root (on FirstPath). Let E′

p denote
the parent of the class root of TEpc after flipping the class of TEpc. By Property 3 of Theorem 2.2 and
the fact that col(TEp) < Ci , te(Ci) cannot be above TEp. Hence te(Ci) is either the same as E′

p or on
the path from E′

p to the root. However, as given in the proof for Lemma 4.3, TEp has a larger column
number than that of edge E′

p. This contradicts that col(TEp) < Ci .
Now all of col(TEp), Ci , and Cpc are in OldEntryList, so all three of the tree edges TEp, te(Ci), and

TEpc must be on the hyperpath for row k + 1 in every PPH solution, restricted to the columns in T (k).
But a hyperpath must consist of two paths to the root that do not contain tree edges in common. That is
impossible when tree edge TEp is on the paths from both te(Ci) and TEpc to the root, or when TEp is
on neither of those paths, given that te(Ci) and TEpc cannot be on the same path to the root in T (k).
Therefore, TEp must be on exactly one of the paths: te(Ci) to root and TEpc to root, in any PPH solution.

By Lemma 4.6 if Procedure DirectSecondPath sets both flag1 and flag2, then in any PPH solution TEp

must be on the path from both te(Ci) and TEpc to the root. This causes a contradiction, and hence no
valid PPH solution exists.

Lemma 4.8. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose the algorithm performs a flip/merge in Flip/Merge Case 2 when processing
row k + 1. Then any tree contained in T (k) that is lost by doing the flip/merge is not in any solution to
the PPH problem.

Proof. By Lemma 4.7, TEp must be on the path to the root from either te(Ci) or TEpc (denoted E) but
not both, in any PPH solution. In Flip/Merge Case 2, exactly one of flag1 and flag2 is set. By Lemma 4.6,
we know which one of te(Ci) and TEpc is E. After performing a flip/merge in Flip/Merge Case 2, any
tree contained in T (k) that is lost is a tree in which TEp is not on the path from E to the root, and hence
not in any PPH solution.

The analysis done so far for Procedure DirectSecondPath implies that when exactly one of flag1 or flag2
is set, or when both are set, the algorithm takes a forced action, either a forced flip and merge, or a forced
conclusion that no PPH solution exists. What remains is the case when neither flag1 nor flag2 are set. In
this case, it seems reasonable that either the class of Ci or the class of Cpc should be flipped, but not both,
and that the choice is arbitrary. Furthermore, after the flip, the two classes should be merged to maintain
their relative position. This is in fact true, and is proven by Lemma 4.10. The next lemma establishes
a fact which is needed to prove Lemma 4.10. Its proof needs familiarity with Procedure NewEntries in
Section 4.4 and is given in Section 4.5.

Lemma 4.9. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose that neither flag1 nor flag2 are set in Procedure DirectSecondPath. Then the
roots of the classes of Ci and Cpc in T (k) have the same parents.

Lemma 4.10. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose the algorithm performs a flip/merge in Flip/Merge Case 3 when processing
row k + 1. Then any tree contained in T (k) that is lost by doing the flip/merge is not in any solution to
the PPH problem.

Proof. By Lemma 4.7, TEp must be on the path from exactly one of te(Ci) and TEpc to the root
in any PPH solution. In Flip/Merge Case 3, neither flag1 nor flag2 are set. Therefore TEp can be on the
path from either one of te(Ci) and TEpc to the root. Any tree contained in T (k) that is lost by doing the
flip/merge is a tree in which TEp is not on the path from exactly one of te(Ci) and TEpc to the root, and
hence not in any solution to the PPH problem.

By Lemma 4.9, the roots of the classes of Ci and Cpc in T (k) have the same parents, and hence these
two classes can be merged as described in Flip/Merge Case 3.
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4.3. Procedure FixTree for row k + 1

Procedure FixTree finds and merges more classes, if necessary, to remove trees contained in TSP (k + 1)

that are not in any PPH solutions. It first extends SecondPath with shadow edges whose column numbers
are in OldEntryList of row k+1. The subgraph defined by FirstPath and the extended SecondPath is called
an extended hyperpath; it contains the hyperpath found earlier. By utilizing the extended hyperpath, the
algorithm can determine which additional classes need to be merged. The shadow tree produced after this
procedure is denoted by TFT (k + 1).

procedure FixTree
{
/* First we find two edges TE1 and E2 which are two ends of the extended hyperpath. */
TE1 = the tree edge of the largest column number in OldEntryList, i.e., the lowest edge of FirstPath; if

OldEntryList is empty, then let TE1 = root;
Let SE1 = se(TE1);

TEt = the tree edge of the largest column number in OldEntryList whose tree edge is not on FirstPath,
i.e., the lowest edge of SecondPath; if no such tree edge exists, then let TEt = root;

Find a maximal path from TEt toward leaves in TSP (k + 1) consisting of shadow edges whose column
numbers are in OldEntryList. We prove in Lemma 4.11 that such a maximal path is unique.

E2 = the edge that is the lower end of the maximal path found in the previous step; if the path does not
contain any edge, then let E2 = TEt ;

/* col(TE1) ≥ col(E2) */

/* We can check whether TE1 and E2 are in the same class by checking whether they have same class
roots. */

while (TE1 and E2 are in different classes) and (E2 is not the parent of the class root of SE1) do {
/* Merge-class cases below are justified by Lemmas 4.13 and 4.14. */
/* If E2 �= TEt , then te(E2) is on FirstPath and col(the class root of TE1) > col(the class root of

te(E2)) ≥ col(the class root of TEt ). */
if (col(the class root of TE1) > col(the class root of TEt )), then

merge the class of TE1 with its attaching class;
else

merge the class of TEt with its attaching class;
}}

See Fig. 7 for an example. The proof of the next lemma needs familiarity with Procedure NewEntries
in Section 4.4 and is is given in Section 4.5.

Lemma 4.11. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Then the maximal path found in Procedure FixTree for row k + 1 is unique.

Lemma 4.12. Let ST denote the shadow tree at any stage of the algorithm. Let r1 and r2 denote the
class roots of class X in ST. Let r ′

1 and r ′
2 denote the class roots of class X′ in ST. If max{col(r1), col(r2)} >

min{col(r ′
1), col(r ′

2)}, then flipping class X does not change the position of any edge in class X′ in ST.

Proof. Without loss of generality, we assume that max{col(r1), col(r2)} = col(r1) and min{col(r ′
1),

col(r ′
2)} = col(r ′

1). Flipping a class X in the shadow tree ST affects only the class itself and all classes that
directly or indirectly attach to it. Since X and X′ are different classes in ST , we need to prove only that
class X′ does not attach to class X directly or through a series of classes. The proof is by contradiction.
Suppose class X′ attaches to class X directly or through a series of classes. Then there is choice of class
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FIG. 7. The shadow tree at the end of Procedure FixTree for row 3 of the matrix in Fig. 5. In Procedure FixTree
for this example, TE1 = 6, TEt = E2 = 3, and the class of edge 3 is merged with the class of edge 2. The class roots
of the merged class are 2H and 2H.

flips in the shadow tree such that connector r1 is on the path from connector r ′
1 to the root of the shadow

tree. But that is contradictory to Property 3 of Theorem 2.2 given that col(r1) > col(r ′
1).

The proof of the next lemma needs familiarity with Procedure NewEntries in Section 4.4 and is is given
in Section 4.5.

Lemma 4.13. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose the algorithm merges the class of TE1 with its attaching class in Procedure
FixTree for row k + 1. Then any tree contained in T (k) that is lost by doing the class merge is not in any
solution to the PPH problem.

Lemma 4.14. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose the algorithm merges the class of TEt with its attaching class in Procedure
FixTree for row k + 1. Then any tree contained in T (k) that is lost by doing the class merge is not in any
solution to the PPH problem.

Proof. Let TE1, SE1, TEt , and E2 be the same as in Procedure FixTree. Suppose that the algorithm
merges the class of TEt with its attaching class in Procedure FixTree when processing row k + 1. This
will happen only when TE1 and E2 are in different classes, E2 is not the parent of the class root of SE1,
and col(the class root of TE1) ≤ col(the class root of TEt ). The last condition indicates that E2 is the
same as TEt , because if E2 is different from TEt and hence is a shadow edge whose column number
is in OldEntryList, then te(E2) is on FirstPath (in a different class than TE1) and we must have col(the
class root of TE1) > col(the class root of te(E2)) ≥ col(the class root of TEt ). By Lemma 4.12, the last
condition also indicates that flipping the class of TEt does not affect the class of TE1 and hence does not
change the positions of TE1 and SE1 in the shadow tree. We can also deduce that TEt cannot be on the
path from either SE1 or TE1 to the root from the last condition. By Property 3 of Theorem 2.2, none of
TE1 or SE1 can be on the path from TEt to the root. So TE1 and TEt cannot be on the same path to the
root in the shadow tree.

Next we do a case analysis. We will prove that in all three cases there does not exist a hyperpath for
row k + 1 if we flip the class of TEt , and hence any tree contained in T (k) that is lost by doing the class
merge is not in any solution to the PPH problem. Let SEt denote se(TEt ). Let r1 and r2 be the class roots
of TEt and SEt , respectively. Let j1 and j2 be the join points which r1 and r2 link to. By Property 4 of
Theorem 2.2, at least one of j1 and j2 is the T connector of a tree edge.

In the first case, j2 is not the T connector of a tree edge, and hence j1 must be the T connector of
a tree edge, say TEj1. Since TEt is on SecondPath, TEj1 must be on SecondPath and col(TEj1) is in
OldEntryList. If we flip the class of TEt , TEt has to be on FirstPath in order for a hyperpath for row k +1
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to exist. Edge TE1 is on FirstPath, but TE1 and TEt cannot be on the same path to the root as proven
above. Therefore, there does not exist a hyperpath for row k + 1 if we flip the class of TEt . In the second
case, j2 is the T connector of a tree edge, say TEj2, whose column number is not in OldEntryList. If we
flip the class of TEt , TEj2 is on the path from TEt to the root, which causes no hyperpath for row k + 1
to exist. In the third case, j2 is the T connector of a tree edge, say TEj2, whose column number is in
OldEntryList. In this subcase, TEj2 is on FirstPath and hence on the path from TE1 to the root. If we flip
the class of TEt , then TEj2 is on the path from both TE1 and TEt to the root, because flipping the class
of TEt does not affect the class of TE1. As proven above, TE1 and TEt cannot be on the same path to the
root. So no hyperpath for row k + 1 exists.

We have proven that in all three cases any tree contained in T (k) that is lost by doing the class merge
is not in any solution to the PPH problem. The proof is complete.

4.4. Procedure NewEntries for row k + 1

4.4.1. Procedure NewEntries at a high level. Procedure NewEntries creates and adds edges corre-
sponding to columns in NewEntryList of row k + 1 to TFT (k + 1). Ideally, it tries to attach new edges to
the two ends of the extended hyperpath found in Procedure FixTree. If some new edges cannot be added
in this way, the algorithm finds places to attach them. It then merges more classes, if necessary, so that
there are two directed paths to the root in T (k + 1) containing all the tree edges corresponding to the
columns that have 2 entries in row k + 1, no matter how classes are flipped.

Procedure NewEntries: If NewEntryList is empty, then exit this procedure. Otherwise arrange column
numbers in NewEntryList from left to right increasingly, with the largest one on the right end of the list.

Create edges te(Ci) and se(Ci) for each Ci in NewEntryList. Create two free links pointing from the
H connector of te(Ci) (respectively, se(Ci)) to the T connector of te(Cj ) (respectively, se(Cj )), for each
Ci and its left neighbor Cj in NewEntryList.

Let Ch denote the smallest column number in NewEntryList. At this point, each new edge is attached,
using a free link, to one other edge, except for te(Ch) and se(Ch). The algorithm attaches them according
to two cases. Let TE1, TEt , and E2 be the same as in Procedure FixTree.

In the first case, when col(TE1) < Ch, te(Ch) and se(Ch) are attached to the two ends of the extended
hyperpath. It creates a free link pointing from the H connector of te(Ch) to the T connector of TE1. It
creates a free link pointing from the H connector of se(Ch) to the T connector of E2, if E2 is in the class
of TE1, and otherwise, to a connector in the class of TE1 whose parent is E2.

In the second case, when col(TE1) > Ch, by Property 3 of Theorem 2.2, none of te(Ch) and se(Ch)

can attach to TE1. If col(TEt ) > Ch, then no PPH solution exists no matter where new edges are attached;
otherwise, the algorithm finds two edges (TE′

1 and E′
2) to attach te(Ch) and se(Ch), as follows.

Let TE′
1 denote the tree edge of the largest column number in OldEntryList that is less than Ch. Let

TE′
t denote the tree edge of the largest column number in OldEntryList that is less than Ch and not on the

path from TE′
1 to the root. If TE′

1 or TE′
t does not exist, then let it be the root.

Similarly to Procedure FixTree, the algorithm finds a maximal path from TE′
t toward the leaves in

TFT (k + 1), consisting of shadow edges whose column numbers are in OldEntryList and less than Ch. Let
E′

2 denote the edge that is at the lower end of the maximal path.
If TE′

1 is on the path from TE1 (respectively, E2) to the root, then create a free link pointing from the
H connector of se(Ch) (respectively, te(Ch)) to the T connector of TE′

1, and create a free link pointing
from the H connector of te(Ch) (respectively, se(Ch)) to the T connector of E′

2 if E′
2 is in the class of

TE′
1, otherwise to a connector in the class of TE′

1 whose parent is E′
2.

If there are column numbers in NewEntryList that are larger than col(TE1), then let Ct denote the
smallest one among them (Ch < col(TE1) < Ct ). Edge se(Ct ) is a new edge that has been attached to an
edge by the algorithm. As a special case, the algorithm changes the link from the H connector of se(Ct )

to point to the T connector of TE1.
All new edges are added to TFT (k + 1) according to cases 1 and 2. The algorithm then merges the class

of Ch with the classes of column numbers in NewEntryList that are less than col(TE1) and merges the
class of Ch with the classes of column numbers in OldEntryList that are larger than Ch.

As an example, Fig. 8 shows the shadow tree T produced by the algorithm after processing the first
three rows of the matrix S in Fig. 5. Tree T is also the final shadow tree for S. It can be verified that
Theorem 2.1 holds for S and T .
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FIG. 8. The shadow tree at the end of Procedure NewEntries for row 3 of the matrix in Fig. 5. In Procedure
NewEntries for this example, TE1 = 6, TEt = E2 = 3, Ch = 4, Ct = 7, TE′

1 = 3, TE′
t = 1, E′

2 = 3. Note that edge

7 links to edge 6 instead of edge 4.

4.4.2. Procedure NewEntries in detail

procedure NewEntries
{
if (NewEntryList is empty), then exit procedure NewEntries; Otherwise arrange column numbers in
NewEntryList from left to right increasingly, with the largest one on the right end of the list.

for each column number Ci in NewEntryList, create edges te(Ci) and se(Ci);
for each Ci and its left neighbor Cj in NewEntryList, let p(te(Ci)) = te(Cj ), p(se(Ci)) = se(Cj );

Let TE1, SE1, and E2 be the same edges as in Procedure FixTree;
Ch = the smallest column number in NewEntryList;

if (col(TE1) < Ch), then {
/* Now new edges can be attached directly to the two ends of the extended hyperpath. */
if (TE1 and E2 are in the same class), then {

/* This is denoted Add-new-edges Case 1. */
p(te(Ch)) = TE1, p(se(Ch)) = E2;

}
else (TE1 and E2 are in different classes), then {

cr = the class root of SE1;
/* By Lemma 4.15, E2 is the parent of cr . */
/* This is denoted Add-new-edges Case 2, in which E2 is the parent of se(Ch). */
p(te(Ch)) = TE1, let the H connector of se(Ch) link to cr;

}
}
else (Ch < col(TE1)), then {

/* In this case, te(Ch) cannot link to the T connector of TE1 by Property 3 of Theorem 2.2. We use
the same way as to find TE1 and E2 in Procedure FixTree to find two edges TE′

1 and E′
2 whose

column numbers are less than Ch. */
TE′

1 = the tree edge of the largest column number in OldEntryList that is less than Ch; if no such tree
edge exists, then let TE′

1 = root;
SE′

1 = se(TE′
1);

TE′
t = the tree edge of the largest column number in OldEntryList that is less than Ch, whose tree

edge is not on the path from TE′
1 to the root; if no such tree edge exists, then let TE′

t = root;
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Find a maximal path from TE′
t toward leaves in TFT (k) consisting of shadow edges whose column

numbers are in OldEntryList and less than Ch. By Lemma 4.11, such a maximal path is unique.
E′

2 = the edge that is the lower end of the maximal path found in the previous step. If the path does
not contain any edge, then let E′

2 be the same as TE′
t .

/* col(TE′
1) ≥ col(E′

2) */

if (TE′
1 and E′

2 are in the same class), then {
if (TE′

1 is on the path from TE1 to the root), then {
p(te(Ch)) = E′

2, p(se(Ch)) = TE′
1; /* Add-new-edges Case 3 */

}
else (TE′

1 is on the path from E2 to the root), then {
p(te(Ch)) = TE′

1, p(se(Ch)) = E′
2; /* Add-new-edges Case 4 */

}
}
else (TE′

1 and E′
2 are in different classes), then {

cr ′ = the class root of SE′
1;

/* By Lemma 4.15, E′
2 is the parent of cr ′. */

if (TE′
1 is on the path from TE1 to the root), then {

/* Add-new-edges Case 5, in which E′
2 is the parent of te(Ch). */

p(se(Ch)) = TE′
1, let the H connector of te(Ch) link to cr ′.

}
else (TE′

1 is on the path from E2 to the root), then {
/* Add-new-edges Case 6, in which E′

2 is the parent of se(Ch). */
p(te(Ch)) = TE′

1, let the H connector of se(Ch) link to cr ′.
}

}

Ct = the smallest column number in NewEntryList that is larger than col(TE1);
If no column number in NewEntryList is larger than col(TE1), then let Ct = col(TE1);
/* The following two merge-class cases are justified by Lemma 4.16. */
merge the class of Ch with classes of column numbers in NewEntryList that are less than Ct ;
merge the class of Ch with classes of column numbers in OldEntryList that are larger than Ch;
if (Ct > col(TE1)), then let p(se(Ct )) = TE1; /* Add-new-edges Case 7 */

} /* end else (Ch < col(TE1)) */
} /* end Procedure NewEntries */

Lemma 4.15. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Then E2 is the parent of cr, and E′

2 is the parent of cr ′ in Procedure NewEntries for
row k + 1.

Proof. Recall that cr is the class root of SE1 and cr ′ is the class root of SE′
1. At the end of Procedure

FixTree for row k + 1, if TE1 and E2 are not in the same class, then E2 is the parent of cr in TFT (k + 1).
In Procedure NewEntries for row k + 1 where this lemma applies, TE1 and E2 are not in the same class.
So E2 must be the parent of cr .

We next prove that in Procedure NewEntries if TE′
1 and E′

2 are not in the same class, E′
2 must be

the parent of cr ′. Let Er2 be the edge that contains cr ′. Assume that TE′
1 is on the path from E2 to the

root in Procedure NewEntries. (The proof for the case where TE′
1 is on the path from TE1 to the root is

similar.) The class of TE′
1 is on the path from E2 to the root and hence is on the path from SE1 to the

root. Therefore, the class of SE′
1 is on the path from TE1 to the root; i.e., cr ′ is on the path from TE1 to

the root. So the parent of cr ′, say Epr2, is also on the path from TE1 to the root. We claim that col(Epr2)

is in OldEntryList. Suppose it is not; then since Epr2 is on the path from TE1 to the root, it cannot be a
tree edge. So Epr2 must be a shadow edge. Edge Epr2 is the parent of Er2. Let E′

r2 = te(Er2) if Er2 is a
shadow edge, or let Er2′ = se(Er2) if Er2 is a tree edge. By Property 5 of Theorem 2.2, te(Epr2) is on the
path from E′

r2 to the root. Since E′
r2 and TE′

1 are in the same class and have the same class root, te(Epr2)
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is also on the path from TE′
1 to the root, which is contradictory to col(Epr2) not in OldEntryList. Thus,

col(Epr2) is in OldEntryList. Since Epr2 is on the path from TE1 to the root, Procedure NewEntries will
either choose Epr2 as E′

2 or choose an edge in the class of SE′
1 as E′

2. Since TE′
1 and E′

2 are not in the
same class, Epr2 must be chosen as E′

2 by the algorithm, and hence E′
2 is the parent of cr ′.

Lemma 4.16. Assume that every PPH solution, restricted to the columns in the shadow tree T (k),
is contained in T (k). Suppose the algorithm performs a merge-class case in Procedure NewEntries for
row k + 1. Then any tree contained in T (k) that is lost by doing the merge-class case is not in any PPH
solution.

Proof. One critical observation is that running Procedure NewEntries where NewEntryList contains l

column numbers is equivalent to running Procedure NewEntries l times where each time NewEntryList
contains one increasing column number in the original NewEntryList, starting from the smallest one in the
original NewEntryList. Therefore we need to prove the lemma only in the case that NewEntryList of row
k + 1 contains one column number, Ch.

If col(TE1) < Ch (Add-new-edges Cases 1, 2, and 7), then no merge-class case happens. The merge-
class case only happens when Ch < col(TE1) (Add-new-edges Cases 3-6). In these cases, let C′

h be any
column number in OldEntryList of row k + 1 that is larger than Ch. By the definition of a PPH solution
there are two paths to the root (with no tree edge in common) which pass through tree edges corresponding
to all columns in OldEntryList of row k + 1 plus Ch in any PPH solution. We call such two paths path1
and path2. Paths path1 and path2 cannot have tree edges in common. By Property 3 of Theorem 2.2,
te(C′

h) cannot be on the path from te(Ch) to the root on either path1 or path2. Since C′
h is an old entry

and Ch is a new entry in row k + 1, there exists at least one row in S where C′
h has a 2 entry and Ch

has a 0 entry. So te(Ch) cannot be on the path from te(C′
h) to the root on either path1 or path2 in

any PPH solution. Therefore, te(Ch) and te(C′
h) must be on different paths between path1 and path2 in

any PPH solution. In Procedure NewEntries, te(Ch) and se(Ch) are added to the shadow tree in such a
way that there are two paths to the root (with no tree edge in common) which pass through tree edges
corresponding to all columns in OldEntryList of row k+1 plus Ch, and te(Ch) and te(C′

h) are on different
paths between path1 and path2. Any tree Tl contained in T (k) that is lost by doing the merge-class case
is a tree where either te(Ch) and te(C′

h) are both on one of path1 and path2, or there do not exist two
paths to the root in Tl (with no tree edge in common) which pass through tree edges corresponding to all
columns in OldEntryList of row k + 1 plus Ch. Therefore Tl is not in any PPH solution.

4.5. Correctness and efficiency

For each row of S, the algorithm performs a fixed number of scans of the entries in that row, and in
parallel, a fixed number of walk-ups in the shadow tree. There are some steps in the algorithm that require
a traversal of the shadow tree (finding a maximal path from an edge, for example), but such operations
happen at most once in each procedure, and hence at most once in the processing of each row. However,
they can actually be implemented efficiently without traversing the shadow tree (we omit the details). It
takes constant time to scan each entry in S, or to walk up one edge in the shadow tree. Each flip or merge
is associated with an edge in a walk, and each flip or merge is implemented in constant time. Hence, the
time for each row is O(m), and the total time bound is O(nm), where n and m are the number of rows
and the number of columns in S.

In the rest of this section, we give proofs for lemmas and theorems that have not been proven in the
previous sections.

Lemma 4.9. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose that neither flag1 nor flag2 are set in Procedure DirectSecondPath. Then the
roots of the classes of Ci and Cpc in T (k) have the same parents.

Proof. The lemma is trivially true if te(Ci) and TEpc are in the same class. Otherwise, they are in
different classes, and since Procedure DirectSecondPath was called, edge TEp is the first tree edge on the
path from TEpc to the root on FirstPath (in Procedure FirstPath) and the first tree edge on the path from
te(Ci) to the root on SecondPath. The class of TEp, call it X, is the parent class of both the classes of
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Ci and Cpc, while root1 and root2 are the class roots of class Ci , and rootpc1 and rootpc2 are the class
roots of class Cpc. It is clear the TEp is the parent of both root1 and rootpc1. Now suppose that root2
and rootpc2 do not have the same parent edge.

Suppose that one of the paths from root2 and rootpc2, say from root2, to the root contains a tree edge
TE that is not on the path from rootpc2 to the root in T (k). If col(TE) is not in CheckList, then flag1
should have been set, and if col(TE) is in CheckList, then flag2 should have been set. But neither flag
was set, so if either path contains a tree edge, then the two paths must intersect and any tree edge on one
of the paths must be in CheckList and must be above the point of intersection. It follows that both paths
contain only shadow edges (or the path(s) contain no edges) below their point of intersection.

The two paths must intersect at or before the root of the shadow tree. If the two paths have common
edge(s), let E be the first common edge on the two paths from root2 and rootpc2 to the root. Otherwise,
let E denote the root of the shadow tree. We claim that the column number of every (shadow) edge on the
paths from root2 and rootpc2 to E is in OldEntryList. That is, for any edge E′′ on those paths, col(E′′)
has value 2 in row k + 1 (and certainly it has value 2 in some row before k + 1 since E′′ is in T (k)). We
prove this explicitly for root2; the proof for rootpc2 is symmetric. Let SE′ be the first (shadow) edge on
the path from root2, and assume SE′ is not E since otherwise there are no edges from root2 before E,
and the claim is is vacuously true.

We now prove that col(SE′) is in OldEntryList. Let Er2 denote any edge in the class of Ci whose parent
is SE′. The simplest such case is that the H connector of Er2 is root2, and root2 links to the T connector
of SE′. However, this need not be the case, by the definition of “parent,” and Er2 could be connected to
the T connector of SE′ via a chain of H connectors. Let E′

r2 = te(Er2) if Er2 is a shadow edge, and
let E′

r2 = se(Er2) if Er2 is a tree edge. By Property 5 of Theorem 2.2 (a simple case analysis based on
whether E′

r2 is a tree or a shadow edge), te(SE′) is on the path from E′
r2 to the root. Edge te(Ci) is in the

same class as Er2, and the two edges have different roots in that class, so by Property 1 of Theorem 2.2,
te(Ci) and E′

r2 are in the same class and have the same class root. So te(SE′)) is on the path from te(Ci)

to the root (and from TEp to the root), at the point when Procedure DirectSecondPath is called. Hence,
te(SE′) must be a tree edge on FirstPath, and so col(SE′) must be in OldEntryList.

Consider the path from SE′ towards E, and recall that all the edges on that path before E are shadow
edges. By Property 1 of Theorem 2.2, SE′ and te(SE′) are not together on any path to the root. Moreover,
by repeatedly using Property 5 of Theorem 2.2, all of the tree edges corresponding to shadow edges on
the path from SE′ to E are on a single path, and te(SE′) is the lowest of those tree edges. Edge SE′ is in
class X or in a class that is an ancestor of X, so by Property 1 of Theorem 2.2, te(SE′) is also in X or
above. Since Procedure SecondPath works bottom-up in the shadow tree, Procedure SecondPath has not
flipped class X or any class that is an ancestor of class X, and no edge in those classes is on SecondPath.
Similarly, since edge TEp is on FirstPath, when Procedure DirectSecondPath is called, the entire path from
root1 is on FirstPath. It follows that te(SE′) cannot be on SecondPath. Since col(SE′) is in OldEntryList,
te(SE′) must be on FirstPath, and the entire path from te(SE′) must be on FirstPath. Therefore, the column
number of every tree edge on that path is in OldEntryList. This proves the claim that the columns numbers
of all the shadow edges on the path from SE′ to E must be in OldEntryList, and their corresponding tree
edges must be on FirstPath.

Next, under the continuing assumption that E is not both p(root2) and p(rootpc2), there are two cases
to consider: either E is none of p(root2) and p(rootpc2), or it is one of them.

In the first case, E is the parent of two distinct shadow edges whose column numbers are in OldEntryList.
We call those two shadow edges SEii and SEjj , and assume that col(SEjj ) < col(SEii ). Let TEii denote
te(SEii ), and let TEjj denote te(SEjj ). As proven above, TEii and TEjj are on FirstPath, i.e., the path
from root1 to the root. Since col(SEjj ) < col(SEii ), by Property 3 of Theorem 2.2, TEjj must be on
the path from TEii to the root in T (k). Since SEii and SEjj have the same parent E in the shadow tree,
by Property 6 of Theorem 2.2, those two edges were added to the shadow tree during the processing of
different rows. Suppose SEii and TEii were added to the shadow tree during the processing of row k′,
k′ < k + 1. Since TEjj is on the path from TEii to the root, by Property 3 of Theorem 2.2, SEjj and TEjj

must have been added to the shadow tree before SEii was, and so are in T (k′ − 1).
Procedure NewEntries for row k′ finds two edges TEk′1 and Ek′2 that are two ends of an extended

hyperpath for row k′ (see Section 4.3 for the definition of an extended hyperpath). By Property 7 of
Theorem 2.2, the union of the edges on the paths from SEii and TEii to the root of the shadow tree is
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invariant. Since E and TEjj are on paths from SEii and TEii to the root in the shadow tree, before doing
Flip/Merge Case 3, both E and TEjj are on the hyperpath from TEk′1 to Ek′2 in Procedure NewEntries
for row k′. Therefore, col(TEjj ) is in OldEntryList for row k′.

By Property 7 of Theorem 2.2, the set {p(TEii), p(SEii)} is invariant. Consider the parent of TEii

before Flip/Merge Case 3, and call it Eip. Then the set {p(TEii), p(SEii)} is {Eip, E}. By Property 7 of
Theorem 2.2, Eip and E are the TEk′1 and Ek′2 in Procedure NewEntries for row k′. Edge Eip is on the
path from TEii to TEjj . So col(Eip) ≥ col(TEjj ) > col(E). Therefore, Eip is the TEk′1, and E is the
Ek′2 in Procedure NewEntries for row k′, which indicates that E is the edge that is the lower end of the
maximal path found in Procedure NewEntries for row k′. By Property 7 of Theorem 2.2, the set {p(TEjj ),
p(SEjj )} is invariant. Since TEjj is on the hyperpath from TEk′1 to Ek′2 in Procedure NewEntries for
row k′, E is the parent of SEjj at that time. Thus, SEjj instead of E should have been found as the lower
end of the maximal path in Procedure NewEntries for row k′. That is a contradiction.

In the second case, E is either p(root2) or p(rootpc2). Assume E is p(root2). (The proof for E =
p(rootpc2) is symmetric.) Let Er2 denote any edge (in the class of Ci) whose parent is E. Let E′

r2 =
te(Er2) if Er2 is a shadow edge, and let E′

r2 = se(Er2) if Er2 is a tree edge. Edge E is the parent of
Er2 and a shadow edge on the path from rootpc2 to the root, say SEjj , whose column numbers is in
OldEntryList. Let TEjj denote te(SEjj ). As proven above, TEjj is on FirstPath, i.e., the path from root1
to the root. So TEjj is on the path from E′

r2 to the root. Therefore, col(SEjj ) < col(Er2). (The rest of
the proof is similar to the proof for the first case by considering Er2 as the SEii above.)

Since Er2 and SEjj have the same parent E in the shadow tree, by Property 6 of Theorem 2.2, those
two edges were added to the shadow tree during the processing of different rows. Suppose Er2 and E′

r2
were added to the shadow tree during the processing of row k′, k′ < k +1. Since TEjj is on the path from
E′

r2 to the root before performing Flip/Merge Case 3, we can deduce that SEjj and TEjj are in T (k′ − 1).
Procedure NewEntries for row k′ finds two edges TEk′1 and Ek′2, which are two ends of an extended
hyperpath for row k′. By Property 7 of Theorem 2.2, the set {p(Er2), p(E′

r2)} is invariant. Consider the
parent of E′

r2 before Flip/Merge Case 3, and call it Eip. Then the set {p(Er2), p(E′
r2)} is {Eip, E}. By

Property 7 of Theorem 2.2, Eip and E are the TEk′1 and Ek′2 in Procedure NewEntries for row k′. Edge
Eip is on the path from E′

r2 to TEjj . So col(Eip) ≥ col(TEjj ) > col(E). Therefore, Eip is the TEk′1,
and E is the Ek′2 in Procedure NewEntries for row k′, which indicates that E is the edge that is the
lower end of the maximal path found in Procedure NewEntries for row k′. By Property 7 of Theorem 2.2,
the set {p(TEjj ), p(SEjj )} is invariant. Since TEjj is on the hyperpath from TEk′1 to Ek′2 in Procedure
NewEntries for row k′, E is the parent of SEjj at that time. Thus, SEjj instead of E should have been
found as the lower end of the maximal path in Procedure NewEntries for row k′. That is a contradiction.

We find a contradiction if the roots of the classes of Ci and Cpc in T (k) do not have the same parents.
The proof is complete.

Lemma 4.11. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Then the maximal path found in Procedure FixTree for row k + 1 is unique.

Proof. We prove the lemma by contradiction. Suppose there are two maximal paths from TEt toward
leaves in TSP (k + 1) that consist of shadow edges whose column numbers are in OldEntryList. We call
these two paths path1 and path2, and these paths must intersect at or before TEt . If the two paths have
common edge(s) before TEt , let E be the first common edge. Otherwise, let E be the same as TEt . There
are two shadow edges below E whose column numbers are in OldEntryList on path1 and path2. We
name the two shadow edges as SEii and SEjj , and assume that col(SEjj ) < col(SEii ). Let TEii denote
te(SEii ), and let TEjj denote te(SEjj ). In TSP (k + 1), there is a hyperpath that passes through tree edges
corresponding to all columns in OldEntryList of row k + 1. The hyperpath consists of two paths to the
root that contain no tree edges in common. In TSP (k + 1), every tree edge whose column number is in
OldEntryList is either on the path from TE1 to the root, or on the path from TEt to the root. Since col(SEii )

and col(SEjj ) are in OldEntryList and TEii and TEjj are not on the path from TEt to the root, they must
be on the path from TE1 to the root. Since col(SEjj ) < col(SEii ), by Property 3 of Theorem 2.2, TEjj

must be on the path from TEii to the root in TSP (k + 1). Since SEii and SEjj have the same parent E in
the shadow tree, by Property 6 of Theorem 2.2, those two edges were added to the shadow tree during the
processing of different rows. Suppose SEii and TEii were added to the shadow tree during the processing
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of row k′, k′ < k + 1. Since TEjj is on the path from TEii to the root, by Property 3 of Theorem 2.2,
SEjj and TEjj must have been added before SEii , and so are in T (k′ − 1).

Procedure NewEntries for row k′ finds two edges TEk′1 and Ek′2, which are two ends of the extended
hyperpath for row k′. Since E and TEjj are on paths from SEii and TEii to the root in TSP (k + 1),
by Property 7 of Theorem 2.2, both E and TEjj are on the extended hyperpath from TEk′1 to Ek′2 in
Procedure NewEntries for row k′. By Property 7 of Theorem 2.2, the set {p(TEii), p(SEii)} is invariant.
Consider the parent of TEii in TSP (k + 1), and call it Eip. Then the set {p(TEii), p(SEii)} is {Eip, E}.
By Property 7 of Theorem 2.2, Eip and E are the TEk′1 and Ek′2 in Procedure NewEntries for row k′.
Edge Eip is on the path from TEii to TEjj . So col(Eip) ≥ col(TEjj ) > col(E). Therefore, Eip is the
TEk′1, and E is the Ek′2 in Procedure NewEntries for row k′. So E is the lower end of the maximal path
found in Procedure NewEntries for row k′. By Property 7 of Theorem 2.2, the set {p(TEjj ), p(SEjj )} is
invariant. Since TEjj is on the extended hyperpath from TEk′1 to Ek′2 in Procedure NewEntries for row k′,
E is the parent of SEjj at that time. Thus SEjj instead of E should have been found as the lower end of
the maximal path in Procedure NewEntries for row k′. That is a contradiction. We find a contradiction if
the maximal path found in Procedure FixTree for row k + 1 is not unique. The proof is complete.

Lemma 4.13. Assume that every PPH solution, restricted to the columns in the shadow tree T (k), is
contained in T (k). Suppose the algorithm merges the class of TE1 with its attaching class in Procedure
FixTree for row k + 1. Then any tree contained in T (k) that is lost by doing the class merge is not in any
solution to the PPH problem.

Proof. Let TE1, SE1, TEt , and E2 be the same as in Procedure FixTree. Let r1 and r2 be the class
roots of TE1 and SE1, respectively. Let j1 and j2 be the join points which r1 and r2 link to. The paths
from SE1 and E2 to the root must intersect at or before the root of the shadow tree. Let E be the first
common edge or the root if they intersect at the root.

Suppose that the algorithm merges the class of TE1 with its attaching class in Procedure FixTree when
processing row k +1. This will happen only when TE1 and E2 are in different classes, E2 is not the parent
of r2, and col(the class root of TE1) > col(the class root of TEt ). The last condition indicates that a class
flipping of the class of TE1 does not affect the class of TEt and hence does not change the position of
TEt in the shadow tree (Lemma 4.12). Next we do a case analysis. We prove that in all three cases there
does not exist a hyperpath for row k + 1 if we flip the class of TE1, and hence any tree contained in T (k)

that is lost by doing the class merge is not in any solution to the PPH problem.
In the first case, TEt is not on the path from SE1 to the root. By Property 4 of Theorem 2.2, at least

one of j1 and j2 is the T connector of a tree edge. We next prove that there does not exist a hyperpath for
row k +1 if we flip the class of TE1. The proof has three subcases. In subcase 1, j2 is not the T connector
of a tree edge, and hence j1 must be the T connector of a tree edge, say TEj1. Since TE1 is on FirstPath,
col(TEj1) must be in OldEntryList, and TEj1 is on FirstPath too. If we flip the class of TE1, TE1 has to be
on SecondPath in order for a hyperpath for row k + 1 to exist. Edge TEt is on SecondPath and not on the
path from SE1 to the root before flipping, and TEt is not on the path from TE1 to the root after flipping,
because flipping the class of TE1 does not affect the class of TEt . We also know that TE1 cannot be on the
path from TEt to the root by Property 3 of Theorem 2.2. Therefore, there does not exist a hyperpath for
row k +1 if we flip the class of TE1 in this subcase. In subcase 2, j2 is the T connector of a tree edge, say
TEj2, whose column number is not in OldEntryList. If we flip the class of TE1, TEj2 is on the path from
TE1 to the root, which causes no hyperpath for row k + 1 to exist. In subcase 3, j2 is the T connector of
a tree edge, say TEj2, whose column number is in OldEntryList. Edge TEj2 is on SecondPath and hence
on the path from TEt to the root. If we flip the class of TE1, then TEj2 is on the path from both TE1 and
TEt to the root. As proven above, TE1 and TEt cannot be on the same path to the root. So no hyperpath
for row k + 1 exists.

In the second case, TEt is on the path from SE1 to the root, and E is the parent of r2 before merging
the class of TE1 with its attaching class. If TEt is the same as E2, then E must be the same as E2, which
is contradictory to that E2 is not the parent of r2. So E2 must be a shadow edge whose column number
is in OldEntryList and be different from E. We know that if there are any edges on the path from E2 to
TEt , these edges are shadow edges whose column numbers are in OldEntryList. Since TEt is on the path
from SE1 to the root, TEt must be on the path from E to the root. Therefore, every edge on the path from
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E2 to E, including E2, is a shadow edge whose column number is in OldEntryList. The tree edge of each
such shadow edge must be on FirstPath and hence on the path from r1 to the root. By the same proof for
the first case of Lemma 4.9 (paragraphs 7, 8, and 9 in the proof), when the edge containing r2, say Er2,
was added to the shadow tree, E2 became the parent of Er2. That is a contradiction. Thus this case cannot
really happen assuming that every PPH solution, restricted to the columns in T (k), is contained in T (k).

In the third case, TEt is on the path from SE1 to the root, and E is not the parent of r2 before merging
the class of TE1 with its attaching class. Next we prove that there is at least one tree edge on the path from
Er2 to E before the class merge. The proof is by contradiction. Suppose every edge on the path from
Er2 to E before the class merge is a shadow edge. Consider the shadow edge below E on the path
from Er2 to E, say SE′. Edge E is the parent of SE′. By Lemma 4.11 and its proof, col(SE′) cannot be
in OldEntryList. Next consider the shadow edge below SE′ on the path from Er2 to E, say SE′′. Edge
SE′ is the parent of SE′′. If col(SE′′) is in OldEntryList, then by Property 5 of Theorem 2.2, te(SE′) is
on the path from te(SE′′) to the root, which is contradictory to col(SE′) not being in OldEntryList. So
col(SE′′) is not in OldEntryList. By the same reasoning, the parent of r2, p(r2), must be a shadow edge
whose column number is not in OldEntryList; p(r2) is the parent of Er2. Let E′

r2 = te(Er2) if Er2 is a
shadow edge, or let E′

r2 = se(Er2) if Er2 is a tree edge. By Property 5 of Theorem 2.2, tree edge te(p(r2))

is on the path from E′
r2 to the root. Edges E′

r2 and TE1 are in the same class and have the same class
root. So te(p(r2)) is also on the path from TE1 to the root, which is contradictory to col(p(r2)) not in
OldEntryList. Therefore, there is at least one tree edge, say TE, on the path from Er2 to E. Since TEt is
the tree edge on SecondPath that has the largest column number, col(TE) is not in OldEntryList.

Next we prove that no hyperpath exists for row k + 1 if we flip the class of TE1 in the third case. The
proof has two subcases. In subcase 1, j2 is not the T connector of a tree edge, and hence j1 must be the
T connector of a tree edge, say TEj1. Since TE1 is on FirstPath, col(TEj1) must be in OldEntryList, and
TEj1 is on FirstPath. Since TE is on the path from Er2 to the root, and hence from SE1 to the root, by
Property 7 of Theorem 2.2, TE must be on the path from either SE1 or TE1 to the root at any stage in
the algorithm. Since TE and TE1 are not in the same class before the class merge, TE must be on the
path from either j1 or j2 to the root at any stage in the algorithm. If we flip the class of TE1, j2 is now
on the path from TE1 to the root. As a consequence, TE must be on the path from either TE1 or TEj1
to the root. But in neither case can a hyperpath exist for row k + 1, as col(TE) is not in OldEntryList.
In subcase 2, j2 is the T connector of a tree edge, say TEj2. Since TEt is the tree edge on SecondPath
that has the largest column number, col(TEj2) is not in OldEntryList. If we flip the class of TE1, TEj2
is now on the path from TE1 to the root, and hence no hyperpath for row k + 1 exists. The proof is
complete.

Lemma 4.17. In every tree contained in TFT (k + 1), there are two paths to the root with no edge in
common that pass through edges corresponding to all columns in OldEntryList of row k + 1.

Proof. Recall that at the end of Procedure FixTree for row k + 1 there is an extended hyperpath in
TFT (k +1), whose two ends are edges TE1 and E2. The extended hyperpath consists of two directed paths
to the root of TFT (k + 1) (with no tree edge in common) that contain all the tree edges in TFT (k + 1)

corresponding to columns in OldEntryList of row k + 1. Those two paths may also contain some shadow
edges. Edges TE1 and E2 are either in the same class, or E2 is the parent of the class root of SE1.

If TE1 and E2 are in the same class, then the extended hyperpath in TFT (k +1) passes through the class
roots and the join points of classes of all edges on the extended hyperpath. Let X be a class of an edge
on the extended hyperpath. Let r1 and r2 be the class roots of X, and let j1 and j2 be the join points of
X which r1 and r2 link to. Assume that r1 and j1 are on the path from TE1 to the root in TFT (k + 1). We
can divide the extended hyperpath into four paths. Let path1 be the path from TE1 to r1, path2 be the
path from j1 to the root, path3 be the path from j2 to the root, and path4 be the path from E2 to r2 in
TFT (k + 1). Tree edges on path1, path2, path3, and path4 correspond to all columns in OldEntryList of
row k+1. Flipping class X lets r1 link to j2 and r2 link to j1. It is clear that there is an extended hyperpath
from TE1 to E2 consisting of path1, path3, path2, and path4 after flipping class X. Therefore, there
is an extended hyperpath in TFT (k + 1) after flipping any class X of an edge on the path from TE1 to
the root. By the same reasoning, there exists an extended hyperpath in TFT (k + 1) in every way of class
flipping in TFT (k + 1). It follows that the lemma holds.
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If E2 is the parent of the class root of SE1, the proof is similar. Let r ′
1 and r ′

2 be the class roots of TE1
and SE1. Let j ′

1 and j ′
2 be join points which r ′

1 and r ′
2 link to. We can divide the extended hyperpath into

three paths. Let path′
1 be the path from j ′

1 to the root, path′
2 be the path from j ′

2 to the root, and path′
3

be the path from TE1 to r ′
1. When flipping classes of edges on path′

1 or path′
2 in TFT (k + 1), the proof

is the same as above. When flipping the class of TE1, it is the same as letting r ′
1 link to j ′

2 and letting
r ′
2 link to j ′

1. Now E2 becomes the parent of r ′
1 after the flipping. It is clear that there is an extended

hyperpath consisting of path′
2, path′

1, and path′
3 in TFT (k + 1) after flipping the class of TE1. Therefore,

there exists an extended hyperpath in TFT (k + 1) in every way of class flipping in TFT (k + 1). It follows
that the lemma holds.

Lemma 4.18. In every tree contained in T (k + 1), there are two paths to the root with no edge in
common that pass through edges corresponding to all columns that have a 2 entry in row k + 1.

Proof. At the end of Procedure NewEntries for row k + 1, there are two directed paths to the root in
T (k + 1) (with no tree edge in common) that pass through tree edges corresponding to all columns that
have a 2 entry in row k + 1. Let C be the largest column number in NewEntryList of row k + 1. Then
te(C) and se(C) are the two ends of those two paths. Since te(C) and se(C) are in the same class, the two
paths from te(C) and se(C) to the root pass through the class roots and the join points of classes of all
edges on the paths from te(C) and se(C) to the root. By the proof of Lemma 4.17, there exist two directed
paths to the root in T (k + 1) (with no tree edge in common) that pass through tree edges corresponding
to all columns that have a 2 entry in row k + 1 in every way of class flipping in T (k + 1). It follows that
the lemma holds.

Theorem 2.1. Every PPH solution is contained in the final shadow tree produced by the algorithm.
Conversely, every tree contained in the final shadow tree is a distinct PPH solution.

Proof. The theorem has two parts. We prove the second part first.
All new edges corresponding to new entries in row i + 1 are attached to leaves of T (i). Any tree

contained in T (i + 1), restricted to the columns in T (i), is contained in T (i). By Lemma 4.18, in every
tree contained in T (i +1), there are two paths to the root with no edge in common that pass through edges
corresponding to all columns that have a 2 entry in row i + 1. Thus, in every tree contained in the final
shadow tree, there are two paths for each row to the root with no edge in common that pass through edges
corresponding to all columns that have a 2 entry in that row. In addition, by Property 3 of Theorem 2.2,
along any directed path towards the root in every tree contained in the final shadow tree, the successive
edges are labeled by columns with strictly increasing leaf counts. Therefore, every tree contained in the
final shadow tree is a solution to the PPH problem. Since each distinct choice of class flipping, followed
by the required shadow edge and link contractions, leads to a distinct tree, the second part of the theorem
is proven.

Next we prove the first part of the theorem by induction.
We first prove that every PPH solution, restricted to the columns in the shadow tree T (1), is contained

in T (1). All 2 entries in the first row of S are new entries. Procedure NewEntries runs the simplest case:
create a path to the root that consists of tree edges of columns that have 2 entries in this row, and create
a path to the root that consists of shadow edges of these columns. All links between edges are free links.
In every PPH solution, restricted to the columns in T (1), there must be two paths to the root that pass
through edges corresponding to all new entries in the first row. It is easy to verify that T (1) contains all
possible trees that satisfy this constraint. Therefore, every PPH solution, restricted to the columns in the
shadow tree T (1), is contained in T (1).

Assume that every PPH solution, restricted to the columns in the shadow tree T (i), is contained in T (i).
To complete the induction, we next prove that every PPH solution, restricted to the columns in the shadow
tree T (i + 1), is contained in T (i + 1).

Three operations that modify the shadow tree in the algorithm are class flipping, class merging, and
edge addition. Class flipping does not change the set of trees contained in the shadow tree. By adding new
edges and corresponding new classes to T (i), the number of choices of class flipping increases; i.e., the
number of trees contained in the shadow tree increases. Every time a new tree edge and its corresponding
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shadow edge are added to T (i), a new class is created, and hence the number of trees contained in the
shadow tree is doubled. The increase of the number of trees contained in the shadow tree by class addition
is larger than or equal to the maximum possible increase of the number of PPH solutions, restricted to
the columns in T (i), to the number of solutions restricted to the columns in T (i + 1). Thus, all possible
solutions have been included. Class merging removes some trees from the set of trees contained in the
shadow tree. However by Lemmas 4.2, 4.8, 4.10, 4.13, 4.14, and 4.16, any tree contained in the shadow
tree that is lost by doing the merge-class in the algorithm for row i + 1 is not in any solution to the PPH
problem. Thus, no PPH solution, restricted to the columns in the shadow tree T (i+1), is lost from T (i+1)

by class merging. Based on the analysis above, we can conclude that every PPH solution, restricted to the
columns in the shadow tree T (i + 1), is contained in T (i + 1). This completes the induction.

5. GENERAL PPH PROBLEM

Now we solve the general PPH problem for S with entries of value 0, 1, and 2. We assume that the
rows of S are arranged by the position of rightmost 1 entry in each row decreasingly, with the first row
containing the rightmost 1 entry in S. It is easy to prove that if there exists PPH solution(s) for S, then
entries of value 1 are to the left of entries of value 2 in each row of S.

To solve the general PPH problem, we need to first build an initial perfect phylogeny Ti for S. The initial
perfect phylogeny is described in detail by Gusfield (2002) and is built as follows. Let C1 (respectively,
R1) denotes the set of columns (respectively, rows) in S that each contain at least one entry of value 1.
We build Ti by first creating, for each row i in R1, an ordered path to the root consisting of edges labeled
by columns that have entries of value 1 in row i, with the edge of the smallest column label attaching to
the root. We can then simply merge the identical initial segments of all these paths to create Ti . As shown
by Gusfield (2002), Ti can be built in linear time and must be in every PPH solution for S.

We build an initial shadow tree ST i based on Ti by changing each edge in Ti into a tree edge in ST i ,
creating an H connector and a T connector for each tree edge in ST i , and creating a fixed link pointing
from the H connector of each tree edge, corresponding to an edge E in Ti , to the T connector of the tree
edge whose corresponding edge in Ti is the parent of E. There are no shadow edges in ST i , and the tree
edges in ST i form one class.

5.1. Algorithm with entries of value 1

The underlying idea of the algorithm is that in any PPH solution for S all the edges labeled with columns
that have entries of value 2 in row k + 1 must form two paths toward an edge in the initial tree. From that
edge, there is a path to the root consisting of edges labeled with columns that have entries of value 1 in
row k + 1.

The algorithm for the PPH problem with entries of value 1, denoted as the algorithm with 1 entries, is
very similar to the algorithm in Section 4. There are three differences. First, the algorithm with 1 entries
builds and uses an initial shadow tree ST i . Second, we now call an entry Ci an old 2 entry Ci in row k +1
if there is at least one entry of either value 2 or 1 at Ci in rows 1 through k. The third difference is the
most important one. In the algorithm with 1 entries, whenever we use the term root during the processing
of row k + 1, we mean the root for row k + 1. The root for row k + 1 is defined as the T connector of the
tree edge in the initial shadow tree ST i whose column number has the rightmost 1 entry in row k + 1. If
there is no entry with value 1 in row k + 1, then the root for row k + 1 is defined as the root of ST i . Every
new edge attached to the root for row k + 1 becomes part of the same class as the root of ST i . This is a
simple generalization of the earlier algorithm, since earlier, the root for each row is the root of the whole
shadow tree.

5.2. Remaining issues

Identical columns: We use an example to demonstrate how to deal with identical columns. Suppose that
after arranging columns of the matrix S by decreasing leaf count, columns 5, 6, and 7 are identical. We
first remove columns 6, 7 from S and obtain a new matrix S′ with distinct columns. Note that we use the
same column indices of S to label columns in S′; i.e., column 5 of S′ has a column label 5, but column 6
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Table 1. Comparison of the Running Time Measured in
Seconds on a P4 3 GHz Machine

Average running time
Sites
(m)

Individuals
(n)

Number of
test cases DPPH Our program

5 1000 20 0.01 0.006
50 1000 20 0.20 0.07

100 1000 20 1.06 0.11
500 250 30 5.72 0.13

1000 500 30 45.85 0.48
2000 1000 10 467.18 1.89

of S′ has a column label 8. Then we solve the PPH problem on S′ by using our previous algorithm. Once
a final shadow tree T ′ for S′ is constructed, we can get a final shadow tree T for S according to two cases.

In the first case, the class of column 5 in T ′ consists of just edge 5 and 5. We then split tree edge 5
into three tree edges 5, 6, 7, and split shadow edge 5 into 5, 6, 7 in T . The result is equivalent to saying
that 7H free links to 6T, 6H free links to 5T, and the links that link to 5T in T ′ now link to 7T in T . The
same idea holds for shadow edges. In the second case, the class of column 5 in T ′ consists of edges other
than 5 and 5. Then we want 7H to link to 6T with a fixed link, and 6H to fix link to 5T, and the links that
link to 5T in T ′ now link to 7T in T . The same idea holds for shadow edges.

Unknown ancestral sequence: As mentioned by Gusfield (2002), the PPH problem with unknown
ancestral sequence can be solved by using the majority sequence as the root sequence and then applying
our algorithm. See Gusfield (2002) for more details.

6. RESULTS

We have implemented our algorithm for the general PPH problem in C and compared it with existing
programs for the PPH problem. DPPH (Bafna et al., 2003) was previously established as the fastest of the
existing programs (Chung and Gusfield, 2003b). Some representative examples are shown in Table 1. In the
case of m = 2,000 and n = 1,000, our program is about 250 times faster than DPPH, and the linear behavior
of its running time is clear. This result is an average of 10 test cases. As in Chung and Gusfield (2003b),
our test data is generated by the program ms (Hudson, 2002). That program is the widely used standard
for generating sequences that reflect the coalescent model of SNP sequence evolution.The cases of 50 and
100 sites and 1,000 individuals are included because they reflect the sizes of subproblems that are of current
interest in larger genomic scans. In those applications, there may be a huge number of such subproblems
that will be examined. Our program can be downloaded at wwwcsif.cs.ucdavis.edu/∼gusfield/lpph/.
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