
Heterogeneous Data Integration with

the Consensus Clustering Formalism

Vladimir Filkov1 and Steven Skiena2

1 CS Dept., UC Davis, One Shields Avenue, Davis, CA 95616
filkov@cs.ucdavis.edu

2 CS Dept. SUNY at Stony Brook, Stony Brook, NY 11794
skiena@cs.sunysb.edu

Abstract. Meaningfully integrating massive multi-experimental genomic
data sets is becoming critical for the understanding of gene function. We
have recently proposed methodologies for integrating large numbers of
microarray data sets based on consensus clustering. Our methods com-
bine gene clusters into a unified representation, or a consensus, that is
insensitive to mis-classifications in the individual experiments. Here we
extend their utility to heterogeneous data sets and focus on their refine-
ment and improvement. First of all we compare our best heuristic to
the popular majority rule consensus clustering heuristic, and show that
the former yields tighter consensuses. We propose a refinement to our
consensus algorithm by clustering of the source-specific clusterings as a
step before finding the consensus between them, thereby improving our
original results and increasing their biological relevance. We demonstrate
our methodology on three data sets of yeast with biologically interesting
results. Finally, we show that our methodology can deal successfully with
missing experimental values.

1 Introduction

High-throughput experiments in molecular biology and genetics are providing
us with wealth of data about living organisms. Sequence data, and other large-
scale genomic data, like gene expression, protein interaction, and phylogeny,
provide a lot of useful information about the observed biological systems. Since
the exact nature of the relationships between genes is not known, in addition to
their individual value, combining such diverse data sets could potentially reveal
different aspects of the genomic system.

Recently we have built a framework for integrating large-scale microarray
data based on clustering of individual experiments [1]. Given a group of source-
(or experiment-) specific clusterings we sought to identify a consensus clustering
close to all of them. The resulting consensus was both a representative of the
integrated data, and a less noisy version of the original data sets. In other words,
the consensus clustering had the role of an average, or median between the given
clusterings.

The formal problem was to find a clustering that had the smallest sum of
distances to the given clusterings:

CONSENSUS CLUSTERING (CC): Given k clusterings, C1, C2, . . ., Ck,
find a consensus clustering C∗ that minimizes

S =
k

∑

i=1

d(Ci, C
∗) . (1)

After simplifying the clusterings to set-partitions we developed very fast
heuristics for CC with the symmetric difference distance as the distance metric
between partitions. The heuristics were based on local search (with single ele-
ment move between clusters) and Simulated Annealing for exploring the space of
solutions [1]. Practically, we could get real-time results on instances of thousands
of genes and hundreds of experiments on a desktop PC.

In CC it was assumed that the given data in each experiment were classi-
fiable and it came clustered. The clustering was assumed to be hard, i.e. each
gene belongs to exactly one cluster (which is what the most popular microar-
ray data clustering software yields [2]). We did not insist on the clustering or
classification method and were not concerned with the raw data directly (al-
though as parts of the software tool we did provide a number of clustering
algorithms). Although clear for microarray data it is important to motivate the
case that clustering other genomic data is possible and pertinent. Data classifi-
cation and/or clustering is pervasive in high-throughput experiments, especially
during the discovery phase (i.e. fishing expeditions). Genomic data is often used
as categorical data, where if two entities are in the same category a structural
or functional connection between them is implied (i.e. guilt by association).
As massive data resides in software databases, it is relatively easy to submit
queries and quickly obtain answers to them. Consequently, entities are classi-
fied into those that satisfy the query and those that do not; often into more
than two, more meaningful categories. Even if not much is known about the
observed biological system, clustering the experimental data obtained from it
can be very useful in pointing out similar behavior within smaller parts of the
system, which may be easier to analyze further. Besides microarray data, other
examples of clustered/classified genomic data include functional classifications
of proteins [3], clusters of orthologous proteins [4], and phylogenetic data clusters
(http://bioinfo.mbb.yale.edu/genome/yeast/cluster).

In this paper we refine and extend our consensus clustering methodology and
show that it is useful for heterogeneous data set integration. First of all, we show
that our best heuristic, based on Simulated Annealing and local search, does bet-
ter than a popular Quota Rule heuristic, based on hierarchical clustering. In our
previous study we developed a measure, the Average sum of distances, to assess
the quality of data sets integration. Some of the data sets we tried to integrate
did not show any benefit from the integration. Here we refine our consensus clus-
tering approach by initially identifying groups of similar experiments which are
likelier to benefit from the integration than a general set of experiments. This is
equivalent to clustering the given clusterings. After performing this step the con-
sensuses are much more representative of the integrated data. We demonstrate

this improved data integration on three heterogeneous data sets, two of microar-
ray data, and one of phylogenetic profiles. Lastly we address the issue of missing
data. Because of different naming conventions, or due to experiment errors data
may be missing from the data sets. The effect of missing data is that only the
data common to all sets can be used, which might be a significant reduction of
the amount available. We propose a method for computational imputation of
missing data, based on our consensus clustering method, which decreases the
negative consequences of missing data. We show that it compares well with a
popular microarray missing value imputation method, KNNimpute [5].

This paper is organized as follows. In the rest of this section we review related
work on data integration and consensus clustering. We review and compare our
existing methodology and the popular quota rule in Sec. 2. In Sec. 3 we present
our refined method for consensus clustering, and we illustrate it on data in Sec. 4.
The missing data issue is addressed in Sec. 5. We discuss our results and give a
future outlook in Sec. 6.

1.1 Related Work

The topic of biological data integration is getting increasingly important and
is approached by researchers from many areas in computer science. In a recent
work, Hammer and Schneider [6] identify categories of important problems in
genomic data integration and propose an extensive framework for processing
and querying genomic information. The consensus clustering framework can be
used to addresses some of the problems identified, like for example multitude
and heterogeneity of available genomic repositories (C1), incorrectness due to
inconsistent and incompatible data (C8), and extraction of hidden and creation
of new knowledge (C11).

An early study on biological data integration was done by Marcotte et al. [7],
who give a combined algorithm for protein function prediction based on mi-
croarray and phylogeny data, by classifying the genes of the two different data
sets separately, and then combining the genes’ pair-wise information into a sin-
gle data set. Their approach does not scale immediately. Our methods extends
theirs to a general combinatorial data integration framework based on pair-wise
relationships between elements and any number of experiments.

In machine learning, Pavlidis et al. [8] use a Support Vector Machine algo-
rithm to integrate similar data sets as we do here in order to predict gene func-
tional classification. Their methods use a lot of hand tuning with any particular
type of data both prior and during the integration for best results. Troyanskaya
et al. [9] use a Bayesian framework to integrate different types of genomic data in
yeast. Their probabilistic approach is a parallel to our combinatorial approaches.

A lot of work has been done on specific versions of the consensus clustering
problem, based on the choice of a distance measure between the clusterings and
the optimization criterion. Strehl et al. [10] use a clustering distance function
derived from information theoretic concepts of shared information. Recently,
Monti et al. [11] used consensus clustering as a method for better clustering
and class discovery. Among other methods they use the quota rule to find a

consensus, an approach we describe and compare to our heuristics in Sec. 2.2.
Other authors have also used the quota rule in the past [12]. Finally, Cristofor
and Simovici [13] have used Genetic Algorithms as a heuristic to find median
partitions. They show that their approach does better than several others among
which a simple element move (or transfer) algorithm, which coincidently our
algorithm has also been shown to be better than recently [1].

It would be interesting in the near future to compare the machine learning
methods with our combinatorial approach.

2 Set Partitions and Median Partition Heuristics

In this paper we focus on the problem of consensus clustering in the simplest
case when clusterings are considered to be set-partitions. A set-partition, π, of
a set {1, 2, . . . , n}, is a collection of disjunct, non-empty subsets (blocks) that
cover the set completely. We denote the number of blocks in π by |π|, and label
them B1, B2, ..., B|π|. If a pair of different elements belong to the same block of
π then they are co-clustered, otherwise they are not.

Our consensus clustering problem is based on similarities (or distances) be-
tween set-partitions. There exist many different distance measures to compare
two set-partitions (see for example [1, 14, 15]). Some are based on pair counting,
others on shared information content.

For our purposes we use a distance measure based on pair counting, known as
the symmetric difference distance. This measure is defined on the number of co-
clustered and not co-clustered pairs in the partitions. Given two set-partitions
π1 and π2, let, a equal the number of pairs of elements co-clustered in both
partitions, b equal the number of pairs of elements co-clustered in π1, but not
in π2, c equal the number of pairs co-clustered in π2, but not in π1, and d the
number of pairs not co-clustered in both partitions. (in other words a and d
count the number of agreements in both partitions, while b and c count the
disagreements). Then, the symmetric difference is defined as

d(π1, π2) = b + c =

(

n

2

)

− (a + d) . (2)

This distance is a metric and is related to the Rand Index, R = (a + d)/
(

n

2

)

and other pair-counting measures of partition similarity [16]. The measure is
not corrected for chance though, i.e. the distance between two independent set
partitions is non-zero on the average, and is dependent on n. A version corrected
for chance exists and is related to the Adjusted Rand Index [17]. We note that
the symmetric difference metric has a nice property that it is computable in
linear time [16] which is one of the reasons why we chose it (the other is the
fast update as described later). The adjusted Rand index is given by a complex
formula, and although it can be also computed in linear time, we are not aware
of a fast update scheme for it. We will use the Adjusted Rand in Sec. 3 where
the algorithm complexity is not an issue.

The consensus clustering problem on set-partitions is known as the median
partition problem [18].
MEDIAN PARTITION (MP): Given k partitions, π1, π2, . . ., πk, find a
median partition π that minimizes

S =

k
∑

i=1

d(πi, π) . (3)

When d(., .) is the symmetric difference distance, MP is known to be NP-
complete in general [19, 20].

In the next sections we describe and compare two heuristics for the median
partition problem. In Sec. 2.1 we present briefly a heuristic we have developed
recently based on a simulated annealing optimizer for the sum of distances and
fast one element move updates to explore the space of set-partitions, that was
demonstrated to work well on large instances of MP . In Sec. 2.2 we describe
a popular median partition heuristic based on a parametric clustering of the
distance matrix derived from counts of pairwise co-clusteredness of elements in
all partitions. Our goal is to compare these two heuristics. We discuss their
implementation and performance in Sec. 2.3.

The following matrix is of importance for the exposition in the next sections,
and represents a useful summary of the given k set-partitions. The consensus or
agreement matrix Ak×k, is defined as aij =

∑

1≤p≤k rijp, where rijp = 1 if i and
j are co-clustered in partition πp, and 0 otherwise. The entries of A count the
number of times i and j are co-clustered in all k set-partitions, and are between
0 and k. Note that A can be calculated in O(n2k) time which is manageable
even for large n and k.

2.1 Simulated Annealing with One Element Moves

One element moves between clusters can transform one set-partition into any
other and thus can be used to explore the space of all set-partitions. A candidate
median partition can be progressively refined using one element moves. We have
shown [1] that the sum of distances can be updated fast after performing a one
element move on the median partition, under the symmetric difference metric:

Lemma 1. Moving an element x in the consensus partition π from cluster Ba

to cluster Bb, decreases the sum of distances by

∆S =
∑

all i ∈ Ba

i 6= x

(k − 2axi) −
∑

all j ∈ Bb

j 6= x

(k − 2axj) . (4)

Thus, once A has been calculated, updating S after moving x into a different
block, takes O(|Ba| + |Bb|) steps. We used this result to design a simulated
annealing algorithm for the median partition problem. We minimize the function
S (the sum of distances), and explore the solution space with a transition based

on random one element moves to a random block. The algorithm is summarized
below, and more details are available in [1].

Algorithm 1 Simulated Annealing, One element Move (SAOM)
Given k set-partitions πp, p = 1 . . . k, of n elements,

1. Pre-process the input set-partitions to obtain Ak×k

2. “Guess” an initial median set-partition π
3. Simulated Annealing

– Transition: Random element x and a random block
– Target Function: S, the sum of distances

2.2 Quota Rule

The counts aij are useful because they measure the strength of co-clusteredness
between i and j, over all partitions (or experiments). From these counts we can
define distances between every pair i and j as: mij = 1−aij/k, i.e. the fraction of
experiments in which the two genes are not co-clustered. The distance measure
mij is easily shown to be a metric (it follows from the fact that 1 + racp ≥
rabp + rbcp, for any 0 ≤ p ≤ k). Because of that, the matrix M has some
very nice properties that allow for visual exploration of the commonness of the
clusterings it summarizes. Using this matrix as a tool for consensus clustering
directly (including the visualization) is addressed in a recent study by Monti et
al. [11].

The quota rule or majority rule says that elements i and j are co-clustered
in the consensus clustering if they are co-clustered in sufficient number of clus-
terings, i.e. aij ≥ q, for some q, usually q ≥ k/2. This rule can be interpreted
in many different ways, between two extremes, which correspond to single-link
and complete-link hierarchical clustering on the distance matrix M . In general
however any non-parametric clustering method could be utilized to cluster the
n elements.

In [12] the quota rule has been used with a version of Average-Link Hier-
archical Clustering known as Unweighted Pair Group Method with Arithmetic
mean (UPGMA) as a heuristic for the median partition problem. Monti et al.
[11] use M with various hierarchical clustering algorithms for their consensus
clustering methodology.

Here we use the following algorithm for the quota rule heuristic:

Algorithm 2 Quota Rule (QR)
Given k set-partitions πp, p = 1 . . . k, of n elements,

1. Pre-process the input set-partitions to obtain Ak×k

2. Calculate the clustering distance matrix mij = 1 − aij/k
3. Cluster the n elements with UPGMA to obtain the consensus clustering

The complexity of this algorithm is on the order of the complexity of the
clustering algorithm. This of course depends on the implementation, but the
worst case UPGMA complexity is known to be O(n2logn).

2.3 Comparison of the Heuristics

The SAOM heuristic was found to be very fast on instances of thousands of
genes and hundreds of set-partitions. It also clearly outperformed, in terms of
the quality of the consensus, the greedy heuristic of improving the sum by mov-
ing elements between blocks until no such improvement exists [1]. In the same
study SAOM performed well in retrieving a consensus from a noisy set of initial
partitions.

Here we compare the performance of SAOM with that of the Quota Rule
heuristic. Their performance is tested on 8 data sets, five of artificial and three
of real data. The measure of performance that we use is the average sum of
distances to the given set-partitions, i.e. Avg.SOD = Smin/(k

(

n
2

)

), which is a
measure of quality of the consensus clustering [1].

Since both heuristics are independent on k (the number of set-partitions given
initially) we generated the same number of set partitions, k = 50, for the random
data sets. The number of elements in the set-partition is n = 10, 50, 100, 200, 500
respectively. The three real data sets, ccg, yst, and php, are described in Sec-
tion 4.1. The results are shown in Table 1, where the values are the Avg.SOD.

Table 1. Tests on eight data sets show SAOM yields better consensuses

ID n k QR(0.5) QR(0.75) SAOM

ccg 541 173 0.141 0.145 0.139
yst 541 73 0.122 0.113 0.107
php 541 21 0.219 0.225 0.220
R1 10 50 0.139 0.142 0.138
R2 50 50 0.065 0.062 0.061
R3 100 50 0.050 0.040 0.036
R4 200 50 0.266 0.250 0.231
R5 500 50 0.400 0.370 0.351

The SAOM was averaged over 20 runs. The QR depends on the UPGMA
threshold. We used two different quotas, aij > 0.5, and aij > 0.75 which trans-
lates into mij < 0.5 and mij < 0.25, respectively.

Both heuristics ran in under a minute for all examples. In all but one of the
16 comparisons SAOM did better than QR. Our conclusion is that SAOM does
a good job in bettering the consensus, and most often better than the Quota
Rule.

3 Refining the Consensus Clustering

Although our algorithm always yields a candidate consensus clustering it is not
realistic to expect that it will always be representative of all set-partitions. The

parallel is with averaging numbers: the average is meaningful as a representative
only if the numbers are close to each other.

To get the most out of it the consensus clustering should summarize close
groups of clusterings, as consensus on “tighter” clusters would be much more rep-
resentative than on “looser” ones. We describe next how to break down a group
of clusterings into smaller, but tighter groups. Effectively this means clustering
the given clusterings.

As in any clustering we begin by calculating the distance between every pair
of set partitions. We use the Adjusted Rand Index (ARI) as our measure of
choice, which is Rand corrected for chance [17]:

Ra =
a + d − nc
(

n

2

)

− nc

, where nc =
(a + b)(a + c) + (c + d)(b + d)

(

n

2

) . (5)

Here a, b, c, and d are the pairs counts as defined in Sec. 2. The corrective factor
nc takes into account the chance similarities between two random, independent
set-partitions.

Since ARI is a similarity measure we use 1 − Ra as the distance function.
(Actually, as defined Ra is bounded above by 1 but is not bounded below by 0,
and can have small negative values. In reality though it is easy to correct the
distance matrix for this). The ARI has been shown to be the measure of choice
among the pair counting partition agreement measures [21].

The clustering algorithm we use is average-link hierarchical clustering. We
had to choose a non-parametric clustering method because we do not have a
representative, or a median, between the clusters (the consensus is a possible
median, but it is still expensive to compute). The distance threshold we chose was
0.5, which for Ra represents a very good match between the set-partitions [17].

Algorithm 3 Refined consensus clustering(RCC)

1. Calculate the distance matrix d(π1, π2) = 1 − Ra(π1, π2)
2. Cluster (UPGMA) the set-partitions into clusters K1, K2, . . . , Km with a

threshold of τ = 0.5.
3. Find the consensus partition for each cluster of set-partitions, i.e. Consl =

SAOM(Kl), 1 ≤ l ≤ m

Note that this is the reverse of what’s usually done in clustering: first one
finds medians then cluster around them.

In the next section we illustrate this method.

4 Integrating Heterogeneous Data Sets

We are interested in genomic data of yeast since its genome has been sequenced
fully some time ago, and there is a wealth of knowledge about it.

The starting point is to obtain non-trivial clusterings for these data sets. In
the following we do not claim that our initial clusterings are very meaningful.
However, we do expect, as we have shown before that the consensus clustering
will be successful in sorting through the noise and mis-clusterings even when the
fraction of mis-clustered elements in individual experiments is as high as 20% [1].

4.1 Available Data and Initial Clustering

For this study we will use three different data sets, two of microarray data and
one of phylogeny data.

There are many publicly available studies of the expression of all the genes in
the genome of yeast, most notably the data sets by Cho et al. [22] and Spellman
et al. [23], known jointly as the cell cycling genes (ccg) data. The data set is a
matrix of 6177 rows (genes) by 73 columns (conditions or experiments). Another
multi-condition experiment, the yeast stress (yst), is the one reported in Gasch
et al. [24], where the responses of 6152 yeast genes were observed to 173 different
stress conditions, like sharp temperature changes, exposure to chemicals, etc.

There are many more available microarray data that we could have used. A
comprehensive resource for yeast microarray data is the Saccharomyces Genome
Database at Stanford (http://genome-www.stanford.edu/Saccharomyces/). Mi-
croarray data of other organisms is available from the Stanford Microarray
Database, http://genome-www5.stanford.edu/MicroArray/SMD/, with ≈ 6000
array experiments publicly available (as of Jan 27, 2004).

Another type of data that we will use in our studies are phylogenetic profiles
of yeast ORFs. One such data set, (php), comes from the Gerstein lab at Yale
(available from: http://bioinfo.mbb.yale.edu/genome/yeast/cluster/profile/sc19-
rank.txt). For each yeast ORF this data set contains the number of significant
hits to similar sequence regions in 21 other organisms’ genomes. A significant
hit is a statistically significant alignment (similarity as judged by PSI-BLAST
scores) of the sequences of the yeast ORF and another organism’s genome. Thus
to each ORF (out of 6061) there is associated a vector of size 21.

We clustered each of the 267 total experiments into 10 clusters by using a
one dimensional version of K-means.

4.2 Results

Here we report the results of two different studies. In the first one we integrated
the two microarray data sets, ccg and yst. Some of the clusters are shown
in Table 4.2. It is evident that similar experimental conditions are clustered
together.

The consensus clusterings are also meaningful. A quick look in the consensus
of cluster 4 above shows that two genes involved in transcription are clustered
together, YPR178w, a pre-mRNA splicing factor, and YOL039w, a structural
ribosomal protein.

In our previous study [1] we mentioned a negative result upon integrating the
73 ccg set-partitions together with the 21 php set-partitions from the phylogeny
data. The results showed that we would not benefit from such an integration,
because the Avg.SOD = 0.3450, was very close to the Avg. SOD of a set of
random set-partitions of 500 elements. In our second study we show that we can
integrate such data sets more meaningfully by clustering the set partitions first.
After clustering the set-partitions, with varying numbers of clusters from 3 to
10 the set-partitions from the two data sets php and ccg were never clustered

Table 2. Example Consensus Clusters of ccg and yst

Cluster 4 (Avg. SOD = 0.1179) Cluster 5 (Avg. SOD = 0.1696)

Heat Shock 05 minutes hs-1 2.5mM DTT 015 min dtt-1
Heat Shock 10 minutes hs-1 steady-state 1M sorbitol
Heat Shock 15 minutes hs-1 aa starv 4 h
Heat Shock 20 minutes hs-1 aa starv 6 h
Heat Shock 30 minutes hs-1 YPD 4 h ypd-2
Heat Shock 40 minutes hs-1 galactose vs. reference pool car-1

Heat Shock 000 minutes hs-2 glucose vs. reference pool car-1
Heat Shock 000 minutes hs-2 mannose vs. reference pool car-1
Heat Shock 015 minutes hs-2 raffinose vs. reference pool car-1

”heat shock 17 to 37, 20 minutes” sucrose vs. reference pool car-1
”heat shock 21 to 37, 20 minutes” YP galactose vs reference pool car-2
”heat shock 25 to 37, 20 minutes” Heat Shock 005 minutes hs-2
”heat shock 29 to 37, 20 minutes” elu0

together. This is an interesting result in that it indicates that the phylogenetic
profiles data gives us completely independent information from the cell cycling
genes data. Similarly integrating yst with php yielded clusters which never had
overlap of the two data sets. The conclusion is that the negative result from
our previous study is due to the independence of the php vs both ccg and
yst, which is useful to know for further study. Our clusters are available from
http://www.cs.ucdavis.edu/∼filkov/integration.

5 Microarray Data Imputation

Microarrays are characterized by the large amounts of data they produce. That
same scale also causes some data to be corrupt or missing. For example, when
trying to integrate ccg and yst we found that out of the ≈ 6000 shared genes
only about 540 had no missing data in both sets. Experimenters run into such
errors daily and they are faced with several choices: repeat the experiment that
had the missing value(s) in it, discard that whole gene from consideration, or
impute the data computationally. The idea behind data imputation is that since
multiple genes exhibit similar patterns across experiments it is likely that one
can recover, to a certain degree, the missing values based on the present values
of genes behaving similarly.

Beyond simple imputation (like substituting 0’s, or the row/column aver-
ages for the missing elements) there have been several important studies that
have proposed filling in missing values based on local similarities within the ex-
pression matrix, based on different models. A notable study that was first to
produce useful software, (KNNimpute, available at http://smi-web.stanford.edu/
projects/helix/pubs/impute/) is [5]. More recent studies on missing data imput-
ing are [25, 26].

We use the consensus clustering methodology to impute missing values. We
demonstrate our method on microarray gene expression data by comparing it
to the behavior of KNNimpute. Intuitively, the value of all the genes in a clus-
ter in the consensus have values that are close to each other. A missing value
for a gene’s expression in a particular experiment is similar to having an er-
roneous value for the expression. In all likelihood, the gene will therefore be
mis-clustered in that experiment. However, in other experiments that same gene
will be clustered correctly (or at least the chance of it being mis-clustered in
multiple experiments is very small). Thus identifying the similar groups of ex-
periments and the consensus clustering between them gives us a way to estimate
the missing value. We do that with the following algorithm.

Algorithm 4 Consensus Clustering Impute (CCimpute)

1. While clustering initially (within each experiment), for all i and j s.t. vij is
missing: place gene i in a singleton cluster in the j-th set partition

2. Cluster (UPGMA) the set-partitions under the Ra measure into clusters
K1, K2, . . . , Km, with threshold τ = 0.5

3. Find the consensus partition for each cluster of set-partitions, i.e. Consl =
SAOM(Kl), 1 ≤ l ≤ m

4. Estimate a missing vij as follows: Let experiment j be clustered in cluster
K(j), and let gene i be clustered in cluster C(i) in ConsK(j). Then v̂ij =
∑

x∈C(i) vxj/|C(i)|

In other words, the missing value vij is estimated as the average value of the
genes’ expressions of genes co-clustered with i in the consensus clustering of the
experiment cluster that contains j.

We compare the performance of our algorithm to that of KNNimpute. KN-
Nimpute was used with 14 neighbors, which is a value at which it performs
best [5]. We selected randomly 100 genes with no missing values from the ccg
experiment above. Thus, we have a complete 100 × 73 matrix. Next, we hid at
random 5%, 10%, 15%, and 20% of the values. Then, we used the normalized
RMS (root mean square) error to compare the imputed to the real matrix.

The normalized RMS error, following [5] is defined as the RMS error normal-
ized with respect to the average value of the complete data matrix. Let nr be
the number of rows in the matrix (i.e. number of genes) and nc be the number
of columns (i.e. experiments), and vij the experimental values. Then

NRMS =

√

1
nrnc

∑nr

i=1

∑nc

j=1(vij − v̂ij)2

1
nrnc

∑nr

i=1

∑nc

j=1 vij

. (6)

The results are shown in Fig. 1. For reference a third line is shown correspond-
ing to the popular method of imputing the row averages for the missing values.
Although our algorithm is not better than KNNimpute it does do well enough
for the purposes of dealing with missing values, as compared to the row-average
method. Row-average on the other hand does similarly as column-average, and
both do better than imputing with all zeros [5].

It is evident that the CCimpute values vary more than the results of the
other methods. This may be a result of insufficient data (100 genes may be a
small number). Further studies are needed to evaluate this issue.

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

Percent values missing

CCimpute
KNNimpute

Row Average

Fig. 1. Comparison of KNNimpute and CCimpute and Row Average

6 Discussion and Future

In this paper we extended our recent combinatorial approach to biological data
integration through consensus clustering. We compared our best heuristic to the
Quota rule with favorable results. We showed that our methods can be made
more useful and biologically relevant by clustering the original clusterings into
tight groups. We also demonstrated that this method can deal with missing data
in the clustering.

The conclusion is that the median partition problem with the symmetric
difference distance is a general method for meta-data analysis and integration,
robust to noise, and missing data, and scalable with respect to the available ex-
periments. The actual SAOM heuristic is fast (real time), and reliable, applicable
to data sets of thousands of entities and thousands of experiments.

At this time we are working in two specific directions. On one hand we are
trying to develop faster update methods for the Adjusted Rand measure, which
is, we believe, a better way to calculate similarities between partitions. At this
point our Adj. Rand methods are a thousand time slower than those on the

symmetric difference metric, and hence not practical. On the other hand we
are developing an integrated environment for visual analysis and integration of
different large-scale data sets, which would appeal to practicing experimenters.

There is also some room for improvement of our imputation method that
should make it more competitive with KNNimpute. One idea is to weigh the
experimental values vij ’s, which contribute to the estimated missing values, by
determining how often they are co-clustered with gene i in the consensus over
multiple runs of SAOM. This would effectively increase the contribution of the
observed values for genes that are most often behaving as the gene whose value
is missing and thus likely improve the estimate for it.

References

1. Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. In: Pro-
ceedings of Fifteenth International Conference on Tools with Artificial Intelligence,
IEEE Computer Society (2003) 418–426

2. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of Science
85 (1998) 14863–8

3. Mewes, H., Hani, J., Pfeiffer, F., Frishman, D.: Mips: a database for genomes and
protein sequences. Nucleic Acids Research 26 (1998) 33–37

4. Tatusov, R., Natale, D., Garkavtsev, I., Tatusova, T., Shankavaram, U., Rao, B.,
Kiryutin, B., Galperin, M., Fedorova, N., Koonin, E.: The cog database: new
developments in phylogenetic classification of proteins from complete genomes.
Nucleic Acids Res 29 (2001) 22–28

5. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., Altman, R.: Missing value estimation methods for dna microarrays.
Bioinformatics 17 (2001) 520–525

6. Hammer, J., Schneider, M.: Genomics algebra: A new, integrating data model, lan-
guage, and tool for processing and querying genomic information. In: Prooceedings
of the First Biennial Conference on Innovative Data Systems Research, Morgan
Kaufman Publishers (2003) 176–187

7. Marcotte, M., Pellegrine, M., Thompson, M.J., Yeates, T., Eisenberg, D.: A com-
bined algorithm for genome wide prediction of protein function. Nature 402 (1999)
83–86

8. Pavlidis, P., Weston, J., Cai, J., Noble, W.: Learning gene functional classifications
from multiple data types. Journal of Computational Biology 9 (2002) 401–411

9. Troyanskaya, O., Dolinski, K., Owen, A., Altman, R., Botstein, D.: A bayesian
framework for combining heterogeneous data sources for gene function prediction
(in s. cerevisiae). Proc. Natl. Acad. Sci. USA 100 (2003) 8348–8353

10. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining partitionings. In: Proceedings of AAAI, AAAI/MIT Press (2002) 93–98

11. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering. Machine
Learning 52 (2003) 91–118 Functional Genomics Special Issue.

12. Gordon, A., Vichi, M.: Partitions of partitions. Journal of Classification 15 (1998)
265–285

13. Cristofor, D., Simovici, D.: Finding median partitions using information-
theoretical-based genetic algorithms. Journal of Universal Computer Science 8

(2002) 153–172

14. Meilâ, M.: Comparing clusterings by the variation of information. In Schölkopf, B.,
Warmuth, M., eds.: Proceedings of the Sixteenth Annual Conference on Learning
Theory(COLT). Volume 2777 of Lecture Notes in Artificial Intelligence., Springer
Verlag (2003)

15. Mirkin, B.: The problems of approximation in spaces of relations and qualitative
data analysis. Information and Remote Control 35 (1974) 1424–1431

16. Filkov, V.: Computational Inference of Gene Regulation. PhD thesis, State Uni-
versity of New York at Stony Brook (2002)

17. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2 (1985)
193–218

18. Barthélemy, J.P., Leclerc, B.: The median procedure for partitions. In Cox, I.,
Hansen, P., Julesz, B., eds.: Partitioning Data Sets. Volume 19 of DIMACS Series
in Descrete Mathematics. American Mathematical Society, Providence, RI (1995)
3–34

19. Wakabayashi, Y.: The complexity of computing medians of relations. Resenhas
IME-USP 3 (1998) 323–349

20. Krivanek, M., Moravek, J.: Hard problems in hierarchical-tree clustering. Acta
Informatica 23 (1986) 311–323

21. Downton, M., Brennan, T.: Comparing classifications: An evaluation of several
coefficients of partition agreement (1980) Paper presented at the meeting of the
Classification Society, Boulder, CO.

22. Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L.,
Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-
wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2 (1998)
65–73

23. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown,
P., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated
genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular
Biology of the Cell 9 (1998) 3273–3297

24. Gasch, A., Spellman, P., Kao, C., Carmen-Harel, O., Eisen, M., Storz, G., Botstein,
D., Brown, P.: Genomic expression programs in the response of yeast cells to
environment changes. Molecular Biology of the Cell 11 (2000) 4241–4257

25. Bar-Joseph, Z., Gerber, G., Gifford, D., Jaakkola, T., Simon, I.: Continuous repre-
sentations of time series gene expression data. Journal of Computational Biology
10 (2003) 241–256

26. Zhou, X., Wang, X., Dougherty, E.: Missing-value estimation using linear and non-
linear regression with bayesian gene selection. Bioinformatics 19 (2003) 2302–2307

