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ABSTRACT

Resolving the general organizational principles that govern the interactions during tran-

scriptional gene regulation has great relevance for understanding disease progression, bio-

fabrication, and biological systems in general. The available genome-level monitoring tech-

nologies and the best understood biological work on gene regulation are together providing

us with unprecedented amounts of data and universal modeling frameworks in which to

reason about regulatory systems on a computational level. Gene regulatory systems exhibit

modularity in their regulatory sequences as well as in the corresponding gene expression.

This modularity has a nontrivial, general combinatorial structure that can be studied and

generalized to model classes of regulatory systems. Here, we study computationally the

combinatorial nature of transcriptional regulation by assuming a one-to-one relationship

between shared patterns in genome-wide gene-expression and cis-region modules. In our

combinatorial framework, the DNA binding events are complementary to their expression

counterparts, and together let us approximate the underlying regulation structure. Our

model maps regulatory systems onto hierarchical structures which can be approximated

by conflating existing large scale gene expression and ChIP-chip data. We have developed

methods for building regulatory hierarchies and identifying the basic functional units, or

modules, of transcriptional regulation. We validate our model using yeast data by showing

agreement of our predictions with experimental data, and using the hierarchies to resolve

a finer structure of co-regulation.
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1. INTRODUCTION

IN THIS POST-GENOMIC ERA, a critical challenge is to understand how genetic components interact to

control (i.e., regulate) gene activity. Resolving the general principles behind such interactions would

have wide-ranging implications. From a basic science perspective, it would allow us to better understand

the nature of transcriptional regulation on a fundamental level. More practically, it could influence our

interaction and manipulation of nature in different applications. Biofabrication is becoming possible as

we understand better the biological systems and are able to engineer them. Knowing the rules in the
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organization of regulatory systems will enable us to build better, task-specific genetic circuits. As many

diseases have a genetic cause, knowing the pathways through which these diseases develop and progress

can help us understand the diseases and, by modifying those pathways, even modify the disease itself.

Understanding the regulatory control of genes that cause such diseases is key to our ability to do those

things.

Computational data analysis methods are particularly important in genomics because large-scale tech-

nologies produce increasing amounts of data that necessitate the use of computers and sophisticated

algorithms to provide meaningful information to users. The available genome-level monitoring technologies

provide us with the means to observe complete biological systems. They also allow us to identify the

elements of transcription and their interactions from underlying repeating patterns shared by regulatory

DNA or expression data across the genome. On the other hand, the best understood biological work on gene

regulation have revealed that gene regulatory regions consist of modules, each incorporating one or more

binding sites. Such modules have been shown to have precise effects on the resulting gene expression

and to cooperate through specific rules, or logic. Together, the unprecedented amounts of data and the

biological principles of regulation modularity present us with universal modeling frameworks in which to

reason about regulatory systems on a computational level.

Inspired by the best understood biological gene regulatory systems and the available large-scale genomic

data, here we study computationally the modular nature of transcriptional regulation by modeling the

structure of shared patterns in genome-wide gene expression and binding location data. In our combinatorial

framework, DNA binding events are complementary to their expression counterparts, and together let us

approximate the underlying regulation structure. Our model maps regulatory systems onto hierarchical

structures which can be approximated by conflating existing large-scale genomic expression and ChIP-

chip data. In this paper, we propose a simple combinatorial model of modularity in transcriptional gene

regulation and evaluate its plausibility. Specifically, we

� Propose a simplified model of gene regulation based on a one-to-one correspondence between modules

of binding sites in cis-regions and shared basic patterns in the gene expression.
� Present a graph theoretical structure, the Regulation Hierarchy, which captures our model and is an

independent view of regulation from the reference points of cis-regulation and gene expression.
� Present the Expression Hierarchy and Transcription Factor Hierarchy, structures which approximate the

Regulation Hierarchy, and methods to obtain them using biclusters of gene expression and ChIP-chip

data.
� Present results that show significant agreement between the two approximations of a Regulation Hierarchy

(expression and TF hierarchy), associating modularity in regulation to the granularity in gene expression.

Our method is novel in that it models the regulation modularity independently of the data types and

utilizes the regulation modularity to enhance the results, while offering predictions that allow its validation

from large-scale data. The model naturally encompasses the conflation of gene expression and TF-DNA

binding data, of which public repositories are available. Its utility is wide-ranging, as it can be used to

discover recurring cis-modules and their effects on regulation, as well as their co-occurrence with other

modules. The model can also be extended to include functional roles of cis-modules, enabling language-

theoretic treatments of the logic of cis-regulation.

This paper is organized as follows. In the next section, Section 2, we introduce the model and the

regulation hierarchies following from it, including their properties. In Section 3, we make the case for

using biclusters as expression patterns. Section 4 describes our methods used in building the hierarchies

as well as metrics used to evaluate the results. We discuss the results in Section 5. Related work is given

in Section 6, and we conclude in Section 7.

2. PROPOSED MODEL AND THE REGULATION HIERARCHY

We propose a simple (and very simplified) model of gene regulation based on a one-to-one correspon-

dence between functional groups of binding sites in genes’ cis-regions (CRs), which we call cis-regulatory

modules (CRMs), and patterns in the gene expression matrix shared by the genes. The guiding principle

is that CRMs, to a first approximation, are atomic and responsible for an atomic gene expression pattern.
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FIG. 1. Illustration of the simple model: the four cis-regions on the left are responsible for the expression patterns

in the gene expression matrix on the right, where each box is an experiment (darker shades indicate higher gene

expression). Cis-modules a, b, and c correspond to expression events a, b, and c.

They are the building blocks effecting gene expression, and their combinations completely determine any

expression pattern during development. Figure 1 gives an illustration. On the right is a gene expression

matrix corresponding to four genes, the horizontal stripes are the gene expression profiles, and each box

on the y-axis corresponds to one microarray experiment. On the left are given the four genes’ CRs,

with binding sites organized in CRMs as indicated. The expression patterns a, b, and c on the right are

consequences of the actions of the corresponding modules in the CRs.

We can formalize this notion of cis-modularity drawing from the discussion and illustration above with

the following simple rules:

1. CRMs are the smallest sets of binding sites (or equivalently the TFs that bind there) which have a

distinguishable function in the expression of a gene.

2. We call the smallest “significant patterns” of gene expression Fundamental Expression Patterns (FEPs),

examples of which are the patterns a, b, and c on the right in Figure 1. We do not define FEPs completely

here, but below we describe a practical approach to specify these patterns, for general gene expression

matrices, using biclustering.

3. There is a one-to-one relationship between CRMs and FEPs.

Therefore, in our model of transcriptional regulation, a gene’s expression is completely determined by

the modules in its CR. Thus, two genes having the same CRMs will be expressed the same, while those

that share CRMs will be co-regulated and those that share FEPs co-expressed. Differentially expressed

genes will differ in at least one CRM in their CRs.

2.1. Regulation hierarchies

The third rule above naturally implies a partial order among genes based on the subset relationship

between their sets of CRMs (or, equivalently FEPs), yielding a regulation structure that summarizes the

co-regulation among genes.

The Regulation Hierarchy (RH) is meant to be an invariant view of regulation from both the sequence

and gene expression, and a representation of both. RH is defined as a directed graph, Gr D .V; Er /, where

V is a set of nodes, or genes fg1; g2; : : : ; gng, and there is an edge between two nodes i and j , if the

set of CRMs regulating gene i is a subset of the set of the CRMs regulating gene j , and the direction of
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the edge is from the smaller toward the larger set of regulators. That is, if Mod.x/ is the set of modules

regulating node x, then for every pair of genes i and j , .i; j / 2 Er if Mod.i/ � Mod.j /. If gi and gj

share CRMs but none dominates the other, then neither .i; j / 2 Er nor .j; i/ 2 Er . Equivalently, RH can

be defined in terms of the shared FEPs in the gene expressions, hence its invariant nature. Although this

structure set-theoretically is a partially ordered set, or poset (but not a lattice or even semi-lattice because

the meet and join are not defined for all pairs of genes), we call it a hierarchy to capture its level structure

and branching.

We define the following two additional hierarchy graphs, which, in contrast to RH, can be obtained from

existing data. The first is the Transcription Factor Hierarchy (TFH), defined as the graph Gtf D .V; Etf /,

where if Tf .x/ is the set of transcription factors that can bind to the CR of gene x then .i; j / 2 Etf if

Tf .i/ � Tf .j /. In practice, we can construct the TFH from TF-DNA binding data by carefully evaluating

the overlaps between TF regulators. The second hierarchy is the Expression Hierarchy (EH) in which nodes

are FEPs, or significant sub-matrices in the expression matrix. The EH graph is defined as Ge D .M; Ee/,

over a set of gene expression sub-matrices, M D fm1.g1; e1/; m2.g2; e2/; : : : ; mn.gn ; en/g, where there is

an edge between nodes mi .gi ; ei/ and mj .gj ; ej / if gi � gj and ej � ei . In practice, the nodes of the

EH, respectively, TFH, will be sets of genes, such that within each set the genes will have the same FEPs,

respectively the same TFs. The definitions above can readily be extended to incorporate gene sets at the

nodes, instead of just single genes.

2.2. Properties and utility of the regulation hierarchies

The EH and TFH are, in a way, an upper and lower bound (respectively) on the edges in the RH, because

their sets of edges satisfy Ee � Er � Etf . Namely, Er � Etf , since CRMs are groups of TFs and there

is no partial overlap between them. On the other hand, Ee � Er since FEPs correspond to CRMs, in

the ideal case, but the data may not contain all possible FEPs (i.e,. all possible ways that a gene can be

differentially expressed).

Figure 2 illustrates on an example the above inclusion relationship between RH, EH, and TFH. Each

node represents a gene’s regulatory region, shown with the list of TFs (squares) binding there, and its

expression profile, comprising eight experiments. There are two additional expression experiments: the

dashed rectangles to the right of the first eight, which are imaginary and indicate differential expression of

which genes are capable but that is not detected in the data. Pairs of nodes are connected by edges if they

share TFs or expression patterns, as specified by our model. Each gene expression pattern corresponds to

a cis-module. Light gray edges are in the EH (and thus in all three hierarchies), and are obtained from

evidence of shared FEPs in the gene expression data. Dark gray edges are in RH (and also in TFH), and

their presence in the absence of an EH edge indicate there is modularity in the CRs unsupported by the

expression data (potentially because more experiments are needed, as with the nodes with TF lists fAg,

fB; Cg, and fA; B; Cg in the figure). Black edges belong only to the TFH. Their presence in the absence

of the other two edge types indicates only shared TFs between nodes but not necessarily co-regulation, as

with the nodes with TF lists fB; Cg, fDg, and fB; C; Dg in the figure.

The RH and TFH will not be equal in general because there can be TFs binding to a CR without having

a functional effect on that gene’s expression. Likewise, the EH and RH will not be equal in general because

not all modules’ functions are identifiable from existing data. With ideal (but not necessarily complete)

data, these three hierarchies would be directed, and transitively closed graphs [i.e., if .i; j / 2 E and

.j; k/ 2 E then .i; k/ 2 E]. They would also be acyclic, except for the trivial cycles between two genes

sharing exactly the same regulators.

From the RH one can readily answer if two genes are co-regulated by looking up if they have a common

root node. Also, with the RH and the TFH one can explore TF modules, whereas from the RH and EH

the basic expression signals, FEPs corresponding to CRMs can be found.

We call the lowest nodes roots, and the highest leaves (Fig. 2). From the definition of the hierarchies, and

since the nodes in the EH and TFH will be sets of genes, the levels in which they occur in the hierarchy

will be related to the co-expression and co-regulation among the genes in each node. Generally, the higher

the node is in the hierarchy, the higher the level of co-expression and co-regulation among its genes. Genes

in root nodes are co-regulated by a small set of TFs, each set representing a CRM. The number of root
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FIG. 2. Illustration of the regulation hierarchies and their relationship. EH, RH, and TFH are the expression,

regulation, and TF hierarchies, respectively, and their edge sets satisfy the inclusion relationship shown. At each

node are shown the cis-region with TF-specific binding sites, and an example corresponding gene expression profile

under eight experiments. Two hypothetical gene expression patterns are shown dashed, to indicate that not all effects

of TF binding are accounted for in the gene expression data. The light gray edges represent links in the EH (and RH

and TFH), dark gray edges links in RH (and TFH), and the black edges links only in TFH. The lower nodes in the

hierarchy have “simpler” signals and cis-regions, while the higher ones are more tightly co-regulated and co-expressed.

nodes for a given leaf node is an indicator of its regulation complexity. Edges in the hierarchy represent

shared regulation.

2.3. Cis-regulatory modules and the regulation hierarchy

The definition of RH gives us a way to identify potential CRMs, by (1) identifying the root nodes in

the RH and looking up their TF sets, and (2) identifying the TF differences between consecutive levels in

the hierarchy. The groups of TFs such identified form the set of CRMs for the hierarchy. All expression

patterns of genes in the hierarchy can be decomposed to the expression patterns of the FEPs corresponding

to those CRMs.

In Figure 3, RH nodes are shown with corresponding TFs to illustrate how CRMs are organized on

the hierarchy. Nodes 1 and 2 are roots, and hence their TF sets, fTF1; TF2g and fTF3g, are CRMs. Since

Node 3 has fTF1; TF2; TF3; TF4g as a set of TFs, by taking the set differences along all edges in the

hierarchy we get a total of three potential CRMs in this example: fTF1; TF2g, fTF3g, and fTF4g.

FIG. 3. The nodes in the regulation hierarchy organize the potential cis-regulatory modules (CRMs) in order of

increasing complexity, from roots to leaves.
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3. FEPs AS BICLUSTERS

To construct an EH from large-scale functional genomics data, we need a biologically meaningful way

to identify FEPs from genome-wide microarray expression data. To that end, we define FEPs as biclusters.

Such a definition allows us to use existing microarray data analysis methods and adapt them for this

purpose. Although the definition of a bicluster varies for different algorithms, in essence all algorithms look

for statistically significant submatrices in a given gene expression data matrix (Cheng and Church, 2000;

Lazzeroni and Owen, 2002; Tanay et al., 2002). Finding the most significant biclusters is a computationally

hard problem and all these algorithms use some heuristics to get close to a “near-optimal” solution.

The notion of a bicluster corresponds well to our FEPs, since a bicluster is an expression sub-pattern

found in a significant number of genes. Empirically, variation in expression has been shown to correlate

with CR complexity (Bilu and Barkai, 2005). Biclusters capture this expression variability, with each

bicluster representing an expression pattern or event. Occurrence of a gene in multiple biclusters implies

participation in multiple expression events. Genes in a bicluster may share a function, be co-regulated

or be active in the same pathway. Exploring overlaps in biclusters can help differentiate among different

biological concepts. To that end, a bicluster hierarchy, a structure to order biclusters representing an

expression event and overlaps among biclusters, will be used to approximate RH.

4. METHODS

4.1. Cis-regions

A CR is approximated as a set of TFs, that may consist of multiple CRMs. Biclusters along with TF-DNA

binding data are used to find CRs that are well represented in a given expression data set. CRs are obtained

from sets of TFs that are enriched in a given hierarchy node (using the hypergeometric distribution). All

subsets of an enriched TF set in a bicluster are considered and the set should be present in at least 10%

of genes in that bicluster.

4.2. Building the expression hierarchy from biclusters

The EH is constructed from an initial set of biclusters obtained using the SAMBA algorithm (Tanay

et al., 2002) on our gene expression data set. The biclusters that SAMBA produced are considered to be

at level zero, or the root level of the hierarchy. New levels in the hierarchy are then constructed iteratively

by creating nodes from overlapping pairs of biclusters from previous levels. New levels are generated

until no significant overlaps among biclusters at the previous level are found. The specific steps are as

follows.

Merge: When new nodes are created for all overlaps among biclusters, there is a likelihood of creating

a large number of highly similar nodes which results in a “noisy” hierarchy. To handle this scenario, similar

nodes are merged using average-link hierarchical clustering, using the following criteria for merging:

.jGi \ Gj j=jGi [ Gj j � 0:7 & rEC < 8EC/

or .jGi \ Gj j=jGi [ Gj j > 0:5 & jGi [ Gj j � jGi \ Gj j < 6/;

where Gi is the set of genes for bicluster i , Gj is the set of genes for bicluster j , EC is the Co-Expression

Index for gene set Gi \ Gj and rEC is the Co-Expression Index for a random gene set of size jGi \ Gj j

generated from jGi [ Gj j (100 random sets are generated).

Move-up: If the gene set of a node at a current level is a subset of some node at the same level then

that node is moved up to a higher level. Some fuzziness is allowed for the subset relationship, in order to

move a node higher up, based on

.jGi \ Gj j � 0:7 � jGi j & jGi j � jGi \ Gj j < 6/ or .jGi \ Gj j � 0:9 � jGi j/:
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Create Nodes: New nodes are created from “significantly overlapping” gene sets from all pairs from

the current level. The following condition is used to determine the significance of an overlap:

..jGi \ Gj j > 20/ or .jGi \ Gj j > 4 & .jGi \ Gj j=jGi [ Gj j � 0:3

or .jGi \ Gj j � 0:4 � jGi j or jGi \ Gj j � 0:4 � jGj j///

or

.jGi \ Gj j > 9 & .jGi \ Gj j=jGi [ Gj j � 0:2 or jGi \ Gj j � 0:25 � jGi j

or jGi \ Gj j � 0:25 � jGj j/// & .EC > 8rEC/:

In theory, the number of newly created nodes can be exponential but for real data this number is bound

by the small degree of overlap among original biclusters. Choices for parameters are ad hoc and driven

by specific data sets, but are conservative.

Create Edges: An edge .i; j / is created from node i to node j if: jGi \ Gj j � 0:8 � jGi j.

Eliminate Shortcuts: Transitive reduction is then applied to get the bicluster hierarchy.

A random EH was generated that has the same number of nodes and edges as the empirical one. In it,

the edges remain the same but the gene sets in the nodes are different, as follows. For each node in the

empirical EH a node of the same size is created by uniformly at random selecting genes from the union

set of genes of the parent nodes. (Recall that in EH genes in a node are the intersection set of genes of its

parent nodes.) As a result, root nodes are the same for both a random and a real bicluster hierarchy.

4.3. Metrics

The Co-Expression Index is a measure of the level of co-expression in a gene expression matrix. The Co-

Expression Index for a given matrix with g genes and e experiments is defined as the average standardized

expression value (z-score) for all genes over the experiments in the matrix:

e
X

j D0

ˇ

ˇ

ˇ

ˇ

ˇ

g
X

iD0

eij � ej

�j

ˇ

ˇ

ˇ

ˇ

ˇ

,

.e � g/;

where eij is the expression value for gene i and experiment j , ej is the average of expression values for

experiment j over all genes, and �j is the standard deviation of expression values for experiment j over

all genes.

The Co-Regulation Index is a measure of the level of co-regulation in a gene expression matrix. A

higher Co-Regulation Index means a “tighter” level of co-regulation. For a given matrix with g genes and

e experiments, the Co-Regulation Index is defined as that fraction of TF’s regulating either of two genes

that regulate them both, summed over all gene pairs from g:

g
X

iD0

g
X

j D1C1

TFi \ TFj

TFi [ TFj

,

�

g

2

�

;

where TFi is the set of TFs that bind to gene i and TFj is the set of TFs that bind to gene j .

5. RESULTS AND DISCUSSION

This simple model of transcriptional regulation is meant to be an invariant view of regulation from either

the CRs or the gene expression patterns. To validate this property and demonstrate the soundness of our

model, we construct the two enveloping hierarchies, EH and TFH, in order to estimate the RH for yeast.

Then we evaluate their overlap, as estimators of RH, as well as the properties we expect them to satisfy,

from Section 2.2.

We used the following publicly available large-scale genome-wide yeast data sets to construct the

hierarchies:
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� Expression data were downloaded either from the Stanford Microarray Database (Gollub et al., 2003)

or from the authors’ publication supporting websites, following a comprehensive list of expression

data sources provided at http://cs.tau.ac.il/�rshamir/simba, encompassing about 1000 experimental

conditions and 6200 genes.
� TF-DNA binding (ChIP-chip) data was obtained from the supporting website for Harbison et al. (2004).

Orfs bound by TFs with binding p-value of <0.001 and no conservation criteria were used. The dataset

consists of binding data for a total of 352 TFs (some TFs were tested under different environmental

conditions) with about 6200 genes.

To construct the EH, we started with a total of 507 biclusters obtained from the expression data matrix

using the SAMBA algorithm (Tanay and Sharan, 2002) and default settings. New nodes were constructed

from overlapping biclusters and similar nodes were merged, as described in Methods. The final EH has

1379 nodes, including the original biclusters, connected with 7227 edges, with 217 leaf and 217 root

nodes. The root nodes are characterized by overlapping gene sets, and small nonoverlapping experiment

sets, while the leaf nodes are nearly nonoverlapping in their gene sets with highly overlapping experiment

sets, as expected.

To make sure we had comparable nodes between the hierarchies, we constructed only that portion of

the TFH whose nodes overlap with the EH. Thus, the nodes in TFH contain the same gene sets as the

nodes in EH, and are represented by the CRs obtained from the gene sets in those nodes (see Methods).

An edge is established between TFH nodes for every subset relationship among sets of TFs representing

the nodes’ CRs. Only those CRs that are well-represented in EH (see Methods) are used instead of using

all CRs which may be obtained solely from TF-DNA data. We found a total of 2150 edges in EH and

761 edges in TFH between nodes which had nonempty CRs.

5.1. Co-expression and co-regulation between nodes in EH

We measured the levels of co-expression and co-regulation between genes in the nodes of the EH.

The results are shown in Figure 4, where we see that a significant fraction of leaf nodes have higher

Co-Expression and Co-Regulation Indices than root nodes. The Co-Expression and Co-Regulation Indices

were also compared between connected nodes. For 7076 edges out of 7227 edges (97.9%), the child node

had a higher Co-Expression Index than the parent node. For random nodes in 2664 edges (36.7%) the child

node had a higher Co-Expression Index. For 5280 edges out of 7227 edges (73.1%), the child node had

a higher Co-Regulation Index than the parent node. For random nodes in 2763 edges (38.2%) the child

node had a higher Co-Regulation Index. For 5180 edges (71.7%), the child node had both Co-Expression

and Co-Regulation Indices higher than the parent node. For random nodes in 1120 edges (15.5%), the

child node had a higher Co-Expression and Co-Regulation Indices. These results show that the EH has the

desirable property of regulatory complexity increasing from root to leaves.

FIG. 4. The co-regulation (left) and co-expression (right) are overall higher in the leaves than in the roots of the

hierarchy, compared to random subsets of elements (i.e., leaves) from the root sets.
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FIG. 5. The agreement between expression and TF hierarchies, in terms of number of shared edges and as compared

to a random assignment of edges, is surprisingly strong in spite of the noisiness of the data and simplicity of the

model.

5.2. Agreement between the expression and TF hierarchies

Here, we sought to evaluate the agreement between EH and TFH. Out of the comparable 2150 edges

in EH and 761 edges in TFH, 341 edges were common to both. The EH and TFH obtained from a

randomly created bicluster hierarchy (see Methods) had 276 and 222 edges, respectively, with only nine

edges in common. The results are shown in Figure 5. The significant overlap in the hierarchies implies

that our combinatorial model captures a good portion of modular relationships, despite its simplicity, and

the noisiness of the data.

5.3. GO annotations and levels in the hierarchy

The GO hierarchy was used to compare the generality of processes vis-à-vis the levels of their genes in

EH. Levels in the GO hierarchy are considered bottom-up. The most specific GO terms are at level zero.

For all root node-leaf node pairs, their GO annotations were compared. 31.5% of root node annotations

are found in their descendant leaf nodes out of which 43.2% have a better p-value in the child node. For

random data, 7.7% of root node annotations are found in their descendant leaf nodes out of which only

3.9% have a better p-value in child node. The average level in the GO hierarchy for annotations with

better p-value in descendant nodes is 0.36 compared to 0.41 for the annotations that did not have a better

p-value in descendant nodes. Table 1 shows a comparison of enriched GO annotations in a root versus

its descendant leaf nodes. Most of the root node annotations are more significantly enriched in one of the

descendant leaf nodes. Also, leaf nodes have a number of enriched GO annotations that were not enriched

in the root node. Root nodes at the lowest levels in the hierarchy represent more general processes, and

nodes at higher levels represent more specific processes.

6. RELATED WORK

Much work has been done in the area of finding regulatory elements computationally from DNA sequence

data (Bailey and Elkan, 1995; Sinha and Tompa, 2003; Thijs et al., 2001; Bussemaker et al., 2000). With

the availability of genome-wide gene expression data, simple models for transcriptional regulation by

single TFs have been used to find regulatory elements (Bussemaker et al., 2001; Chiang et al., 2001).
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TABLE 1. GO ANNOTATION COMPARISON BETWEEN LEAF AND ROOT NODES

SHOWS MUCH HIGHER (OR REFINED) FUNCTIONAL ENRICHMENT IN THE

LEAVES FOR THE SAME FUNCTION PRESENT IN THE NODES

GO annotation

Root node

p-value

Lowest leaf

node p-value

Cellular macromolecule metabolism 1.91E-20 Not present

Cellular metabolism 4.96E-15 Not present

Macromolecule biosynthesis 3.82E-40 Not present

Main pathways of carbohydrate metabolism 3.09E-10 Not present

Organic acid metabolism 4.92E-09 Not present

Aerobic respiration 1.33E-08 1.29E-20

Biosynthesis 4.71E-43 0

Cellular biosynthesis 1.65E-43 0

Electron transport 2.54E-10 6.62E-23

Generation of precursor metabolite and energy 7.16E-11 3.77E-21

Heme-copper terminal oxidase activity 1.86E-07 5.01E-13

Hexose catabolism 1.08E-08 1.51E-13

Hydrogen ion transporter activity 3.45E-12 1.91E-19

Oxidative phosphorylation 6.48E-09 1.59E-25

Oxidoreductase activity 1.25E-11 1.80E-12

Structural constituent of ribosome 0 0

Amino acid biosynthesis Not present 4.50E-17

Amino acid metabolism Not present 1.08E-20

Carrier activity Not present 3.40E-15

Gluconeogenesis Not present 4.31E-12

Ion transporter activity Not present 6.54E-17

Methionine metabolism Not present 3.99E-08

Protein biosynthesis Not present 0

Regulation of protein biosynthesis Not present 2.11E-07

Ribosomal subunit assembly Not present 1.95E-12

Translation Not present 1.56E-07

Transport Not present 5.04E-10

The logic by which cis-elements interact to effect/modulate transcription is not known but some patterns

are becoming apparent that indicate such logic is very likely to exist (Istrail and Davidson, 2005). Such

patterns include, for example, logical operations based on motif occupancy (Yuh et al., 2001; Buchler

et al., 2003), inhibition (Kulkarni and Arnosti, 2005), amplification, the modularity of cis-elements, their

geography on the DNA with respect to other modules, modality of multiple modules. Knowledge of

combinatorial regulation directed researchers towards developing algorithms to search for groups of binding

sites that act in concert to effect expression (Sharan et al., 2003). Recent studies have been able to

successfully predict gene expression data from sequence data by taking into consideration few of the

complex rules utilizing logic operations and constraints like strength, orientation, relative position, and

multiplicity of binding sites that govern transcriptional regulation (Beer and Tavazoie, 2004; Nguyen and

D’Haeseleer, 2006).

Although gene’s expression is determined by the combinatorics of TF interactions with cis-elements, it

is not trivial to establish a correspondence between co-expression and co-regulation. Methods for grouping

genes by similarity of expression profiles across multiple experiments have been partially successful in

identifying functionally related genes (Eisen et al., 1998). But since co-expression does not imply co-

regulation in general such methods have been limited to the identification of gross functional features and

categories. Differentiating between co-expressed and co-regulated genes is important in particular for gene

network inference. Pilpel et al. (2001) proposed and later improved (Lapidot and Pilpel, 2003) methods

to identify clusters of genes which are co-regulated and co-expressed at the same time. They achieved

this by scoring co-expression for genes which share overrepresented elements in the upstream regions.

Such studies provide mostly empirical results but not fundamental understanding or combinatorial models



MODULAR STRUCTURE OF TRANSCRIPTIONAL REGULATION IN YEAST 403

which relate co-regulation with co-expression, and suffer from false positives from the DNA motif search.

A few studies recently have focused on identifying modules of genes by considering variety of available

data: gene expression, sequence, and TF-DNA location (Pilpel et al., 2001; Bar-Joseph et al., 2003; Stuart

et al., 2003). The working definition for a module in them varies between a group of strongly co-expressed

genes in a subset of experiments (Bergmann et al., 2003) to a group of genes co regulated by the same

factors and sharing a function (Segal et al., 2003). In both extremes, though, the definition of a module is

imprecise and mostly empirical.

The small number of different patterns evident in time-course gene expression data, especially the

cycling genes set by Spellman et al. (1998), has motivated several studies into evaluating the possibility

of decomposing the expression signals into a combination of a few basic signals. In particular, the study

by Holter et al. (2000) identified a small number of characteristic modes in microarray time-series data,

as discovered by Singular Value Decomposition. Such studies although informative about the range of

the transcriptional signals under specific conditions, and arguably successful in correlating functional gene

categories with specific modes of regulation, do not address the issue of co-regulation, nor model the

causes for it.

Clustering of genes has been effectively used for analysis of gene expression data, although such

clustering techniques are limited as they depend on the global similarity of genes. Often, groups of

genes are similarly expressed only under certain experimental conditions while their expression pattern is

uncorrelated under other conditions. To overcome this limitation various algorithms have been developed

that search for biclusters, i.e., a group of genes that have similar expression pattern under a subset of

experimental conditions (Cheng and Church, 2000; Getz et al., 2000; Tanay et al., 2002; Lazzeroni and

Owen, 2002; Bergmann et al., 2003). Genes in a bicluster may share a function, be co-regulated, or be

active in the same pathway. They are proven to be more effective than standard clustering methods in case

of gene expression data from multiple studies (Ihmels et al., 2004; Tanay et al., 2005a) as they better capture

the biology of transcriptional regulation. Ihmels et al. (2002) and Tanay et al. (2004) used biclustering to

reveal the hierarchical modular organization in the yeast transcriptional network. Bussemaker et al. (2001)

and Beer and Tavazoie (2004) have shown the combinatorial effects of individual Transcription Factor

Binding Sites on gene expression.

7. CONCLUSION

In this paper, we presented a simple combinatorial model of causal modularity in transcriptional gene

regulation. We presented the theoretical RH, and showed that it captures the complexities of genes’ CRs.

We introduced the concept of an FEP as a general identifiable functional event of a gene set. FEPs are

used to build an EH, a lower envelope to the RH, from gene expression data. We identified FEPs with

biclusters and used them to build the EH, a structure that can be of independent interest for integrative

gene expression data analysis (Tanay et al., 2005b). A TF hierarchy, as an upper envelope to the RH, can

be constructed from TF-DNA interaction data. Our results showed significant overlap between the two

empirical hierarchies, in spite of the noisiness in the data, thus providing evidence for the proposed model

of regulation.

Our choice of methods at each step was guided by usability and may not be the most appropriate.

SAMBA was used with default settings to generate biclusters from expression data for expression events.

Other algorithms such as Independent Component Analysis (Lee and Batzoglou, 2003) or Iterative Signature

Algorithm (Bergmann et al., 2003) for the same purpose can be explored and generalized further.

The construction of EH using all overlaps among biclusters is a computationally expensive task. We used

simple heuristics to limit overlaps to a small number; more general, topology-based optimization methods

would likely yield better results. CRs and CRMs are approximated as sets of TFs using TF-DNA data.

This is a very simplified view of a CRM. Information from sequence data, i.e., information about how

these TFs bind, binding site locations, distance among sites, number of binding sites, ordering of binding

sites, and inhibitory effects of TFs (Nguyen and D’Haeseleer, 2006), should be considered. But because of

its simplicity this model of regulation is very flexible and can be extended by incorporating, for example,

inhibitory effects into it, extending it to other organisms, and developing visualization tools for exploring

hierarchies effectively.
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Modularity, used as a model design paradigm here, helps us to scale the phenomenon of transcriptional

regulation so that we can think of it not in terms of biochemistry but in terms of abstract processes and

ideas, and in terms of its expressive language. The underlying meaning is that there are semantic building

blocks that transcriptional regulation reuses to make genes active and to make networks connected. If,

perhaps, there are a finite number of such semantic blocks, then there might be a language of transcription

and gene regulation that is very much like the programming languages that we know, written in the genetic

codes of animals. The regulation hierarchies may help us identify such modules. We hope that this work

can serve as a stepping stone towards more complex combinatorial models which can help identify the

elements of the language of transcriptional regulation.
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